Table Of Contents

1. **Master's Program in Physics** ... 13
 1.1. Qualification Goals ... 13
 1.1.1. Qualification Goals of the Master's Program .. 13
 1.1.2. Relevance for Sustainable Development Goals .. 14
 1.1.3. Qualification Goals of Individual Subjects .. 14
 1.1.3.1. Major, Second Major, and Minor Subjects in Physics .. 14
 1.1.3.2. Non-Physics Elective Subject .. 14
 1.1.3.3. Advanced Physics Laboratory Course .. 14
 1.1.3.4. Advanced Seminar .. 14
 1.1.3.5. Interdisciplinary Qualifications ... 14
 1.1.3.6. Introduction to Scientific Methods and Specialization Phase ... 14
 1.1.3.7. Master's Thesis .. 15
 1.1.4. Credits .. 15
 1.2. Study Plan for the Master's Program of Physics .. 15
 1.2.1. Introduction .. 15
 1.2.2. Courses, Credits, and Grading .. 15
 1.2.3. Organization of Subjects and Selection Rules .. 16
 1.2.4. Registration for Controls of Success, Subject Examinations, and Master's Thesis 17
 1.3. Mobility .. 17
 1.4. Internships ... 17
 1.5. Graphical Representation of the Plan of Study .. 17

2. **Tabular Overview of the Assignment of the Modules** .. 19

3. **Field of study structure** .. 29
 3.1. Master's Thesis ... 30
 3.2. Major in Physics: Condensed Matter ... 30
 3.3. Major in Physics: Nanophysics .. 31
 3.4. Major in Physics: Optics and Photonics ... 32
 3.5. Major in Physics: Experimental Particle Physics .. 33
 3.6. Major in Physics: Experimental Astroparticle Physics .. 34
 3.7. Major in Physics: Theoretical Particle Physics ... 35
 3.8. Major in Physics: Condensed Matter Theory ... 36
 3.9. Second Major in Physics: Condensed Matter .. 37
 3.10. Second Major in Physics: Nanophysics .. 38
 3.11. Second Major in Physics: Optics and Photonics ... 39
 3.12. Second Major in Physics: Experimental Particle Physics .. 40
 3.13. Second Major in Physics: Experimental Astroparticle Physics .. 41
 3.14. Second Major in Physics: Theoretical Particle Physics ... 42
 3.15. Second Major in Physics: Condensed Matter Theory .. 43
 3.16. Second Major in Physics: Geophysics ... 43
 3.17. Second Major in Physics: Meteorology .. 43
 3.18. Minor in Physics: Condensed Matter .. 44
 3.19. Minor in Physics: Nanophysics ... 45
 3.20. Minor in Physics: Optics and Photonics ... 46
 3.21. Minor in Physics: Experimental Particle Physics .. 47
 3.22. Minor in Physics: Experimental Astroparticle Physics ... 48
 3.23. Minor in Physics: Theoretical Particle Physics .. 49
 3.24. Minor in Physics: Condensed Matter Theory .. 49
 3.25. Minor in Physics: Geophysics .. 50
 3.27. Non-Physics Elective .. 50
 3.28. Advanced Physics Laboratory Course ... 50
 3.29. Specialization Phase ... 50
 3.30. Introduction to Scientific Methods .. 50
 3.31. Interdisciplinary Qualifications ... 51
 3.32. Additional Examinations ... 51

4. **Modules** ... 52
 4.1. Accelerator Physics, with ext. Exercises - M-PHYS-104869 ... 52
4.2. Accelerator Physics, with ext. exercises (Minor) - M-PHYS-104870
4.3. Accelerator Physics, without ext. Exercises - M-PHYS-104871
4.4. Accelerator Physics, without ext. exercises (Minor) - M-PHYS-104872
4.5. Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training - M-PHYS-106399
4.6. Advanced Physics Laboratory Course - M-PHYS-101395
4.7. Advanced Seminar in the Area Condensed Matter - M-PHYS-102203
4.8. Advanced Seminar in the Area Condensed Matter Theory - M-PHYS-102209
4.9. Advanced Seminar in the Area Experimental Astroparticle Physics - M-PHYS-102207
4.10. Advanced Seminar in the Area Experimental Particle Physics - M-PHYS-102208
4.11. Advanced Seminar in the Area Nanophysics - M-PHYS-102204
4.12. Advanced Seminar in the Area Optics and Photonics - M-PHYS-102205
4.13. Advanced Seminar in the Area Theoretical Particle Physics - M-PHYS-102208
4.15. Astroparticle Physics I - M-PHYS-102075
4.16. Astroparticle Physics I (Minor) - M-PHYS-102076
4.18. Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor) - M-PHYS-103184
4.20. Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor) - M-PHYS-102082
4.21. Astroparticle Physics II - Gamma Rays and Neutrinos - M-PHYS-105683
4.22. Astroparticle Physics II - Gamma Rays and Neutrinos (Minor) - M-PHYS-105684
4.23. Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises - M-PHYS-105686
4.25. Astroparticle Physics II - Particles and Stars, with ext. Exercises - M-PHYS-102527
4.26. Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor) - M-PHYS-103186
4.27. Astroparticle Physics II - Particles and Stars, without ext. Exercises - M-PHYS-102081
4.28. Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor) - M-PHYS-102086
4.29. Basics of Nanotechnology I - M-PHYS-102097
4.30. Basics of Nanotechnology I (Minor) - M-PHYS-102096
4.31. Basics of Nanotechnology II - M-PHYS-102100
4.32. Basics of Nanotechnology II (Minor) - M-PHYS-102099
4.33. Block Practical Course: ETP Data Science - M-PHYS-106530
4.34. Classical Theory of Gauge Fields - M-PHYS-105934
4.35. Computational Condensed Matter Physics - M-PHYS-104862
4.36. Computational Condensed Matter Physics (Minor) - M-PHYS-104863
4.37. Computational Methods for Particle Physics and Cosmology - M-PHYS-106117
4.38. Computational Methods for Particle Physics and Cosmology (Minor) - M-PHYS-106118
4.39. Computational Photonics, with ext. Exercises - M-PHYS-101933
4.40. Computational Photonics, with ext. Exercises (Minor) - M-PHYS-103090
4.41. Computational Photonics, without ext. Exercises - M-PHYS-103089
4.42. Computational Photonics, without ext. Exercises (Minor) - M-PHYS-103193
4.43. Condensed Matter Theory I, Fundamentals - M-PHYS-102054
4.44. Condensed Matter Theory I, Fundamentals (Minor) - M-PHYS-102052
4.45. Condensed Matter Theory I, Fundamentals and Advanced Topics - M-PHYS-102053
4.46. Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor) - M-PHYS-102051
4.47. Condensed Matter Theory II: Many-Body Theory, Fundamentals - M-PHYS-102313
4.48. Condensed Matter Theory II: Many-Body Theory, Fundamentals (Minor) - M-PHYS-102314
4.50. Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor) - M-PHYS-102312
4.51. Condensed Matter Theory II: Many-Body Theory, selected topics - M-PHYS-103331
4.52. Detectors for Particle and Astroparticle Physics, with ext. Exercises - M-PHYS-102121
4.53. Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor) - M-PHYS-102122
4.54. Detectors for Particle and Astroparticle Physics, without ext. Exercises - M-PHYS-102119
4.55. Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor) - M-PHYS-102120
4.56. Electron Microscopy I, with Exercises - M-PHYS-102989
4.57. Electron Microscopy I, with Exercises (Minor) - M-PHYS-102991
4.58. Electron Microscopy I, without Exercises - M-PHYS-102990
4.59. Electron Microscopy II, with Exercises - M-PHYS-102227
4.60. Electron Microscopy II, with Exercises (Minor) - M-PHYS-103172
Table Of Contents

4.61. Electron Microscopy II, without Exercises - M-PHYS-102844 ... 140
4.63. Electronic Properties of Solids I, with Exercises (Minor) - M-PHYS-102087 .. 143
4.64. Electronic Properties of Solids I, without Exercises - M-PHYS-102090 ... 144
4.65. Electronic Properties of Solids II, with Exercises - M-PHYS-102108 ... 145
4.66. Electronic Properties of Solids II, with Exercises (Minor) - M-PHYS-102106 .. 146
4.68. Electronics for Physicists - M-PHYS-102184 .. 148
4.69. Electronics for Physicists (Minor) - M-PHYS-102185 ... 150
4.70. Electronics for Physicists: Analog Electronics - M-PHYS-102179 ... 151
4.71. Electronics for Physicists: Analog Electronics (Minor) - M-PHYS-102180 ... 152
4.72. Electronics for Physicists: Digital Electronics - M-PHYS-102182 ... 153
4.73. Electronics for Physicists: Digital Electronics (Minor) - M-PHYS-102183 ... 154
4.74. Experimental Biophysics II, with Seminar - M-PHYS-102165 ... 155
4.75. Experimental Biophysics II, with Seminar (Minor) - M-PHYS-102166 ... 157
4.76. Experimental Biophysics II, without Seminar - M-PHYS-102167 ... 159
4.77. Experimental Biophysics II, without Seminar (Minor) - M-PHYS-102168 ... 160
4.78. Field Theories of Condensed Matter: Conformal Field Theory - M-PHYS-104548 161
4.79. Flavour Physics in the Standard Model and beyond - M-PHYS-105064 .. 162
4.80. Full-Waveform Inversion (Ungraded) - M-PHYS-104522 .. 163
4.81. General Relativity - M-PHYS-102319 ... 164
4.82. General Relativity (Minor) - M-PHYS-102320 .. 165
4.83. General Relativity II - M-PHYS-103333 .. 166
4.84. General Relativity II (Minor) - M-PHYS-103334 .. 167
4.85. Geological Hazards and Risk - M-PHYS-101833 ... 168
4.86. In-Situ Tectonics and Seismic Hazard in the Mediterranean Region - M-PHYS-106322 170
4.87. Interdisciplinary Qualifications - M-PHYS-101394 ... 171
4.88. Introduction to Cosmology - M-PHYS-102175 .. 172
4.89. Introduction to Cosmology (Minor) - M-PHYS-102176 ... 173
4.90. Introduction to Flavor Physics, Fundamentals - M-PHYS-102987 ... 174
4.91. Introduction to Flavor Physics, Fundamentals (Minor) - M-PHYS-103189 ... 175
4.92. Introduction to Flavor Physics, Fundamentals and Advanced Topics - M-PHYS-102986 176
4.93. Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor) - M-PHYS-103188 177
4.94. Introduction to General Relativity - M-PHYS-106532 .. 178
4.95. Introduction to General Relativity (Minor) - M-PHYS-106533 ... 179
4.96. Introduction to Neutron Scattering - M-PHYS-106323 .. 180
4.97. Introduction to Neutron Scattering (Minor) - M-PHYS-106324 .. 181
4.98. Introduction to Scientific Methods - M-PHYS-101397 .. 182
4.99. Introduction to Theoretical Cosmology - M-PHYS-104855 .. 183
4.100. Introduction to Theoretical Cosmology (Minor) - M-PHYS-104856 .. 184
4.101. Introduction to Theoretical Particle Physics, with ext. Exercises - M-PHYS-102221 185
4.102. Introduction to Theoretical Particle Physics, with ext. Exercises (Minor) - M-PHYS-102424 186
4.103. Introduction to Theoretical Particle Physics, without ext. Exercises - M-PHYS-102425 187
4.104. Introduction to Theoretical Particle Physics, without ext. Exercises (Minor) - M-PHYS-102426 188
4.105. Inversion and Tomography - M-PHYS-102368 ... 189
4.106. Inversion and Tomography (Minor) - M-PHYS-102658 ... 190
4.108. Mathematical Methods of Theoretical Physics (two hours per week) - M-PHYS-105834 192
4.109. Mathematical Methods of Theoretical Physics (two hours per week) (Minor) - M-PHYS-105835 193
4.110. Measurement Methods and Techniques in Experimental Physics, with ext. Exercises - M-PHYS-102517 194
4.111. Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor) - M-PHYS-102519 .. 196
4.112. Measurement Methods and Techniques in Experimental Physics, without ext. Exercises - M-PHYS-102518 197
4.113. Measurement Methods and Techniques in Experimental Physics, without ext. Exercises (Minor) - M- PHYS-103194
4.114. Microscale Fluid Mechanics - M-MACH-106539 ... 200
4.115. Modern Methods of Data Analysis, with ext. Exercises - M-PHYS-102127 .. 201
4.116. Modern Methods of Data Analysis, with ext. Exercises (Minor) - M-PHYS-102128 202
4.117. Modern Methods of Data Analysis, without ext. Exercises - M-PHYS-102125 .. 203
4.118. Modern Methods of Data Analysis, without ext. Exercises (Minor) - M-PHYS-102126 204
<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.120. Molecular Electronics - M-PHYS-104540</td>
<td>Molecular Electronics</td>
</tr>
<tr>
<td>4.121. Molecular Electronics (Minor) - M-PHYS-104541</td>
<td>Molecular Electronics (Minor)</td>
</tr>
<tr>
<td>4.122. Molecular Spectroscopy - M-PHYS-102337</td>
<td>Molecular Spectroscopy</td>
</tr>
<tr>
<td>4.123. Monte Carlo Event Generators - M-PHYS-104860</td>
<td>Monte Carlo Event Generators</td>
</tr>
<tr>
<td>4.124. Monte Carlo Event Generators (Minor) - M-PHYS-104861</td>
<td>Monte Carlo Event Generators (Minor)</td>
</tr>
<tr>
<td>4.125. Nanomaterials, with Exercises - M-PHYS-105068</td>
<td>Nanomaterials, with Exercises</td>
</tr>
<tr>
<td>4.126. Nanomaterials, with Exercises (Minor) - M-PHYS-105609</td>
<td>Nanomaterials, with Exercises (Minor)</td>
</tr>
<tr>
<td>4.127. Nanomaterials, without Exercises - M-PHYS-105071</td>
<td>Nanomaterials, without Exercises</td>
</tr>
<tr>
<td>4.129. Nano-Optics (Minor) - M-PHYS-102147</td>
<td>Nano-Optics (Minor)</td>
</tr>
<tr>
<td>4.130. New Light Particles Beyond the Standard Model - M-PHYS-105534</td>
<td>New Light Particles Beyond the Standard Model</td>
</tr>
<tr>
<td>4.131. New Light Particles Beyond the Standard Model (Minor) - M-PHYS-105582</td>
<td>New Light Particles Beyond the Standard Model (Minor)</td>
</tr>
<tr>
<td>4.133. Nonlinear Optics - M-ETIT-100430</td>
<td>Nonlinear Optics</td>
</tr>
<tr>
<td>4.134. Non-supersymmetric Extensions of the Standard Model (Minor) - M-PHYS-105639</td>
<td>Non-supersymmetric Extensions of the Standard Model (Minor)</td>
</tr>
<tr>
<td>4.135. Particle Physics I - M-PHYS-102114</td>
<td>Particle Physics I</td>
</tr>
<tr>
<td>4.136. Particle Physics I (Minor) - M-PHYS-102115</td>
<td>Particle Physics I (Minor)</td>
</tr>
<tr>
<td>4.137. Particle Physics II - Flavour Physics, with ext. Exercises - M-PHYS-102422</td>
<td>Particle Physics II - Flavour Physics, with ext. Exercises</td>
</tr>
<tr>
<td>4.138. Particle Physics II - Flavour Physics, with ext. Exercises (Minor) - M-PHYS-103183</td>
<td>Particle Physics II - Flavour Physics, with ext. Exercises (Minor)</td>
</tr>
<tr>
<td>4.139. Particle Physics II - Flavour Physics, without ext. Exercises - M-PHYS-102154</td>
<td>Particle Physics II - Flavour Physics, without ext. Exercises</td>
</tr>
<tr>
<td>4.140. Particle Physics II - Flavour Physics, without ext. Exercises (Minor) - M-PHYS-102155</td>
<td>Particle Physics II - Flavour Physics, without ext. Exercises (Minor)</td>
</tr>
<tr>
<td>4.142. Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises (Minor) - M-PHYS-105940</td>
<td>Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises (Minor)</td>
</tr>
<tr>
<td>4.144. Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises (Minor) - M-PHYS-105938</td>
<td>Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises (Minor)</td>
</tr>
<tr>
<td>4.145. Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises - M-PHYS-104088</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises</td>
</tr>
<tr>
<td>4.146. Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor) - M-PHYS-104089</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor)</td>
</tr>
<tr>
<td>4.147. Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises - M-PHYS-104086</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises</td>
</tr>
<tr>
<td>4.148. Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) - M-PHYS-104087</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor)</td>
</tr>
<tr>
<td>4.150. Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor) - M-PHYS-104085</td>
<td>Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor)</td>
</tr>
<tr>
<td>4.154. Photovoltaics - M-ETIT-100513</td>
<td>Photovoltaics</td>
</tr>
<tr>
<td>4.156. Physics of Seismic Instruments (Minor) - M-PHYS-102653</td>
<td>Physics of Seismic Instruments (Minor)</td>
</tr>
<tr>
<td>4.158. Physics of Semiconductors, with Exercises (Minor) - M-PHYS-102130</td>
<td>Physics of Semiconductors, with Exercises (Minor)</td>
</tr>
<tr>
<td>4.159. Physics of Semiconductors, without Exercises - M-PHYS-102301</td>
<td>Physics of Semiconductors, without Exercises</td>
</tr>
<tr>
<td>4.160. Precision Phenomenology at Colliders and Computational Methods, with Exercises - M-PHYS-105640</td>
<td>Precision Phenomenology at Colliders and Computational Methods, with Exercises</td>
</tr>
<tr>
<td>4.161. Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor) - M-PHYS-105642</td>
<td>Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor)</td>
</tr>
<tr>
<td>4.162. Precision Phenomenology at Colliders and Computational Methods, without Exercises - M-PHYS-105641</td>
<td>Precision Phenomenology at Colliders and Computational Methods, without Exercises</td>
</tr>
<tr>
<td>4.163. Quantum Detectors and Sensors - M-PHYS-106193</td>
<td>Quantum Detectors and Sensors</td>
</tr>
<tr>
<td>4.164. Quantum Detectors and Sensors (Minor) - M-PHYS-106194</td>
<td>Quantum Detectors and Sensors (Minor)</td>
</tr>
<tr>
<td>4.165. Quantum Optics at the Nano Scale, with Exercises - M-PHYS-106508</td>
<td>Quantum Optics at the Nano Scale, with Exercises</td>
</tr>
<tr>
<td>4.166. Quantum Optics at the Nano Scale, with Exercises (Minor) - M-PHYS-106509</td>
<td>Quantum Optics at the Nano Scale, with Exercises (Minor)</td>
</tr>
<tr>
<td>4.167. Quantum Optics at the Nano Scale, without Exercises - M-PHYS-106510</td>
<td>Quantum Optics at the Nano Scale, without Exercises</td>
</tr>
<tr>
<td>4.168. Seismic Data Processing with Final Report (Graded) - M-PHYS-104186</td>
<td>Seismic Data Processing with Final Report (Graded)</td>
</tr>
<tr>
<td>4.169. Seismic Modeling - M-PHYS-105227</td>
<td>Seismic Modeling</td>
</tr>
<tr>
<td>4.170. Seismic Modeling (Minor) - M-PHYS-105228</td>
<td>Seismic Modeling (Minor)</td>
</tr>
<tr>
<td>4.171. Seisims - M-PHYS-106326</td>
<td>Seisims</td>
</tr>
<tr>
<td>4.172. Seisims (Minor) - M-PHYS-106325</td>
<td>Seisims (Minor)</td>
</tr>
<tr>
<td>4.173. Seismology - M-PHYS-105225</td>
<td>Seismology</td>
</tr>
<tr>
<td>4.174. Seismology (Minor) - M-PHYS-105226</td>
<td>Seismology (Minor)</td>
</tr>
<tr>
<td>4.175. Selected Topics in Meteorology (Minor, ungraded) - M-PHYS-104578</td>
<td>Selected Topics in Meteorology (Minor, ungraded)</td>
</tr>
<tr>
<td>4.176. Selected Topics in Meteorology (Second Major, graded) - M-PHYS-104577</td>
<td>Selected Topics in Meteorology (Second Major, graded)</td>
</tr>
<tr>
<td>Course Title</td>
<td>Code</td>
</tr>
<tr>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>Solid State Quantum Technologies - M-PHYS-104857</td>
<td></td>
</tr>
<tr>
<td>Solid State Quantum Technologies (Minor) - M-PHYS-104858</td>
<td></td>
</tr>
<tr>
<td>Solid-State Optics - M-PHYS-102408</td>
<td></td>
</tr>
<tr>
<td>Solid-State Optics (Minor) - M-PHYS-102409</td>
<td></td>
</tr>
<tr>
<td>Specialization Phase - M-PHYS-101396</td>
<td></td>
</tr>
<tr>
<td>Spin Transport in Nanostructures - M-PHYS-102293</td>
<td></td>
</tr>
<tr>
<td>Spin Transport in Nanostructures (Minor) - M-PHYS-105375</td>
<td></td>
</tr>
<tr>
<td>Superconducting Nanostructures - M-PHYS-102191</td>
<td></td>
</tr>
<tr>
<td>Superconducting Nanostructures (Minor) - M-PHYS-104723</td>
<td></td>
</tr>
<tr>
<td>Superconductivity, Josephson Effect and Applications, with Exercises - M-PHYS-105655</td>
<td></td>
</tr>
<tr>
<td>Superconductivity, Josephson Effect and Applications, with Exercises (Minor) - M-PHYS-105656</td>
<td></td>
</tr>
<tr>
<td>Superconductivity, Josephson Effect and Applications, without Exercises - M-PHYS-106584</td>
<td></td>
</tr>
<tr>
<td>Supplementary Studies on Culture and Society - M-ZAK-106235</td>
<td></td>
</tr>
<tr>
<td>Supplementary Studies on Sustainable Development - M-ZAK-106099</td>
<td></td>
</tr>
<tr>
<td>Surface Science, with Exercises - M-PHYS-106482</td>
<td></td>
</tr>
<tr>
<td>Surface Science, with Exercises (Minor) - M-PHYS-106484</td>
<td></td>
</tr>
<tr>
<td>Surface Science, without Exercises - M-PHYS-106483</td>
<td></td>
</tr>
<tr>
<td>Symmetries and Groups - M-PHYS-102317</td>
<td></td>
</tr>
<tr>
<td>Symmetries and Groups (Minor) - M-PHYS-102318</td>
<td></td>
</tr>
<tr>
<td>Symmetries, Groups and Extended Gauge Theories - M-PHYS-102315</td>
<td></td>
</tr>
<tr>
<td>Symmetries, Groups and Extended Gauge Theories (Minor) - M-PHYS-102316</td>
<td></td>
</tr>
<tr>
<td>The ABC of DFT - M-PHYS-102984</td>
<td></td>
</tr>
<tr>
<td>Theoretical Molecular Biophysics, with Seminar - M-PHYS-102169</td>
<td></td>
</tr>
<tr>
<td>Theoretical Molecular Biophysics, with Seminar (Minor) - M-PHYS-102170</td>
<td></td>
</tr>
<tr>
<td>Theoretical Molecular Biophysics, without Seminar - M-PHYS-102171</td>
<td></td>
</tr>
<tr>
<td>Theoretical Molecular Biophysics, without Seminar (Minor) - M-PHYS-102172</td>
<td></td>
</tr>
<tr>
<td>Theoretical Nanooptics - M-PHYS-102295</td>
<td></td>
</tr>
<tr>
<td>Theoretical Nanooptics (Minor) - M-PHYS-103177</td>
<td></td>
</tr>
<tr>
<td>Theoretical Optics - M-PHYS-102277</td>
<td></td>
</tr>
<tr>
<td>Theoretical Optics (Minor) - M-PHYS-102279</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises - M-PHYS-102033</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor) - M-PHYS-102037</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises - M-PHYS-102039</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics I, Fundamentals, with Exercises - M-PHYS-102034</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) - M-PHYS-102038</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics I, Fundamentals, without Exercises - M-PHYS-102036</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics II, with Exercises - M-PHYS-102046</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics II, with Exercises (Minor) - M-PHYS-102044</td>
<td></td>
</tr>
<tr>
<td>Theoretical Particle Physics II, without Exercises - M-PHYS-102048</td>
<td></td>
</tr>
<tr>
<td>Theoretical Quantum Optics - M-PHYS-105094</td>
<td></td>
</tr>
<tr>
<td>Theoretical Quantum Optics (Minor) - M-PHYS-105395</td>
<td></td>
</tr>
<tr>
<td>Theory and Applications of Quantum Machines - M-PHYS-105942</td>
<td></td>
</tr>
<tr>
<td>Theory and Applications of Quantum Machines (Minor) - M-PHYS-105943</td>
<td></td>
</tr>
<tr>
<td>Theory of Magnetism II - M-PHYS-102985</td>
<td></td>
</tr>
<tr>
<td>Theory of Magnetism, with Exercises - M-PHYS-105381</td>
<td></td>
</tr>
<tr>
<td>Theory of Magnetism, with Exercises (Minor) - M-PHYS-105385</td>
<td></td>
</tr>
<tr>
<td>Theory of Seismic Waves - M-PHYS-102367</td>
<td></td>
</tr>
<tr>
<td>Theory of Seismic Waves (Minor) - M-PHYS-102657</td>
<td></td>
</tr>
<tr>
<td>Theory of Strongly Correlated Electron Systems - M-PHYS-106056</td>
<td></td>
</tr>
<tr>
<td>Topology in Condensed Matter Physics: Fundamentals and Advanced Topics - M-PHYS-106586</td>
<td></td>
</tr>
<tr>
<td>Topology in Condensed Matter Physics: Fundamentals and Advanced Topics (Minor) - M-PHYS-106587</td>
<td></td>
</tr>
<tr>
<td>Topology in Condensed Matter Physics: Fundamentals and Selected Topics - M-PHYS-106588</td>
<td></td>
</tr>
<tr>
<td>Wildcard Non-Physics Elective, Module with 1 Brick - M-PHYS-102091</td>
<td></td>
</tr>
<tr>
<td>Wildcard Non-Physics Elective, Module with 2 Bricks - M-PHYS-103129</td>
<td></td>
</tr>
<tr>
<td>Wildcard Non-Physics Elective, Module with 3 Bricks - M-PHYS-103130</td>
<td></td>
</tr>
<tr>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks - M-PHYS-103131</td>
<td></td>
</tr>
<tr>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab - M-PHYS-105555</td>
<td></td>
</tr>
<tr>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor) - M-PHYS-105557</td>
<td></td>
</tr>
</tbody>
</table>

Physics Master (Master of Science)
Module Handbook as of 20/10/2023
5. Courses

5.1. Accelerator Physics, with ext. Exercises - T-PHYS-109904 ... 361
5.2. Accelerator Physics, with ext. exercises (Minor) - T-PHYS-109903 .. 362
5.3. Accelerator Physics, without ext. Exercises - T-PHYS-109905 ... 363
5.4. Accelerator Physics, without ext. exercises (Minor) - T-PHYS-109906 ... 364
5.5. Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training - T- PHYS-112943
5.6. Advanced Numerical Weather Prediction - T-PHYS-111429 .. 366
5.7. Advanced Physics Laboratory Course - T-PHYS-102479 .. 367
5.8. Advanced Seminar: Accelerators and Detectors - Future Technologies for Research and Medicine - T- PHYS-112801
5.9. Advanced Seminar: Advanced Topics in Quantum Field Theory and Physics Beyond the Standard - T- PHYS-111324
5.10. Advanced Seminar: Astroparticle Physics - T-PHYS-110293 ... 371
5.11. Advanced Seminar: Astroparticle Physics and Cosmology - T-PHYS-112800 ... 372
5.12. Advanced Seminar: Conformational Dynamics in Biomolecules - T-PHYS-104544 .. 373
5.13. Advanced Seminar: Experimental and Theoretical Methods in Particle Physics - T-PHYS-106525 374
5.15. Advanced Seminar: General Relativity - T-PHYS-106126 .. 376
5.16. Advanced Seminar: General Relativity II - T-PHYS-109974 ... 377
5.17. Advanced Seminar: Higgs Meets Flavour - T-PHYS-110830 .. 378
5.18. Advanced Seminar: Hydrodynamics in Classical and Quantum Fluids - T-PHYS-111323 379
5.19. Advanced Seminar: Light-optical Nanoscopy - T-PHYS-104560 ... 380
5.20. Advanced Seminar: Low Energy Particle Physics (Belle II, LUXE) - T-PHYS-111864 381
5.21. Advanced Seminar: Modern Particle Accelerators and Research with Photons - T-PHYS-106129 382
5.22. Advanced Seminar: Nano Optics - T-PHYS-111862 ... 383
5.25. Advanced Seminar: Particle Physics - T-PHYS-112235 .. 386
5.27. Advanced Seminar: Particle Physics at the Highest Energy at the LHC - T-PHYS-107566 388
5.28. Advanced Seminar: Particle Physics beyond the Standard Model - T-PHYS-111863 389
5.29. Advanced Seminar: Phenomena of the Quantum World - T-PHYS-112802 ... 390
5.30. Advanced Seminar: Physics Beyond the Standard Model - T-PHYS-111452 .. 391
5.31. Advanced Seminar: Quantum Mechanics: Selected Chapters - T-PHYS-113133 392
5.32. Advanced Seminar: Quantum Optics - T-PHYS-106523 ... 393
5.33. Advanced Seminar: Quantum Phase Transitions - T-PHYS-111889 ... 394
5.34. Advanced Seminar: Recent Experiments in Quantum Physics - T-PHYS-109971 ... 395
5.35. Advanced Seminar: Special Relativity - T-PHYS-105793 .. 396
5.36. Advanced Seminar: Superconductivity - from Basics to Application - T-PHYS-111014 397
5.37. Advanced Seminar: The Matter Puzzle - Baryon Asymmetry, Dark Matter and Particle Physics - T-PHYS-112803 ... 398
5.38. Advanced Seminar: Topology in Condensed Matter Systems - T-PHYS-110829 .. 399
5.40. Advanced Seminar: Unraveling the Puzzle of Dark Matter - T-PHYS-112236 .. 400
5.41. Advanced Seminar: Virtual Design of Materials - T-PHYS-111865 .. 401
5.42. Arctic Climate System - T-PHYS-111273 ... 402
5.43. Array Techniques in Seismology, graded - T-PHYS-112590 ... 404
5.44. Astroparticle Physics I - T-PHYS-102432 ... 405
5.45. Astroparticle Physics I (Minor) - T-PHYS-104379 ... 406
5.46. Astroparticle Physics II - Cosmic Rays, with ext. Exercises - T-PHYS-105108 .. 407
5.47. Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor) - T-PHYS-106317 408
5.48. Astroparticle Physics II - Cosmic Rays, without ext. Exercises - T-PHYS-102382 ... 409
Table Of Contents

5.49. Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor) - T-PHYS-104380 410
5.50. Astroparticle Physics II - Gamma Rays and Neutrinos - T-PHYS-111343 .. 411
5.51. Astroparticle Physics II - Gamma Rays and Neutrinos (Minor) - T-PHYS-111344 412
5.52. Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises - T-PHYS-111346 413
5.53. Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor) - T-PHYS-111345 414
5.54. Astroparticle Physics II - Particles and Stars, with ext. Exercises - T-PHYS-105110 415
5.55. Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor) - T-PHYS-106319 416
5.56. Astroparticle Physics II - Particles and Stars, without ext. Exercises - T-PHYS-102498 417
5.57. Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor) - T-PHYS-104383 418
5.58. Atmospheric Aerosols - T-PHYS-111418 .. 419
5.59. Atmospheric Radiation - T-PHYS-111419 .. 420
5.60. Basics Module - Self Assignment BAK - T-ZAK-112653 .. 421
5.61. Basics Module - Self Assignment BeNe - T-ZAK-112345 .. 422
5.62. Basics of Nanotechnology I - T-PHYS-102529 .. 423
5.63. Basics of Nanotechnology I (Minor) - T-PHYS-102528 .. 424
5.64. Basics of Nanotechnology II - T-PHYS-102531 .. 425
5.65. Basics of Nanotechnology II (Minor) - T-PHYS-102530 .. 426
5.66. Block Practical Course: ETP Data Science - T-PHYS-113159 .. 427
5.67. Classical Theory of Gauge Fields - T-PHYS-111943 .. 428
5.68. Climate Modeling & Dynamics with ICON - T-PHYS-111412 .. 429
5.69. Cloud Physics - T-PHYS-111416 .. 430
5.70. Computational Condensed Matter Physics - T-PHYS-109895 .. 431
5.71. Computational Condensed Matter Physics (Minor) - T-PHYS-109894 .. 432
5.72. Computational Methods for Particle Physics and Cosmology - T-PHYS-112378 433
5.73. Computational Methods for Particle Physics and Cosmology (Minor) - T-PHYS-112379 434
5.74. Computational Photonics, with ext. Exercises - T-PHYS-103633 .. 435
5.75. Computational Photonics, with ext. Exercises (Minor) - T-PHYS-106132 436
5.76. Computational Photonics, without ext. Exercises - T-PHYS-106131 ... 437
5.77. Computational Photonics, without ext. Exercises (Minor) - T-PHYS-106326 438
5.78. Condensed Matter Theory I, Fundamentals - T-PHYS-102559 .. 439
5.79. Condensed Matter Theory I, Fundamentals (Minor) - T-PHYS-102557 440
5.80. Condensed Matter Theory I, Fundamentals and Advanced Topics - T-PHYS-102558 441
5.81. Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor) - T-PHYS-102556 442
5.82. Condensed Matter Theory II: Many-Body Systems, Fundamentals - T-PHYS-104591 443
5.83. Condensed Matter Theory II: Many-Body Systems, Fundamentals (Minor) - T-PHYS-104592 444
5.84. Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics - T-PHYS-102560 .. 445
5.85. Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics (Minor) - T-PHYS-102562 446
5.86. Condensed Matter Theory II: Many-Body Systems, selected topics - T-PHYS-106667 447
5.87. Detectors for Particle and Astroparticle Physics, with ext. Exercises - T-PHYS-102378 448
5.88. Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor) - T-PHYS-102431 ... 449
5.89. Detectors for Particle and Astroparticle Physics, without ext. Exercises - T-PHYS-104453 450
5.90. Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor) - T-PHYS-104454 ... 451
5.91. Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe - T-ZAK-112349
5.92. Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe - T-ZAK-112348 453
5.93. Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe - T-ZAK-112350 454
5.94. Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe - T-ZAK-112347 455
5.95. Electron Microscopy I, with Exercises - T-PHYS-105965 .. 456
5.96. Electron Microscopy I, with Exercises (Minor) - T-PHYS-105968 ... 457
5.97. Electron Microscopy I, without Exercises - T-PHYS-105967 .. 458
5.98. Electron Microscopy II, with Exercises - T-PHYS-102349 .. 459
5.99. Electron Microscopy II, with Exercises (Minor) - T-PHYS-106306 .. 460
5.100. Electron Microscopy II, without Exercises - T-PHYS-105817 ... 461
5.102. Electronic Properties of Solids I, with Exercises (Minor) - T-PHYS-102575 463
5.103. Electronic Properties of Solids I, without Exercises - T-PHYS-102578 464
5.105. Electronic Properties of Solids II, with Exercises (Minor) - T-PHYS-104420 466
5.106. Electronic Properties of Solids II, without Exercises - T-PHYS-104423 467
5.107. Electronics for Physicists - T-PHYS-104479 .. 468
5.108.	Electronics for Physicists (Minor) - T-PHYS-104480	469
5.109.	Electronics for Physicists: Analog Electronics - T-PHYS-104475	470
5.110.	Electronics for Physicists: Analog Electronics (Minor) - T-PHYS-104476	471
5.111.	Electronics for Physicists: Digital Electronics - T-PHYS-104477	472
5.112.	Electronics for Physicists: Digital Electronics (Minor) - T-PHYS-104478	473
5.113.	Energetics - T-PHYS-111417	474
5.114.	Energy Meteorology - T-PHYS-111428	475
5.115.	Exam on Selected Topics in Meteorology (Second Major) - T-PHYS-109380	476
5.116.	Experimental Biophysics II, with Seminar - T-PHYS-102532	477
5.117.	Experimental Biophysics II, with Seminar (Minor) - T-PHYS-102533	478
5.118.	Experimental Biophysics II, without Seminar - T-PHYS-104471	479
5.119.	Experimental Biophysics II, without Seminar (Minor) - T-PHYS-104472	480
5.120.	Field Theories of Condensed Matter: Conformal Field Theory - T-PHYS-109320	481
5.121.	Flavour Physics in the Standard Model and beyond - T-PHYS-110281	482
5.122.	Full-Waveform Inversion - T-PHYS-109272	483
5.123.	General Relativity - T-PHYS-102395	484
5.124.	General Relativity (Minor) - T-PHYS-102446	485
5.125.	General Relativity II - T-PHYS-106678	486
5.126.	General Relativity II (Minor) - T-PHYS-106679	487
5.127.	Geological Hazards and Risk - T-PHYS-103525	488
5.128.	In-depth Module - Doing Culture - Self Assignment BAK - T-ZAK-112655	489
5.129.	In-depth Module - Global Cultures - Self Assignment BAK - T-ZAK-112658	490
5.130.	In-depth Module - Media & Aesthetics - Self Assignment BAK - T-ZAK-112656	491
5.131.	In-depth Module - Spheres of Life - Self Assignment BAK - T-ZAK-112657	492
5.132.	In-depth Module - Technology & Responsibility - Self Assignment BAK - T-ZAK-112654	493
5.133.	In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region - T-PHYS-112830	494
5.134.	Introduction to Cosmology - T-PHYS-102384	495
5.135.	Introduction to Cosmology (Minor) - T-PHYS-102433	496
5.136.	Introduction to Flavor Physics, Fundamentals - T-PHYS-105963	497
5.137.	Introduction to Flavor Physics, Fundamentals (Minor) - T-PHYS-106322	498
5.138.	Introduction to Flavor Physics, Fundamentals and Advanced Topics - T-PHYS-105962	499
5.139.	Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor) - T-PHYS-106321	500
5.140.	Introduction to General Relativity - T-PHYS-113186	501
5.141.	Introduction to General Relativity (Minor) - T-PHYS-113189	502
5.142.	Introduction to Neutron Scattering - T-PHYS-112831	503
5.143.	Introduction to Neutron Scattering (Minor) - T-PHYS-112832	504
5.144.	Introduction to Scientific Methods - T-PHYS-102480	505
5.145.	Introduction to Theoretical Cosmology - T-PHYS-109887	506
5.146.	Introduction to Theoretical Cosmology (Minor) - T-PHYS-109888	507
5.147.	Introduction to Theoretical Particle Physics, with ext. Exercises - T-PHYS-104536	508
5.148.	Introduction to Theoretical Particle Physics, with ext. Exercises (Minor) - T-PHYS-104791	509
5.149.	Introduction to Theoretical Particle Physics, without ext. Exercises - T-PHYS-104792	510
5.150.	Introduction to Theoretical Particle Physics, without ext. Exercises (Minor) - T-PHYS-104793	511
5.151.	Inversion and Tomography - T-PHYS-104737	512
5.152.	Inversion and Tomography (Minor) - T-PHYS-105572	513
5.153.	Master's Thesis - T-PHYS-113096	514
5.154.	Mathematical Methods of Theoretical Physics (two hours per week) - T-PHYS-111704	515
5.155.	Mathematical Methods of Theoretical Physics (two hours per week) (Minor) - T-PHYS-111705	516
5.156.	Measurement Methods and Techniques in Experimental Particle Physics, with ext. Exercises - T-PHYS-102376	517
5.157.	Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor) - T-PHYS-105106	518
5.158.	Measurement Methods and Techniques in Experimental Physics, without ext. Exercises - T-PHYS-105105	519
5.159.	Measurement Methods and Techniques in Experimental Physics, without ext. Exercises (Minor) - T-PHYS-106327	520
5.160.	Methods of Data Analysis - T-PHYS-111426	521
5.161.	Microscale Fluid Mechanics - T-MACH-113144	522
5.162.	Middle Atmosphere in the Climate System - T-PHYS-111413	523
5.163.	Modern Methods of Data Analysis, with ext. Exercises - T-PHYS-102495	524
5.164.	Modern Methods of Data Analysis, with ext. Exercises (Minor) - T-PHYS-102496	525
5.165.	Modern Methods of Data Analysis, without ext. Exercises - T-PHYS-102494	526
5.166.	Modern Methods of Data Analysis, without ext. Exercises (Minor) - T-PHYS-102497	527
Table Of Contents

5.167. Modern Methods of Spectroscopy: Applications in Astroparticle Physics - T-PHYS-112237 .. 528
5.168. Molecular Electronics - T-PHYS-109305 ... 529
5.169. Molecular Electronics (Minor) - T-PHYS-109306 530
5.170. Molecular Spectroscopy - T-CHEMBIO-104639 531
5.171. Monte Carlo Event Generators - T-PHYS-109892 532
5.172. Monte Carlo Event Generators (Minor) - T-PHYS-109893 533
5.173. Nanomaterials, with Exercises - T-PHYS-110285 534
5.174. Nanomaterials, with Exercises (Minor) - T-PHYS-110286 535
5.175. Nanomaterials, without Exercises - T-PHYS-110288 536
5.176. Nano-Optics - T-PHYS-102282 .. 537
5.177. Nano-Optics (Minor) - T-PHYS-102360 .. 538
5.178. New Light Particles Beyond the Standard Model - T-PHYS-111115 539
5.179. New Light Particles Beyond the Standard Model (Minor) - T-PHYS-111196 540
5.180. New Light Particles Beyond the Standard Model, without Exercises - T-PHYS-111703 541
5.181. Nonlinear Optics - T-ETIT-101906 ... 542
5.182. Non-supersymmetric Extensions of the Standard Model (Minor) - T-PHYS-111277 543
5.183. Ocean-Atmosphere Interactions - T-PHYS-111414 544
5.184. Oral Exam - Supplementary Studies on Culture and Society - T-ZAK-112659 545
5.185. Oral Exam - Supplementary Studies on Sustainable Development - T-ZAK-112351 546
5.186. Particle Physics I - T-PHYS-102369 ... 547
5.187. Particle Physics I (Minor) - T-PHYS-102488 ... 548
5.188. Particle Physics II - Flavour Physics, with ext. Exercises - T-PHYS-104783 549
5.189. Particle Physics II - Flavour Physics, with ext. Exercises (Minor) - T-PHYS-106316 550
5.190. Particle Physics II - Flavour Physics, without ext. Exercises - T-PHYS-102371 551
5.191. Particle Physics II - Flavour Physics, without ext. Exercises (Minor) - T-PHYS-102424 552
5.192. Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises - T-PHYS-111950 553
5.193. Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises (Minor) - T-PHYS-111951 554
5.194. Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises - T-PHYS-111948 555
5.195. Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises (Minor) - T-PHYS-111949 556
5.196. Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises - T-PHYS-108474 557
5.197. Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor) - T-PHYS-108475 558
5.198. Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises - T-PHYS-108472 559
5.199. Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) - T-PHYS-108473 560
5.200. Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises - T-PHYS-108470 561
5.201. Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor) - T-PHYS-108471 562
5.203. Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor) - T-PHYS-108469 564
5.204. Particle Physics with Extra Dimensions - T-PHYS-112244 565
5.205. Photovoltaics - T-ETIT-101939 ... 566
5.206. Physics of Planetary Atmospheres - T-PHYS-109177 567
5.207. Physics of Seismic Instruments - T-PHYS-104727 568
5.208. Physics of Seismic Instruments (Minor) - T-PHYS-105567 569
5.209. Physics of Semiconductors, with Exercises - T-PHYS-102343 570
5.210. Physics of Semiconductors, with Exercises (Minor) - T-PHYS-102301 571
5.211. Physics of Semiconductors, without Exercises - T-PHYS-104590 572
5.212. Practice Module - T-ZAK-112660 ... 573
5.213. Precision Phenomenology at Colliders and Computational Methods, with Exercises - T-PHYS-111279 574
5.214. Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor) - T-PHYS-111281 575
5.215. Precision Phenomenology at Colliders and Computational Methods, without Exercises - T-PHYS-111280 576
5.216. Quantum Detectors and Sensors - T-PHYS-112582 577
5.217. Quantum Detectors and Sensors (Minor) - T-PHYS-112583 578
5.218. Quantum Optics at the Nano Scale, with Exercises - T-PHYS-113126 579
5.219. Quantum Optics at the Nano Scale, with Exercises (Minor) - T-PHYS-113127 580
5.220. Quantum Optics at the Nano Scale, without Exercises - T-PHYS-113128 581
5.221. Remote Sensing of Atmosphere and Ocean - T-PHYS-111424 582
5.222. Seismic Data Processing, Coursework - T-PHYS-108680 583
5.223. Seismic Data Processing, Final Report (Graded) - T-PHYS-108656 584
5.224. Seismic Modeling - T-PHYS-110609 .. 585
5.225. Seismic Modeling (Minor) - T-PHYS-110607 586
5.226. Seisics - T-PHYS-112843 ... 587
5.227. Seismics (Minor) - T-PHYS-112833 ... 588
5.228. Seismology - T-PHYS-110603 ... 589
5.229. Seismology (Minor) - T-PHYS-110604 .. 590
5.230. Selfassignment-MScPhysics-graded - T-PHYS-111562 .. 591
5.231. Selfassignment-MScPhysics-ungraded - T-PHYS-111565 .. 592
5.232. Seminar on IPCC Assessment Report - T-PHYS-111410 593
5.234. Solid State Quantum Computing, with Exercises - T-PHYS-111104 595
5.235. Solid State Quantum Computing, with Exercises (Minor) - T-PHYS-111105 .. 596
5.236. Solid State Quantum Technologies - T-PHYS-109890 597
5.237. Solid State Quantum Technologies - T-PHYS-109889 598
5.238. Solid-State Optics, without Exercises - T-PHYS-104773 599
5.239. Solid-State Optics, without Exercises (Minor) - T-PHYS-104774 600
5.240. Specialisation Module - Self Assignment BeNe - T-ZAK-112346 601
5.241. Specialization Phase - T-PHYS-102481 ... 602
5.242. Spin Transport in Nanostructures - T-PHYS-104586 603
5.243. Spin Transport in Nanostructures (Minor) - T-PHYS-110858 604
5.244. Superconducting Nanostructures - T-PHYS-104513 605
5.245. Superconducting Nanostructures (Minor) - T-PHYS-109621 606
5.246. Superconductivity, Josephson Effect and Applications, with Exercises - T-PHYS-111293 .. 607
5.247. Superconductivity, Josephson Effect and Applications, with Exercises (Minor) - T-PHYS-111294 .. 608
5.248. Superconductivity, Josephson Effect and Applications, without Exercises - T-PHYS-113257 .. 609
5.249. Surface Science, with Exercises - T-PHYS-113098 610
5.250. Surface Science, with Exercises (Minor) - T-PHYS-113100 611
5.251. Surface Science, without Exercises - T-PHYS-113099 612
5.252. Symmetries and Groups - T-PHYS-104596 ... 613
5.253. Symmetries and Groups (Minor) - T-PHYS-104597 614
5.254. Symmetries, Groups and Extended Gauge Theories - T-PHYS-102393 615
5.255. Symmetries, Groups and Extended Gauge Theories (Minor) - T-PHYS-102444 616
5.256. The ABC of DFT - T-PHYS-105960 ... 617
5.257. Theoretical Molecular Biophysics, with Seminar - T-PHYS-102365 618
5.258. Theoretical Molecular Biophysics, with Seminar (Minor) - T-PHYS-102420 619
5.259. Theoretical Molecular Biophysics, without Seminar - T-PHYS-104473 620
5.260. Theoretical Molecular Biophysics, without Seminar (Minor) - T-PHYS-104474 621
5.261. Theoretical Nano Optics - T-PHYS-104587 .. 622
5.262. Theoretical Nano Optics (Minor) - T-PHYS-106311 623
5.263. Theoretical Optics - T-PHYS-104578 ... 624
5.264. Theoretical Optics - Unit - T-PHYS-102305 .. 625
5.265. Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises - T-PHYS-102544 626
5.266. Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor) - T-PHYS-102540 627
5.267. Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises - T-PHYS-102546 628
5.268. Theoretical Particle Physics I, Fundamentals, with Exercises - T-PHYS-102545 629
5.269. Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) - T-PHYS-102541 630
5.270. Theoretical Particle Physics I, Fundamentals, without Exercises - T-PHYS-102547 631
5.271. Theoretical Particle Physics II, with Exercises - T-PHYS-102552 632
5.272. Theoretical Particle Physics II, with Exercises (Minor) - T-PHYS-102548 633
5.273. Theoretical Particle Physics II, without Exercises - T-PHYS-102554 634
5.274. Theoretical Quantum Optics - T-PHYS-110303 ... 635
5.275. Theoretical Quantum Optics (Minor) - T-PHYS-110884 636
5.276. Theory and Applications of Quantum Machines - T-PHYS-112018 637
5.277. Theory and Applications of Quantum Machines (Minor) - T-PHYS-112019 638
5.278. Theory of Magnetism II - T-PHYS-105961 .. 639
5.279. Theory of Magnetism, with Exercises - T-PHYS-110869 640
5.280. Theory of Magnetism, with Exercises (Minor) - T-PHYS-110873 641
5.281. Theory of Seismic Waves - T-PHYS-104736 .. 642
5.282. Theory of Seismic Waves (Minor) - T-PHYS-105571 643
5.283. Theory of Strongly Correlated Electron Systems - T-PHYS-112245 644

Physics Master (Master of Science)
Module Handbook as of 20/10/2023

Table Of Contents
<table>
<thead>
<tr>
<th>Section</th>
<th>Course Title</th>
<th>Module Code</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.287.</td>
<td>Tropical Meteorology - T-PHYS-111411</td>
<td></td>
<td>648</td>
</tr>
<tr>
<td>5.288.</td>
<td>Turbulent Diffusion - T-PHYS-111427</td>
<td></td>
<td>649</td>
</tr>
<tr>
<td>5.289.</td>
<td>Wildcard Non-Physics Elective, Module with 1 Brick, 8 CP graded - T-PHYS-104384</td>
<td></td>
<td>650</td>
</tr>
<tr>
<td>5.290.</td>
<td>Wildcard Non-Physics Elective, Module with 2 Bricks, 4 CP graded - T-PHYS-106221</td>
<td></td>
<td>651</td>
</tr>
<tr>
<td>5.291.</td>
<td>Wildcard Non-Physics Elective, Module with 2 Bricks, 4 CP graded - T-PHYS-106222</td>
<td></td>
<td>652</td>
</tr>
<tr>
<td>5.292.</td>
<td>Wildcard Non-Physics Elective, Module with 3 Bricks, 2 CP graded - T-PHYS-106225</td>
<td></td>
<td>653</td>
</tr>
<tr>
<td>5.293.</td>
<td>Wildcard Non-Physics Elective, Module with 3 Bricks, 3 CP graded - T-PHYS-106224</td>
<td></td>
<td>654</td>
</tr>
<tr>
<td>5.294.</td>
<td>Wildcard Non-Physics Elective, Module with 3 Bricks, 3 CP graded - T-PHYS-106223</td>
<td></td>
<td>655</td>
</tr>
<tr>
<td>5.295.</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded - T-PHYS-106228</td>
<td></td>
<td>656</td>
</tr>
<tr>
<td>5.296.</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded - T-PHYS-106229</td>
<td></td>
<td>657</td>
</tr>
<tr>
<td>5.297.</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded - T-PHYS-106226</td>
<td></td>
<td>658</td>
</tr>
<tr>
<td>5.298.</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded - T-PHYS-106227</td>
<td></td>
<td>659</td>
</tr>
<tr>
<td>5.299.</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab - T-PHYS-111156</td>
<td></td>
<td>660</td>
</tr>
<tr>
<td>5.300.</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor) - T-PHYS-111158</td>
<td></td>
<td>661</td>
</tr>
<tr>
<td>5.301.</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab - T-PHYS-111157</td>
<td></td>
<td>662</td>
</tr>
<tr>
<td>5.302.</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab - T-PHYS-111159</td>
<td></td>
<td>663</td>
</tr>
<tr>
<td>5.303.</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab (Minor) - T-PHYS-111161</td>
<td></td>
<td>664</td>
</tr>
<tr>
<td>5.304.</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, without Exercises and without Lab - T-PHYS-111160</td>
<td></td>
<td>665</td>
</tr>
</tbody>
</table>
1 Master's Program in Physics

Physics is one of the classical natural sciences. Studies of physics are geared towards scientific work as a physicist at universities and non-university research institutions as well as in industry. Our Master's program in physics is focused on research-oriented teaching, with lectures that are centered around modern research topics and the Master's thesis offering the opportunity for students to participate in state-of-the-art research work as central part of their education. However, the future field of work of physicists is not limited to scientific research. Physicists are in high demand by a broad variety of employers, both in industry and in the public sector. This is mainly due to their competences in analyzing, modeling, and solving problems in accordance with scientific standards. These competences can be used widely and represent the focus of education.

The Master's program of physics builds on a Bachelor's program of physics in which the foundations of the field are acquired. The consecutive Master's program of physics covers a wide range of topics, but also imparts in-depth and specialized knowledge. These topics are divided into:

A. Experimental Physics:
 - Condensed Matter
 - Nanophysics
 - Optics and Photonics
 - Experimental Particle Physics
 - Experimental Astroparticle Physics

B. Theoretical Physics:
 - Theoretical Particle Physics
 - Condensed Matter Theory

Students are given a variety of options to choose these topics; they are modeled as major, second major, and minor subjects in physics in the Master's program. In addition, courses from meteorology, climate physics, and geophysics may be chosen as second major or minor subjects. The program concludes with the Master's thesis, which includes an introduction to independent scientific work and a specialization phase. Master's studies can be aligned largely to the students' individual preferences and skills and allows a wide range of profiles, ranging from theory-focused work over instrumentation for physics experiment to data science.

To meet the requirements for admission to the Master's program in physics, a solid university education in physics is required, as conveyed in the Bachelor's program of physics at KIT or other German universities. The KIT Department of Physics has adopted corresponding regulations for admission to the Master's program.

1.1 Qualification Goals

1.1.1 Qualification Goals of the Master's Program

Graduates of the Master's program in physics know the scientific foundations of experimental and theoretical physics and have obtained in-depth knowledge of the state-of-the-art in their major, second major, and minor subjects in physics, which can be selected from a large range of subjects in experimental and theoretical physics as well as meteorology and geophysics (see above). They possess advanced knowledge in an additional subject outside of physics that can be selected from a large range of options. They know how to apply concepts of theoretical or experimental physics to research-related problems and how to search for solution strategies. In experimental physics, they are able to perform sophisticated physics experiments, to determine physics observables from measured data, to formulate models describing the data, and to derive predictions. Graduates specialized in theoretical physics know how to carry out complex calculations and to interpret the results within the framework of the theory studied. Based on the acquired knowledge, they are able to classify facts and subject areas professionally. Moreover, graduates can summarize scientific findings and research results in both written and oral form and present them in a didactically appealing way. Successful completion of the program allows for work in a variety of fields, including university and industrial research and development, data science and process optimization, or programming and hardware application. Graduates also are qualified to start doctoral studies in physics. KIT attaches particular value to research-oriented teaching. Master's students can choose from a large range of options to specialize according to their interests, in close contact to research within KIT's university mission or using the unique large-scale research facilities of KIT's Helmholtz mission.

The Bachelor's and Master's programs in physics at KIT are in line with the Bologna Process, offering full compatibility with corresponding programs at other universities within the European Higher Education Area. The combination of the Bachelor's program with the Master's program at KIT is equivalent to the former Diplom program. General qualification goals of Bachelor's and Master's programs in physics are defined by the Konferenz der Fachbereiche Physik (Association of Physics Departments of universities that are members of the German Rectors Conference) for all of Germany, taking into account international academic education and research. In this way, students can easily change their university in Germany and are guaranteed an internationally well-defined field of work.
1.1.2 Relevance for Sustainable Development Goals

The laws of physics are the fundamental basis of how the world around us functions. The understanding of physics principles is essential for reaching several of the UN sustainable development goals (SDGs, https://sdgs.un.org/goals). Examples of SDGs and their relation to the Master's program include:

- #3 Good Health: Master's students are educated in physics technologies such as magnetic resonance imaging and particle detectors, which can be applied in medicine.
- #4 Quality Education: Graduates of the Master's program in physics are excellent educators and multipliers of knowledge in basic science.
- #5 Gender Equality: Increasing the number of women in science, technology, engineering and mathematics (STEM) subjects is a key goal of the KIT Physics Department, with measures including female professors as role models and gender-neutral language in all study programs.
- #7 Affordable and Clean Energy, and #8 Decent Work and Economic Growth: The Master's curriculum includes courses geared towards research on the physics foundations of technologies that support both future products and the global transition to affordable and clean energy, e.g., high-efficiency solar cells.
- #13 Climate Action: Master's students can study advanced topics of meteorology and climate physics, as well as geophysics as part of their individual course selection.

In addition to these direct relations to the SDGs, all courses in the physics curriculum transmit knowledge and skills which are directly or indirectly essential for sustainable development: The students acquire in-depth knowledge about physics principles, the scientific approach to problem solving, and modern techniques in data analysis and computation.

1.1.3 Qualification Goals of Individual Subjects

1.1.3.1 Major, Second Major, and Minor Subjects in Physics

Students decide the focus of their Master's studies and deepen their knowledge in selected subjects. Thanks to research-oriented teaching, they obtain knowledge that enables them to independently work on latest research topics. The major, second major, and minor subjects must be chosen from different fields. This allows students to gain deeper insight into their area of interest, while keeping a broad education. Students learn to deal with research-related issues and to use latest literature when searching for solution approaches. They familiarize with modern measurement methods and computing techniques needed for work on their Master's thesis.

1.1.3.2 Non-Physics Elective Subject

The non-physics elective subject may be a subject of mathematics, natural sciences, or engineering and can be chosen from courses offered by other KIT Departments. Master's students acquire expert skills in neighboring disciplines, opening up a wide range of opportunities in the labor market.

1.1.3.3 Advanced Physics Laboratory Course

The advanced physics laboratory course conveys knowledge about latest experimental methods and techniques. Students have advanced skills in setting up experiments and measuring and evaluating experimental data.

1.1.3.4 Advanced Seminar

Students hone their presentation techniques by giving an own presentation and listening to presentations of the other participants. They learn how to gather scientific material beyond typical textbook knowledge, cite sources correctly, select and arrange the material from a didactic point of view, structure their presentation, use latest presentation media, make their own presentation, and answer the questions of the audience.

1.1.3.5 Interdisciplinary Qualifications

Students acquire competencies beyond their discipline. The House of Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) and the Language Center (Sprachenzentrum) regularly offer modules in the areas of scientific English, patent law, project management, tutor programs, scientific writing, and public science.

1.1.3.6 Introduction to Scientific Methods and Specialization Phase

The subject "Introduction to Scientific Methods" teaches basic working methods for successful scientific research. These methods are independent of the specialization area, but are trained and taught to cope with a defined task (subject of the Master's thesis). The students are instructed by the future supervisor of their Master's thesis. Parallel to their studies, students attend seminars and colloquia in physics to obtain an overview of latest research issues. They can extend their knowledge by attending special lectures on issues that are not covered by their area of specialization and by having their questions answered by the lecturer. In the subject "Specialization Phase", the students independently work on a concrete task relating to their future Master's thesis. This may be the execution of measurements, the setup of a program, or the development of a theoretical approach. In this way, students learn essential techniques for work on their Master's thesis, which are specific to their area of specialization. Again, students are instructed by the future supervisor of their Master's thesis. In addition, students attend the seminar offered by the research area in which they will write their Master's thesis. Here, they learn to present their work and results to other researchers for critical discussion and to respond to suggestions for further action.
1.1.3.7 Master’s Thesis

In addition to the major, second major, and minor subject, the Master’s thesis is the central component of specialization and acquisition of in-depth knowledge. While working on their Master’s thesis, students learn to independently analyze a scientific problem, develop suitable solutions, interpret the findings, and present major results in writing. In addition, key competencies such as working in a planned and purposeful manner, measurement technology, documentation, team work, and team responsibility are acquired. The Master’s thesis is prepared by the introduction to independent scientific work and a specialization phase.

1.1.4 Credits

Course credits are defined on the module level according to the European Credit Transfer System (ECTS). One ECTS credit point corresponds to a time expenditure of about 30 hours. This time is divided into time spent attending, preparing for, and following up on lectures, exercises, and tutorials, as well as for preparing for the corresponding exams.

According to the Studies and Examination Regulations of the Master’s Program of Physics, 120 ECTS credit points must be achieved for the successful completion of the Master’s program:

- Major in Physics: 20 ECTS credit points
- Second Major in Physics: 14 ECTS credit points
- Minor in Physics: 8 ECTS credit points
- Advanced Physics Laboratory Course: 6 ECTS credit points
- Non-Physics Elective: 8 ECTS credit points
- Interdisciplinary Qualifications: 4 ECTS credit points
- Specialization Phase: 15 ECTS credit points
- Introduction to Scientific Methods: 15 ECTS credit points
- Master’s Thesis: 30 ECTS credit points

1.2 Study Plan for the Master’s Program of Physics

1.2.1 Introduction

The Master’s program is designed to specialize and deepen the basic and methodological knowledge acquired during Bachelor’s program while maintaining its breadth. Master’s studies may be aligned largely to individual preferences and skills. Quality is assured by a mandatory Master’s thesis that is written within a period of six months (30 ECTS credit points). The standard period of study is four semesters, including work on the Master’s thesis. When the Master’s exam is passed, the academic degree of “Master of Science (M. Sc.)” is awarded by Karlsruhe Institute of Technology.

The sequence of the Master’s program in physics at KIT is specified below. Detailed rules for the organization of the program and exams are outlined in the Studies and Examination Regulations for the Master’s Program of Physics of March 9, 2023. The official document (in German) and a legally non-binding English translation can be found on the website of the KIT Department of Physics (https://www.physik.kit.edu/english/studies/services/documents.php). If you have any questions regarding the examination regulations, the recognition of coursework and examinations, content of studies, or the admission to and registration for examinations, please contact the persons listed on website of the KIT Department of Physics.

Detailed descriptions of the courses and rules for performance reviews (“controls of success”, e.g., problem sheets, oral presentations) are given below.

1.2.2 Courses, Credits, and Grading

a) Major, Second Major, and Minor Subjects in Physics

Students can select their major, second major, and minor subjects from seven areas of physics that reflect the research activities of the KIT Department of Physics. The areas are divided into Experimental Physics (Field A: Condensed Matter, Nanophysics, Optics and Photonics, Experimental Particle Physics, Experimental Astroparticle Physics), and Theoretical Physics (Field B: Theoretical Particle Physics, Condensed Matter Theory). For further information on the research pursued in the KIT institutes with lecturers associated to the KIT Department of Physics please visit the department’s website (https://www.physik.kit.edu/english/forschung/our_research.php).

In the major subject, the grade is determined by an individual oral exam covering material from the corresponding courses. A total of at least 20 ECTS credit points are required for admission to the exam. These are acquired by passing the controls of the success defined in this document. The advanced seminar (4 ECTS credit points, see below) may be used to reach the 20 ECTS credit points, but will not be covered by the oral examination.

In the second major subject, the controls of success are graded. These are defined in this document and may be oral exams (individual or group exams), short presentations (concurrent with lecture or in blocks at the end of the semester), short written papers about a specific topic, or written examinations. A total of at least 14 ECTS credit points is required for admission to the exam. The advanced seminar may be used to reach the 14 ECTS credit points, but will not be graded. The final grade is obtained as the credit point-weighted average of the individual grades.

No grade is assigned in the minor subject. Students are only required to pass the control of success for the chosen course, e.g., successful participation in exercise sections accompanying the lecture, oral exams, short presentations, short written
papers or written examinations. A total of at least 8 ECTS credit points is required, which may include the advanced seminar (4 ECTS credit points).

b) Advanced Physics Laboratory Course
The lecture program on experimental physics is complemented by a laboratory course (6 ECTS credit points, not graded) in which students perform advanced physics experiments, analyze the data and document the results.

c) Advanced Seminar
Students select an advanced seminar (4 ECTS credit points, not graded) in one of the three major, second major, and minor subjects. During the advanced seminar, expert knowledge is deepened in one of the fields and scientific presentation techniques are conveyed.

d) Non-Physics Elective Subject
The "Non-Physics Elective" may be chosen from courses offered by other KIT departments and requires at least 8 ECTS credit points. Courses in mathematics, natural sciences, or engineering are most often chosen. Course controls of success are graded.

e) Interdisciplinary Qualifications
In addition to integrative key competencies acquired as part of the Master's program, courses on interdisciplinary qualification that impart additive key competencies must be passed (4 ECTS credit points, not graded).

f) Introduction to Scientific Methods, Specialization Phase, and Master's Thesis
The Master's thesis in the fourth semester of the Master's program is prepared by a specialization phase (15 ECTS credit points, not graded) and an introduction to scientific work (15 ECTS credit points, not graded) in the third semester. Both subjects provide a sound basis and (in integrative form) key competencies for conducting research.

Calculation of the Overall Grade
The overall grade of the master's examination is calculated from the grade average weighted by credit points of the following subjects: Major in Physics (20 ECTS credit points), Second Major in Physics (14 ECTS credit points), Non-Physics Elective (8 ECTS credit points), and the Master's Thesis (30 ECTS credit points).

1.2.3 Organization of Subjects and Selection Rules
The Master's program in physics is designed to allow for curricula tailored to individual students within the framework of the subjects, research fields, and topics defined above. To provide additional flexibility, students only have to decide on the assignment of courses to the major, second major, and minor subjects in physics after completing the first year of their Master studies. Note however that the choice of courses is subject to additional selection rules to ensure scientific breadth and consistent curricula, as detailed below. Students are advised to contact the department's student advisor (https://www.physik.kit.edu/english/studies/services/guidance.php) or the examination committee to determine if their individual curriculum is compatible with these rules. Further independent counseling is provided by the student council.

Major, Second Major, and Minor Subjects in Physics
Students select their major, second major, and minor subjects from courses offered by the KIT Department of Physics in the topics of experimental physics (Field A) and theoretical physics (Field B). The second major and minor subjects may also be chosen from a list of appropriate courses in meteorology or geophysics (Field C). The lists of courses below contain a few courses offered by other departments; these are marked "extern" (external). Additional lectures on topics close to physics offered by other departments (e.g., on non-linear optics) may be combined in a subject upon approval by the examination committee.

- **Major**: A core curriculum is established for each topic with one or more required courses for the selection as a major subject. These courses are supplemented by other courses within the topic and optionally the advanced seminar for a total of at least 20 ECTS credit points.

- **Second Major**: Students select a combination of courses from a different topic (and optionally the advanced seminar) as their second major subject for a total of at least 14 ECTS credit points. Some topics also contain required courses if elected as a second major subject.

- **Minor**: As a rule, the minor subject in physics consists of a single course on a third topic for at least 8 ECTS credit points, e.g., Semiconductor Physics, Particle Physics I, Theoretical Particle Physics I, etc.

- **Theory/Experiment**: At least one of the major, second major, and minor subjects must belong to the field of experimental physics (Field A) and theoretical physics (Field B), respectively. Some courses of the topics of experimental physics are marked with "T"; these are theoretical courses within an otherwise experimental curriculum. Students cannot choose only theoretical courses if they choose only one experimental topic.

Non-Physics Elective
The non-physics elective subject in the area of mathematics, natural or engineering sciences is chosen from the courses offered by KIT departments other than physics. The examination committee publishes a positive list of approved modules and module combinations. Further suitable courses may be approved by the examination committee upon request, these shall include at least six hours a week, four of which must be for lectures. Before taking a non-physics elective that is not on the positive list, students strongly encouraged to consult with the examination committee.

Specialization Phase, Introduction to Scientific Methods, Master Thesis
Students who have successfully passed module examinations in the subjects Major in Physics, Second Major in Physics, Minor in Physics, Advanced Physics Laboratory Course, and Non-Physics Elective can start their specialization phase and register for their Master's thesis.

Further Rules

- The examiners in the major, second major, minor, and non-physics elective subjects must be different.
- The rules for required courses in the individual topics must be fulfilled separately for the major and the second major subjects.
- All courses offered by the House of Competence (HoC), Zentrum für Angewandte Kulturwissenschaft (ZAK) and the Language Center are approved as part of the subject Interdisciplinary Qualifications. Any other modules must be approved by the examination committee.
- Results reached in the Bachelor's program as part of a non-physics elective subject may not be credited again in the Master's program.

1.2.4 Registration for Controls of Success, Subject Examinations, and Master's Thesis

The high flexibility of the Master's program in physics cannot currently be represented in the KIT's student portal "Campus"; therefore, online registration for controls of success and examinations is not possible. Students can register for examinations at the Examination Office (Prüfungssekretariat) of the KIT Department of Physics (Physics High-Rise, Building 30.23, room 9/13) instead. If necessary, successful participation in courses may be confirmed by paper certificates issued by the lecturer.

Since the specialization phase and introduction to scientific methods are carried out under the guidance of the supervisor of the Master's thesis, students register for all three modules before or during the first days of the specialization phase. Registration forms can be obtained from the Examination Office.

1.3 Mobility

In the sequence of the Master's program, it is possible to study one semester at a university outside Germany (semester abroad). This semester abroad should be passed before starting work on the Master's thesis. Credits earned abroad will be recognized for the Master's program if they provide comparable competencies to the KIT program. It is recommended to ask the examination committee for the exact conditions of recognition, preferably before starting the courses abroad.

1.4 Internships

The Master's program in physics at KIT does not provide for mandatory internships; however, it is possible to complete a voluntary internship. The period suited best for internships is after the second master's semester or after the exams in the major, second major, minor, and non-physics elective subjects and before starting the module "Introduction to Scientific Methods". Students are responsible for finding suitable internships. It is possible to request a semester on leave during the internship.

1.5 Graphical Representation of the Plan of Study

<table>
<thead>
<tr>
<th>Term</th>
<th>Major in Physics and Master's Thesis</th>
<th>Second Major in Physics</th>
<th>Minor in Physics</th>
<th>Lab Course</th>
<th>Non-Physics Elective</th>
<th>Interdisciplinary Qualifications</th>
<th>CP*</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Modules of the Major in Physics</td>
<td>Modules of the Second Major in Physics</td>
<td>Modules of the Minor in Physics</td>
<td>Advanced Physics Laboratory Course</td>
<td>8</td>
<td>8</td>
<td>P4</td>
</tr>
<tr>
<td>2</td>
<td>Modules of the Major in Physics</td>
<td>Modules of the Second Major in Physics</td>
<td></td>
<td>Modules of the Non-Physics Elective</td>
<td>8</td>
<td>4</td>
<td>Interdisciplinary Qualifications</td>
</tr>
<tr>
<td>3</td>
<td>Specialization Phase</td>
<td>Introduction to Scientific Methods</td>
<td></td>
<td></td>
<td>15</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Master's Thesis</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
</tbody>
</table>

Sum: 120
† Credit Points according to the European Credit Transfer and Accumulation System

* Modules of the Minor in Physics, the Advanced Physics Laboratory Course, the Non-Physics Elective and the Interdisciplinary Qualifications are offered both in winter and summer terms and can be taken according to preference. Overload should be avoided.
Field A: Experimental Physics

Condensed Matter

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electronic Properties of Solids I (with/without exercises)</td>
<td>✓ WS</td>
<td>L4E1/L4E0</td>
<td>10/8</td>
<td>A</td>
<td>Ex</td>
<td></td>
</tr>
<tr>
<td>Electronic Properties of Solids II (with/without exercises)</td>
<td></td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td>B</td>
<td>Ex</td>
<td></td>
</tr>
<tr>
<td>Physics of Semiconductors (with/without exercises)</td>
<td></td>
<td>L4E1/L4E0</td>
<td>10/8</td>
<td>C</td>
<td>Ex</td>
<td></td>
</tr>
<tr>
<td>Electron Microscopy I (with/without exercises)</td>
<td>✓</td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics of Solid State Surfaces (with/without exercises)</td>
<td></td>
<td>L4E1/L4E0</td>
<td>10/8</td>
<td>D</td>
<td>Ex</td>
<td></td>
</tr>
<tr>
<td>Solid-State Optics</td>
<td>✓ WS</td>
<td>L4</td>
<td>8</td>
<td>E</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Further Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid State Quantum Technologies</td>
<td></td>
<td>L2E2</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid State Quantum Computing (with Exercises)</td>
<td></td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td>Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Superconducting Nanostructures</td>
<td>✓ WS</td>
<td>L2E1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spin Transport in Nanostructures</td>
<td></td>
<td>L2E1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanomaterials (with/without Exercises)</td>
<td></td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td>Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Microscopy II (with/without exercises)</td>
<td></td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td>Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerator Physics (with/without ext. Exercises)</td>
<td>✓ WS</td>
<td>L4E1/L4E0</td>
<td>8/6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures (with/without exercises and Lab)</td>
<td>✓ WS</td>
<td>L2E1P1/L2</td>
<td>8/4</td>
<td>Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Electronics</td>
<td></td>
<td>L2E1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Neutron Scattering</td>
<td></td>
<td>L2E1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training*</td>
<td>✓ WS</td>
<td>10 days block practical course</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This module cannot be combined with an advanced seminar or any non-graded module in the major in physics or second major in physics.

Major in Physics (Maj):
Required courses are A or C: „Electronic Properties of Solids I“ or „Physics of Semiconductors“.

Second Major in Physics (Maj2):
Required courses: minimum one out of A, B, C, D, E

Minor in Physics (Min):
All courses for which the column Min is marked with ✓, can be selected (as part of) the Minor in Physics. Courses marked with "Ex" in column Min, can only be selected in the variant „with Exercises“.

Semester Hours:
L: Lecture / E: Exercises / P: Practical Exercises
Nanophysics

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basics of Nanotechnology I
Grundlagen der Nanotechnologie I</td>
<td>✓</td>
<td>WS</td>
<td>L2</td>
<td>4</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>Basics of Nanotechnology II
Grundlagen der Nanotechnologie II</td>
<td></td>
<td>SS</td>
<td>L2</td>
<td>4</td>
<td>B</td>
<td>✓</td>
</tr>
<tr>
<td>Electronic Properties of Solids I (with/without exercises)
Elektronische Eigenschaften von Festkörpern I (mit/ohne Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>L4E1/L4E0</td>
<td>10/8</td>
<td>C</td>
<td>Ex</td>
</tr>
<tr>
<td>Electronic Properties of Solids II (with/without exercises)
Elektronische Eigenschaften von Festkörpern II (mit/ohne Übungen)</td>
<td></td>
<td>SS</td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td></td>
<td>Ex</td>
</tr>
<tr>
<td>Physics of Semiconductors (with/without exercises)
Halbleiterphysik (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td>L4E1/L4E0</td>
<td>10/8</td>
<td>D</td>
<td>Ex</td>
</tr>
<tr>
<td>Physics of Solid State Surfaces (with/without exercises)
Oberflächenphysik (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td>L4E2/L4E2</td>
<td>14/12</td>
<td>F</td>
<td>✓</td>
</tr>
<tr>
<td>Electron Microscopy I (with/without exercises)
Elektronenmikroskopie I (mit/ohne Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td></td>
<td>Ex</td>
</tr>
<tr>
<td>Nano-Optics
Nano-Optics</td>
<td>✓</td>
<td></td>
<td>L3E1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Microscale Fluid Mechanics (extern)</td>
<td>✓</td>
<td>WS</td>
<td>L2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimental Biophysics II (with/without seminar)
Experimentelle Biophysik II (mit/ohne Seminar)</td>
<td></td>
<td>SS</td>
<td>L4E2/L4E2</td>
<td>14/12</td>
<td>F</td>
<td>✓</td>
</tr>
<tr>
<td>Electron Microscopy II (with/without exercises)
Elektronenmikroskopie II (mit/ohne Übungen)</td>
<td>✓</td>
<td></td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td></td>
<td>Ex</td>
</tr>
<tr>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures (with/without exercises and lab)
X-ray Physik I: Streuung, Diffraction & Spektroskopie an Kristallen, Dünnschichten und Nanostrukturen (mit/ohne Übungen und Praktikum)</td>
<td>✓</td>
<td>WS</td>
<td>L2E1/L2E1</td>
<td>6</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical Nano-optics
Theoretical Nanooptics</td>
<td>✓</td>
<td></td>
<td>L2E1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Spin Transport in Nanostructures
Spirntransport in Nanostrukturen</td>
<td>✓</td>
<td></td>
<td>L2E1</td>
<td>6</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Nanomaterials (with/without Exercises)
Nanomaterialien (mit/ohne Übungen)</td>
<td></td>
<td>WS</td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td></td>
<td>Ex</td>
</tr>
<tr>
<td>Theoretical Molecular Biophysics (with/without seminar)
Theoretische molekulare Biophysik (mit/ohne Seminar)</td>
<td>✓</td>
<td></td>
<td>L2E1/L2E1</td>
<td>8/6 (T)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical Optics
Theoretical Optics</td>
<td></td>
<td></td>
<td>L2E1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Physics of Quantum Information
Physik der Quanteninformation</td>
<td></td>
<td></td>
<td>L2E1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical Quantum Optics
Theoretical Quantum Optics</td>
<td>✓</td>
<td></td>
<td>L2E1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Quantum Optics at the Nano Scale (with/without exercises)
Quantenoptik auf der Nanoskala (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td>L3E1/L3E0</td>
<td>8/6</td>
<td></td>
<td>Ex</td>
</tr>
<tr>
<td>Solid State Quantum Technologies
Solid State Quantum Technologies</td>
<td></td>
<td></td>
<td>L2E2</td>
<td>8</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Computational Photonics (with/without ext. exercises)
Computational Photonics (mit/ohne ext. Übungen)</td>
<td></td>
<td></td>
<td>L2E2/L2E1</td>
<td>8/6 (T)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Computational Condensed Matter Physics
Computational Condensed Matter Physics</td>
<td></td>
<td></td>
<td>L4E2</td>
<td>10 (T)</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Molecular Electronics
Molekulare Elektronik</td>
<td></td>
<td></td>
<td>L2E1</td>
<td>6</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

(T) Lecture in Theory– not selectable if „Nanophysics“ is the only experimental subject.
Major in Physics (Maj):
Required courses are
- A and B: „Basics of Nanotechnology I“ and „Basics of Nanotechnology II“
- as well as one course out of C, D, E, F

Second Major in Physics (Maj2):
Required courses are A and B: „Basics of Nanotechnology I“ and „Basics of Nanotechnology II“

Minor in Physics (Min):
All courses for which the column Min is marked with ✓, can be selected (as part of) the Minor in Physics. Courses marked with "Ex" in column Min, can only be selected in the variant „with Exercises“.

Semester Hours:
L: Lecture / E: Exercises / P: Practical Exercises
Optics and Photonics

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid-State Optics</td>
<td>✓ WS</td>
<td>L4</td>
<td>8</td>
<td>✓</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Nano-Optics</td>
<td>✓ WS</td>
<td>L3E1</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Optics</td>
<td>SS</td>
<td>L2E1</td>
<td>6 (T)</td>
<td>B</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Theoretical Nanooptics</td>
<td>✓</td>
<td>L2E1</td>
<td>6 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molecular Spectroscopy (extern)</td>
<td>✓ WS</td>
<td>L2E1</td>
<td>6 External</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear Optics (extern)</td>
<td>SS</td>
<td>L2E2</td>
<td>6 External</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Photovoltaics (extern)</td>
<td>SS</td>
<td>L4E1</td>
<td>6 External</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Further Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures (with/without Exercises and Lab)</td>
<td>✓ WS</td>
<td>L2E1P1/L2</td>
<td>8/4</td>
<td>C</td>
<td>Ex</td>
<td></td>
</tr>
<tr>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography (with/without Exercises and Lab)</td>
<td>SS</td>
<td>L2E1P1/L2</td>
<td>8/4</td>
<td>D</td>
<td>Ex</td>
<td></td>
</tr>
<tr>
<td>Experimental Biophysics II (with/without seminar)</td>
<td>SS</td>
<td>L4E2S2/L4E2</td>
<td>14/12</td>
<td>E</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Theoretical Quantum Optics</td>
<td>✓</td>
<td>L2E1</td>
<td>6 (T)</td>
<td>F</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Computational Photonics (with/without ext. exercises)</td>
<td>L2E2/L2E1</td>
<td>8/6 (T)</td>
<td>G</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Optics at the Nano Scale (with/without exercises)</td>
<td>L3E1/L3E0</td>
<td>8/6</td>
<td>H</td>
<td>Ex</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training*</td>
<td>✓ WS</td>
<td>10 days block practical course</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* This module cannot be combined with an advanced seminar or any non-graded module in the major in physics or second major in physics.

(T) Lecture in Theory – not selectable if „Optics and Photonics“ is the only experimental subject.

Major in Physics (Maj):
- Required courses are A and B: „Solid-State Optics“ and „Theoretical Optics“

Second Major in Physics (Maj2):
- At most one course from an external provider („External“)
- At most one course out of the further courses (C-H)

Minor in Physics (Min):
- At most one course from an external provider („External“)
- At most one course out of the further courses (C-H)

Semester Hours:
- L: Lecture / E: Exercises / P: Practical Exercises

Physics Master (Master of Science)
Module Handbook as of 20/10/2023
Experimental Particle Physics

Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Physics I - Teilchenphysik I</td>
<td>✓ WS</td>
<td>L3P2</td>
<td>8</td>
<td>A</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Modern Methods of Data Analysis (with/without ext. Exercises)*</td>
<td>SS</td>
<td>L2P4/L2P2</td>
<td>8/6</td>
<td>B</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Electronics for Physicists - Elektronik für Physiker</td>
<td>✓ WS</td>
<td>L4P4</td>
<td>10</td>
<td>C</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Electronics for Physicists: Analog Electronics - Elektronik für Physiker</td>
<td>✓ WS</td>
<td>L2P2</td>
<td>6</td>
<td>D</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Electronics for Physicists: Digital Electronics - Elektronik für Physiker</td>
<td>✓ WS</td>
<td>L2P2</td>
<td>6</td>
<td>E</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Accelerator Physics (with/without ext. Exercises) - Beschleunigerphysik (mit/ohne erw. Übungen)</td>
<td>✓ WS</td>
<td>L4E1/L4E0</td>
<td>8/6</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Measurement Methods and Techniques in Experimental Physics (with/without ext. Exercises) - Messmethoden und Techniken der Experimentalphysik (mit/ohne erw. Übungen)</td>
<td>✓ SS</td>
<td>L2E1P2/L2E1</td>
<td>8/6</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Detectors for Particle and Astroparticle Physics (with/without ext. Exercises) - Detektoren für Teilchen- und Astroteilchenphysik (mit/ohne erw. Übungen)</td>
<td>✓ WS</td>
<td>L2P4/L2P2</td>
<td>8/6</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Further Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Particle Physics II - Flavor Physics (with/without ext. Exercises) - Teilchenphysik II – Flavour-Physik (mit/ohne erw. Übungen)</td>
<td>✓ WS</td>
<td>L2E2/L2E1</td>
<td>8/6</td>
<td>F</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Particle Physics II - Top Quarks and Jets at the LHC (with/without ext. Exercises) - Teilchenphysik II – Top-Quarks und Jets am LHC (mit/ohne erw. Übungen)</td>
<td>SS</td>
<td>L2E2/L2E1</td>
<td>8/6</td>
<td>H</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Particle Physics II - Physics Beyond the Standard Model (with/without ext. Exercises) - Teilchenphysik II – Physik jenseits des Standardmodells (mit/ohne erw. Übungen)</td>
<td>SS</td>
<td>L2E2/L2E1</td>
<td>8/6</td>
<td>I</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>✓ WS</td>
<td>L2E1</td>
<td>6 (T)</td>
<td>J</td>
<td>---</td>
<td></td>
</tr>
<tr>
<td>Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training**</td>
<td>✓ WS</td>
<td>10 days block practical course</td>
<td>4</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Modern Methods of Spektroskopie: Applications in Astroparticle Physics**</td>
<td>✓ SS</td>
<td>5 days block practical course</td>
<td>2</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Block Practical Course: ETP Data Science**</td>
<td>✓ WS</td>
<td>5 days block practical course</td>
<td>2</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Quantum Detectors and Sensors</td>
<td>✓ WS</td>
<td>L3E1</td>
<td>8</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

* only selectable if „Methods of Data Analysis“ from the field „Meteorology“ is not selected at the same time for the second Major or Minor „Meteorology“

** This module cannot be combined with an advanced seminar or any non-graded module in the major in physics or second major in physics.

(T) Lecture in Theory – not selectable if „Experimental Particle Physics“ is the only experimental subject.

Major in Physics (Maj):

- Required courses are
 - A („Particle Physics I“)
 - and one from F, G, H, I („Particle Physics II“)

Second Major (Maj2):

- Required course is A („Particle Physics I“)

Minor in Physics (Min):

- All courses for which the column Min is marked with ✓, can be selected (as part of) the Minor in Physics. Courses marked with “Ex” in column Min, can only be selected in the variant „with Exercises“.

Additional Constraints:

- One can select either C („Electronics for Physicists“) or one out of D or E („Analog Electronics“ or „Digital Electronics“) as part of the Major in Physics, Second Major in Physics, or Minor in Physics.

- One can select either B („Modern Methods of Data Analysis“) or J („Computational Methods for Particle Physics and Cosmology“) as part of the Major in Physics or the Second Major in Physics.

Semester Hours:

L: Lecture / E: Exercises / P: Practical Exercises
Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24 Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astroparticle Physics I</td>
<td>✓ WS</td>
<td>L3E1</td>
<td>8</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>Introduction to Cosmology</td>
<td>✓ WS</td>
<td>L2E1</td>
<td>6</td>
<td>B</td>
<td>✓</td>
</tr>
<tr>
<td>Modern Methods of Data Analysis (with/without ext. Exercises)*</td>
<td>SS</td>
<td>L2P4/L2P2</td>
<td>8/6</td>
<td>C</td>
<td>✓</td>
</tr>
<tr>
<td>Electronics for Physicists: Analog Electronics</td>
<td>✓ WS</td>
<td>L2P2</td>
<td>6</td>
<td>E</td>
<td>✓</td>
</tr>
<tr>
<td>Accelerator Physics (with/without ext. Exercises)</td>
<td>✓ WS</td>
<td>L4E1/L4E0</td>
<td>8/6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Measurement Methods and Techniques in Experimental Physics (with/without ext. Exercises)</td>
<td></td>
<td>L2E1P2/L2E1</td>
<td>8/6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Detectors for Particle and Astroparticle Physics (with/without ext. Exercises)</td>
<td>✓ WS</td>
<td>L2P4/L2P2</td>
<td>8/6</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

Further Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24 Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astroparticle Physics II – Cosmic Rays (with/without ext. Exercises)</td>
<td>✓ WS</td>
<td>L2E2/L2E1</td>
<td>8/6</td>
<td>G</td>
<td>✓</td>
</tr>
<tr>
<td>Astroparticle Physics II – Gamma Rays and Neutrinos (with/without ext. Exercises)</td>
<td>SS</td>
<td>L2E2/L2E1</td>
<td>8/6</td>
<td>H</td>
<td>✓</td>
</tr>
<tr>
<td>Astroparticle Physics II – Particles and Stars (with/without ext. Exercises)</td>
<td>SS</td>
<td>L2E2/L2E1</td>
<td>8/6</td>
<td>I</td>
<td>✓</td>
</tr>
<tr>
<td>General Relativity</td>
<td>✓ WS</td>
<td>L3E2</td>
<td>10</td>
<td>(T)</td>
<td>✓</td>
</tr>
<tr>
<td>Introduction to General Relativity</td>
<td></td>
<td>L3E1</td>
<td>8</td>
<td>(T)</td>
<td>✓</td>
</tr>
<tr>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td></td>
<td>L2E1</td>
<td>6</td>
<td>(T)</td>
<td>✓</td>
</tr>
<tr>
<td>Modern Methods of Spektroskopie: Applications in Astroparticle Physics**</td>
<td>✓ WS</td>
<td>5 days block practical course</td>
<td>2</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Block Practical Course: ETP Data Science**</td>
<td>✓ WS</td>
<td>5 days block practical course</td>
<td>2</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Quantum Detectors and Sensors</td>
<td>✓ WS</td>
<td>L3E1</td>
<td>8</td>
<td></td>
<td>✓</td>
</tr>
</tbody>
</table>

* only selectable if „Methods of Data Analysis“ from the field „Meteorology“ is not selected at the same time for the second Major or Minor „Meteorology“

** This module cannot be combined with an advanced seminar in the major in physics or second major in physics.

(T): Lecture in Theory – not selectable if „Experimental Particle Physics“ is the only experimental subject.

Major in Physics (Maj):
- Required courses are
 - A or B: „Astroparticle Physics I“ or „Introduction to Cosmology“
 - combined with one course out of G, H, I („Astroparticle Physics II“)

Second Major in Physics (Maj2):
- Required courses are A or B: „Astroparticle Physics I“ or „Introduction to Cosmology“

Minor in Physics (Min):
- All courses for which the column Min is marked with ✓, can be selected (as part of) the Minor in Physics. Courses marked with "Ex" in column Min, can only be selected in the variant „with Exercises“.

Additional Constraints:
- One can select either D („Electronics for Physicists“) or one out of E or F („Analog Electronics“ or „Digital Electronics“) as part of the Major in Physics, Second Major in Physics, or Minor in Physics.
- One can select either C („Modern Methods of Data Analysis“) or J („Computational Methods for Particle Physics and Cosmology“) as part of the Major in Physics or the Second Major in Physics.

Semester Hours:
- L: Lecture / E: Exercises / P: Practical Exercises
Field B: Theoretical Physics

Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction in Theoretical Particle Physics (with/without Ext. Exercises)</td>
<td>✓ WS</td>
<td>L3E2/L3E1</td>
<td>10/8</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics (with/without exercises)</td>
<td>✓ SS</td>
<td>L4E2/L4E0</td>
<td>12/8</td>
<td>A</td>
<td>Ex</td>
</tr>
<tr>
<td>Theoretical Particle Physics I, Fundamentals (with/without exercises)</td>
<td>✓ SS</td>
<td>L3E1/L3E0</td>
<td>8/6</td>
<td>B</td>
<td>Ex</td>
</tr>
<tr>
<td>Theoretical Particle Physics II (with/without exercises)</td>
<td>✓ WS</td>
<td>L4E2/L4E0</td>
<td>12/8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Further Courses</th>
<th>WS 23/24</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction to Theoretical Cosmology</td>
<td></td>
<td>L3E1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td></td>
<td>L2E1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monte Carlo Event Generators</td>
<td></td>
<td>L2E1</td>
<td>6</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Methods of Theoretical Physics*</td>
<td></td>
<td>L4E2</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mathematical Methods of Theoretical Physics (two hours per week)</td>
<td></td>
<td>L2E2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td></td>
<td>L4E2</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavour Physics in the Standard Model and beyond</td>
<td></td>
<td>L2E2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Particle Physics with Extra Dimensions</td>
<td></td>
<td>L2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Flavor Physics, Fundamentals</td>
<td></td>
<td>L2E2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Flavor Physics, Fundamentals and Advanced Topics</td>
<td></td>
<td>L2E2</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Flavor Physics, Fundamentals</td>
<td></td>
<td>L3E1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Flavor Physics, Fundamentals and Advanced Topics</td>
<td></td>
<td>L4E2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to Flavor Physics, Fundamentals</td>
<td></td>
<td>L3E2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>New light Particles beyond the Standard Model (with/without Exercises)</td>
<td></td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td>Ex</td>
<td></td>
</tr>
<tr>
<td>Symmetries, Groups and extended Gauge Theories</td>
<td></td>
<td>L4E2</td>
<td>12</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetries and Groups</td>
<td></td>
<td>L3E1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Classical Theory of Gauge Fields</td>
<td></td>
<td>L2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Relativity</td>
<td></td>
<td>L3E2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Relativity II</td>
<td></td>
<td>L3E2</td>
<td>10</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Introduction to General Relativity</td>
<td></td>
<td>L3E1</td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Non-supersymmetric Extension of the Standard Model</td>
<td></td>
<td>L2</td>
<td>4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision Phenomenology at Colliders and Computational Methods (with/without Exercises)</td>
<td></td>
<td>L2E2/L2E0</td>
<td>8/4</td>
<td>Ex</td>
<td></td>
</tr>
</tbody>
</table>

* Only selectable for the Second Major in Physics if also „Introduction in Theoretical Particle Physics“ or „Theoretical Particle Physics I“ are selected.

Major in Physics (Maj):
- Required courses are A or B („Theoretical Particle Physics I“) with 8 or 12 ECTS points

Minor in Physics (Min):
- All courses for which the column Min is marked with ✓, can be selected (as part of) the Minor in Physics. Courses marked with “Ex” in column Min, can only be selected in the variant „with Exercises”.

Semester Hours:
- L: Lecture / E: Exercises / P: Practical Exercises
Condensed Matter Theory

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
</table>
| Condensed Matter Theory I, Fundamentals and Advanced Topics
Theorie der kondensierten Materie I, Grundlagen und Vertiefungen | ✓ WS | L4E2 | 12 | A | ✓ |
| Condensed Matter Theory I, Fundamentals
Theorie der kondensierten Materie I, Grundlagen | ✓ WS | L3E1 | 8 | B | ✓ |
| Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics
Theorie der kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen | SS | L4E2 | 12 | ✓ |
| Condensed Matter Theory II: Many-Body Theory, Fundamentals
Theorie der kondensierten Materie II: Vielteilchentheorie, Grundlagen | SS | L3E1 | 8 | ✓ |
| Condensed Matter Theory II: Many-Body Theory, selected topics*
Theorie der kondensierten Materie II: Vielteilchentheorie, ausgewählte Themen * | SS | L1 | 2 | only Maj2 | ✓ |

Further Courses

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
<th>Maj/ Maj2</th>
<th>Min</th>
</tr>
</thead>
</table>
| Physics of Quantum Information
Physik der Quanteninformation | | L2E1 | 6 | ✓ |
| Theory and Applications of Quantum Machines
Theorie und Anwendung von Quantenmaschinen | | L2E2 | 8 | ✓ |
| Computational Condensed Matter Physics
Computational Condensed Matter Physics | | L4E2 | 12 | ✓ |
| Field Theories of Condensed Matter: Conformal Field Theory
Field Theories of Condensed Matter: Konformale Feldtheorie | | L3E1 | 8 | ✓ |
| Theoretical Molecular Biophysics (with/without seminar)
Theoretische molekulare Biophysik (mit/ohne Seminar) | ✓ | L2E1/L2E1 | 8/6 | ✓ |
| Quantum Field Theoretical Methods in Condensed Matter: Quantum Criticality
Quantenfeldtheoretische Methoden in der Kondensierten Materie: Quantenkritikalität | | L4E1 | 10 | ✓ |
| Theoretical Nanoptics
Theoretical Nanoptics | ✓ | L2E1 | 6 | ✓ |
| The ABC of DFT
The ABC of DFT | | L2E1 | 6 | ✓ |
| Theoretical Quantum Optics
Theoretical Quantum Optics | ✓ | L2E1 | 6 | ✓ |
| Superconductivity, Josephson effect and applications, without/with Exercises
Superleitetheorie, Josephson-Effekt und Anwendungen, ohne/mit Übungen | ✓ | L3E1/L3 | 8/6 | Ex |
| Theory of Magnetism, with Exercises
Theorie des Magnetismus, mit Übungen | | L3E1 | 8 | ✓ |
| Theory of Magnetism II
Theorie des Magnetismus II | | L4 | 8 | ✓ |
| Mathematical Methods of Theoretical Physics (two hours per week)
Mathematische Methoden der Theoretischen Physik (zweistündig) | | L2E1 | 8 | ✓ |
| Theory of Strongly Correlated Electron Systems
Theorie stark korrelierter Elektronensysteme | | L4E2 | 12 | only Maj | ✓ |
| Topology in Condensed Matter Physics: Fundamentals and Advanced Topics
Theorie topologischer Eigenschaften der Kondensierten Materie: Grundlagen und Vertiefungen | ✓ | L3E1 | 8 | ✓ |
| Topology in Condensed Matter Physics: Fundamentals and Selected Topics
Theorie topologischer Eigenschaften der Kondensierten Materie: Grundlagen und ausgewählte Themen | ✓ | L1 | 2 | ✓ |

* Can only be selected as part of the second Major, e.g. to reach 14 ECTS points in combination with „Condensed Matter Theory I, Fundamentals and Advanced Topics“

Major in Physics (Maj):
Required courses are **A or B** (*Condensed Matter Theory I*) with **8 or 12 ECTS points**

Minor in Physics (Min):
All courses for which the column **Min** is marked with ✓, can be selected (as part of) the Minor in Physics. Courses marked with "Ex" in column **Min**, can only be selected in the variant „with Exercises“.

Semester Hours:
L: Lecture / E: Exercises / P: Practical Exercises
Field C: Meteorology and Geophysics

Suitable for the Second Major in Physics (Maj2) and the Minor in Physics (Min)

Meteorology

The following courses are part of the Master’s program in Meteorology and are offered on an annual basis. Courses below can be combined in the module "Selected Topics in Meteorology (Second Major, graded)" for the Second Major in Physics (14 ECTS credits) and in the module "Selected Topics in Meteorology (Minor, ungraded)" for the Minor in Physics (8 ECTS credits). The criteria for earning the credit points are:

- **Minor (ungraded):** The examination is done via a coursework. Whether this is oral, written or of another kind depends on the respective course. Information about this can be found in the guide for all the modules "Master Meteorology and Climate Physics". The credit points are acquired through the individual bricks (8 ECTS points).

- **Second Major in Physics (graded):** The examination is done by an oral examination ("Prüfung über meteorologische Spezialgebiete / Exam on Selected Topics in Meteorology"). The prerequisite for admission to the examination is passing the course work. Whether this is oral, written or of another kind depends on the respective course. Information about this can be found in the guide to all the modules „Master Meteorology and Climate Physics“. The credit points are acquired through the individual bricks (at least 10 ECTS points) and the oral examination (4 ECTS points).

<table>
<thead>
<tr>
<th>Courses</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td>SS</td>
<td>L2E1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Turbulent Diffusion</td>
<td>SS</td>
<td>L2E1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Advanced Numerical Weather Prediction</td>
<td>SS</td>
<td>L2E1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Energy Meteorology</td>
<td>SS</td>
<td>L2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Methods of Data Analysis*</td>
<td>SS</td>
<td>L2E1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Climate Modeling & Dynamics with ICON</td>
<td>✓ WS</td>
<td>L2E1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Energetics</td>
<td>✓ WS</td>
<td>L2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Cloud Physics</td>
<td>✓ WS</td>
<td>L2E1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Atmospheric Radiation</td>
<td>✓ WS</td>
<td>L2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Atmospheric Aerosols</td>
<td>✓ WS</td>
<td>L2E1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Middle Atmosphere in the Climate System</td>
<td>✓ WS</td>
<td>L2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Tropical Meteorology</td>
<td>✓ WS</td>
<td>L2E1</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Seminar on IPCC Assessment Report</td>
<td>✓ WS</td>
<td>S2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Ocean-Atmosphere Interactions</td>
<td>✓ WS</td>
<td>L2</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Physics of Planetary Atmospheres</td>
<td>✓ WS</td>
<td>L2E2</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Arctic Climate System</td>
<td>✓ WS</td>
<td>L2</td>
<td>2</td>
<td></td>
</tr>
</tbody>
</table>

* only selectable if „Modern Methods of Data Analysis“ from the ETP or ATP is not chosen at the same time for the second Major or Minor
Geophysics

Courses in Geophysics can be chosen as ungraded minor in physics (Minor) with a total of 8 ECTS credits or as the graded second major in physics (Maj2) with a total of 14 ECTS credits in the master's program in physics. All courses of the international master program "Geophysics" are held in English.

As a minor subject, individual courses among the compulsory courses in the Master's program "Geophysics" that cover 8 ECTS points are preferably suitable; however, several courses can also be combined if necessary. The examination is done within the framework of course achievements; the type of examination depends on the respective course. More detailed information on the individual courses can be found in the guide to all the modules "Geophysics Master (M.Sc.)".

The following courses are eligible for recognition as a minor in physics. Other courses can be approved by the examination board upon request.

<table>
<thead>
<tr>
<th>Courses suitable as Minor in Physics</th>
<th>WS 23/24</th>
<th>Reg.</th>
<th>Semester Hours</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismology</td>
<td>✓</td>
<td>WS</td>
<td>L2E2</td>
<td>8</td>
</tr>
<tr>
<td>Seismologie</td>
<td>✓</td>
<td>WS</td>
<td>L2E2</td>
<td>8</td>
</tr>
<tr>
<td>Physics of Seismic Instruments</td>
<td>✓</td>
<td>WS</td>
<td>L2E1</td>
<td>6</td>
</tr>
<tr>
<td>Physik seismischer Mesinstrumente</td>
<td></td>
<td>SS</td>
<td>L2E2</td>
<td>8</td>
</tr>
<tr>
<td>Inversion and Tomography</td>
<td></td>
<td>SS</td>
<td>L2E1</td>
<td>6</td>
</tr>
<tr>
<td>Theory of Seismic Waves</td>
<td></td>
<td>SS</td>
<td>L1E1</td>
<td>4</td>
</tr>
<tr>
<td>Seismic Modelling</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Full-waveform inversion</td>
<td>✓</td>
<td>L2E1</td>
<td></td>
<td>6</td>
</tr>
</tbody>
</table>

Certain combinations of courses in Geophysics are suitable as second Major in Physics, which, when graded, add up to at least 14 ECTS points. For compulsory courses in the Master's program "Geophysics", i.e. the courses "Physics of Seismic Instruments", "Seismology" and "Seismics" in the winter semester and "Inversion and Tomography", "Theory of Seismic Waves" and "Seismic Modelling" in the summer semester, the examination is done by an oral examination for the respective semester. Students who choose Geophysics as a second major in physics are admitted to the oral examination if they pass the relevant course work(s). The way in which individual course achievements are assessed depends on the course in question. More detailed information on the individual courses can be found in the guide to all the modules "Geophysics Master (M.Sc.)". For students who choose Geophysics as the second Major in Physics, the examination material of the oral comprehensive examination covers only the respective course achievement(s) passed, not all three course achievements that are part of the respective module, as is the case for students of Geophysics. In the case of graded elective courses in the Master's program "Geophysics", the type of performance assessment and grading depends on the respective course; again, see the guide to all the modules "Geophysics Master (M.Sc.)" for details. The grades of the second Major in Physics are included in the overall grade of the master's examination as described in the section "Grade formation".

<table>
<thead>
<tr>
<th>WS 23/24</th>
<th>Reg.</th>
<th>WS</th>
<th>SS</th>
<th>WS</th>
<th>SS</th>
<th>SS</th>
<th>SS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seismology (v2u2)</td>
<td>✓</td>
<td>WS</td>
<td>16 LP</td>
<td>16 LP</td>
<td>14 LP</td>
<td>14 LP</td>
<td>16 LP</td>
</tr>
<tr>
<td>Seismics (v2u2)</td>
<td>✓</td>
<td>WS</td>
<td>16 LP</td>
<td>16 LP</td>
<td>14 LP</td>
<td>14 LP</td>
<td>16 LP</td>
</tr>
<tr>
<td>Inversion and Tomography (v2u2)</td>
<td>SS</td>
<td>16 LP</td>
<td>16 LP</td>
<td>14 LP</td>
<td>14 LP</td>
<td>16 LP</td>
<td>14 LP</td>
</tr>
</tbody>
</table>

Physics Master (Master of Science)
Module Handbook as of 20/10/2023
3 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's Thesis</td>
<td>30 CR</td>
</tr>
<tr>
<td>Major in Physics (Election: 1 item)</td>
<td></td>
</tr>
<tr>
<td>Major in Physics: Condensed Matter</td>
<td>20 CR</td>
</tr>
<tr>
<td>Major in Physics: Nanophysics</td>
<td>20 CR</td>
</tr>
<tr>
<td>Major in Physics: Optics and Photonics</td>
<td>20 CR</td>
</tr>
<tr>
<td>Major in Physics: Experimental Particle Physics</td>
<td>20 CR</td>
</tr>
<tr>
<td>Major in Physics: Experimental Astroparticle Physics</td>
<td>20 CR</td>
</tr>
<tr>
<td>Major in Physics: Theoretical Particle Physics</td>
<td>20 CR</td>
</tr>
<tr>
<td>Major in Physics: Condensed Matter Theory</td>
<td>20 CR</td>
</tr>
<tr>
<td>Second Major in Physics (Election: 1 item)</td>
<td></td>
</tr>
<tr>
<td>Second Major in Physics: Condensed Matter</td>
<td>14 CR</td>
</tr>
<tr>
<td>Second Major in Physics: Nanophysics</td>
<td>14 CR</td>
</tr>
<tr>
<td>Second Major in Physics: Optics and Photonics</td>
<td>14 CR</td>
</tr>
<tr>
<td>Second Major in Physics: Experimental Particle Physics</td>
<td>14 CR</td>
</tr>
<tr>
<td>Second Major in Physics: Experimental Astroparticle Physics</td>
<td>14 CR</td>
</tr>
<tr>
<td>Second Major in Physics: Theoretical Particle Physics</td>
<td>14 CR</td>
</tr>
<tr>
<td>Second Major in Physics: Condensed Matter Theory</td>
<td>14 CR</td>
</tr>
<tr>
<td>Second Major in Physics: Geophysics</td>
<td>14 CR</td>
</tr>
<tr>
<td>Second Major in Physics: Meteorology</td>
<td>14 CR</td>
</tr>
<tr>
<td>Minor in Physics (Election: 1 item)</td>
<td></td>
</tr>
<tr>
<td>Minor in Physics: Condensed Matter</td>
<td>8 CR</td>
</tr>
<tr>
<td>Minor in Physics: Nanophysics</td>
<td>8 CR</td>
</tr>
<tr>
<td>Minor in Physics: Optics and Photonics</td>
<td>8 CR</td>
</tr>
<tr>
<td>Minor in Physics: Experimental Particle Physics</td>
<td>8 CR</td>
</tr>
<tr>
<td>Minor in Physics: Experimental Astroparticle Physics</td>
<td>8 CR</td>
</tr>
<tr>
<td>Minor in Physics: Theoretical Particle Physics</td>
<td>8 CR</td>
</tr>
<tr>
<td>Minor in Physics: Condensed Matter Theory</td>
<td>8 CR</td>
</tr>
<tr>
<td>Minor in Physics: Geophysics</td>
<td>8 CR</td>
</tr>
<tr>
<td>Minor in Physics: Meteorology</td>
<td>8 CR</td>
</tr>
<tr>
<td>Mandatory Elective</td>
<td></td>
</tr>
<tr>
<td>Non-Physics Elective</td>
<td>8 CR</td>
</tr>
<tr>
<td>Advanced Physics Laboratory Course</td>
<td>6 CR</td>
</tr>
<tr>
<td>Specialization Phase</td>
<td>15 CR</td>
</tr>
<tr>
<td>Introduction to Scientific Methods</td>
<td>15 CR</td>
</tr>
<tr>
<td>Interdisciplinary Qualifications</td>
<td>4 CR</td>
</tr>
<tr>
<td>Voluntary</td>
<td></td>
</tr>
<tr>
<td>Additional Examinations</td>
<td></td>
</tr>
<tr>
<td>This field will not influence the calculated grade of its parent.</td>
<td></td>
</tr>
</tbody>
</table>
3.1 Master’s Thesis

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-106481</td>
<td>Master’s Thesis</td>
<td>30 CR</td>
</tr>
</tbody>
</table>

3.2 Major in Physics: Condensed Matter

<table>
<thead>
<tr>
<th>Required Condensed Matter (Election: between 1 and 2 items)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102089 Electronic Properties of Solids I, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102090 Electronic Properties of Solids I, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102131 Physics of Semiconductors, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102301 Physics of Semiconductors, without Exercises</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Condensed Matter (Election:)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102109 Electronic Properties of Solids II, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102108 Electronic Properties of Solids II, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102990 Electron Microscopy I, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102989 Electron Microscopy I, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106483 Surface Science, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106482 Surface Science, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-105537 Solid State Quantum Computing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105871 Solid State Quantum Computing, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102408 Solid-State Optics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102191 Superconducting Nanostructures</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102844 Electron Microscopy II, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102227 Electron Microscopy II, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104871 Accelerator Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104869 Accelerator Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102293 Spin Transport in Nanostructures</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104857 Solid State Quantum Technologies</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105071 Nanomaterials, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105068 Nanomaterials, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105556 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105555 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104540 Molecular Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106323 Introduction to Neutron Scattering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102203 Advanced Seminar in the Area Condensed Matter</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106399 Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
3.3 Major in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102097 Basics of Nanotechnology I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102100 Basics of Nanotechnology II</td>
<td>4 CR</td>
</tr>
<tr>
<td>Required Elective Nanophysics (Election: at least 1 item)</td>
<td></td>
</tr>
<tr>
<td>M-PHYS-102089 Electronic Properties of Solids I, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102090 Electronic Properties of Solids I, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106482 Surface Science, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-106483 Surface Science, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102131 Physics of Semiconductors, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102301 Physics of Semiconductors, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102165 Experimental Biophysics II, with Seminar</td>
<td>14 CR</td>
</tr>
<tr>
<td>M-PHYS-102167 Experimental Biophysics II, without Seminar</td>
<td>12 CR</td>
</tr>
<tr>
<td>Elective Nanophysics (Election:)</td>
<td></td>
</tr>
<tr>
<td>M-PHYS-102108 Electronic Properties of Solids II, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102109 Electronic Properties of Solids II, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102990 Electron Microscopy I, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102989 Electron Microscopy I, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102146 Nano-Optics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102227 Electron Microscopy II, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102844 Electron Microscopy II, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105555 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105556 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102191 Superconducting Nanostructures</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105071 Nanomaterials, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105068 Nanomaterials, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102171 Theoretical Molecular Biophysics, without Seminar</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102169 Theoretical Molecular Biophysics, with Seminar</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102277 Theoretical Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102295 Theoretical Nanooptics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102293 Spin Transport in Nanostructures</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105094 Theoretical Quantum Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104857 Solid State Quantum Technologies</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-101933 Computational Photonics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103089 Computational Photonics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104862 Computational Condensed Matter Physics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-104540 Molecular Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102204 Advanced Seminar in the Area Nanophysics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106508 Quantum Optics at the Nano Scale, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106510 Quantum Optics at the Nano Scale, without Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-106539 Microscale Fluid Mechanics</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
3.4 Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102408 Solid-State Optics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102277 Theoretical Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>Elective Optics and Photonics (Election: at least 6 credits)</td>
<td></td>
</tr>
<tr>
<td>M-PHYS-102146 Nano-Optics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102295 Theoretical Nanooptics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102337 Molecular Spectroscopy</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100430 Nonlinear Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100513 Photovoltaics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105555 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105556 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105558 X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105559 X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, without Exercises and without Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102165 Experimental Biophysics II, with Seminar</td>
<td>14 CR</td>
</tr>
<tr>
<td>M-PHYS-102167 Experimental Biophysics II, without Seminar</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-105094 Theoretical Quantum Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-103089 Computational Photonics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-101933 Computational Photonics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102205 Advanced Seminar in the Area Optics and Photonics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106508 Quantum Optics at the Nano Scale, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106510 Quantum Optics at the Nano Scale, without Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106399 Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
3.5 Major in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102114</td>
<td>Particle Physics I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102422</td>
<td>Particle Physics II - Flavour Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102154</td>
<td>Particle Physics II - Flavour Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104081</td>
<td>Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104084</td>
<td>Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104086</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104088</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105937</td>
<td>Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105939</td>
<td>Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102125</td>
<td>Modern Methods of Data Analysis, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102127</td>
<td>Modern Methods of Data Analysis, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102184</td>
<td>Electronics for Physicists</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102179</td>
<td>Electronics for Physicists: Analog Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102182</td>
<td>Electronics for Physicists: Digital Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104869</td>
<td>Accelerator Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104871</td>
<td>Accelerator Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102517</td>
<td>Measurement Methods and Techniques in Experimental Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102518</td>
<td>Measurement Methods and Techniques in Experimental Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102121</td>
<td>Detectors for Particle and Astroparticle Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102119</td>
<td>Detectors for Particle and Astroparticle Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106047</td>
<td>Modern Methods of Spectroscopy: Applications in Astroparticle Physics</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-PHYS-106117</td>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106193</td>
<td>Quantum Detectors and Sensors</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102206</td>
<td>Advanced Seminar in the Area Experimental Particle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106399</td>
<td>Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106530</td>
<td>Block Practical Course: ETP Data Science</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
3.6 Major in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102075</td>
<td>Astroparticle Physics I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102175</td>
<td>Introduction to Cosmology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102525</td>
<td>Astroparticle Physics II - Cosmic Rays, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102078</td>
<td>Astroparticle Physics II - Cosmic Rays, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105683</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105686</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102527</td>
<td>Astroparticle Physics II - Particles and Stars, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102081</td>
<td>Astroparticle Physics II - Particles and Stars, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102127</td>
<td>Modern Methods of Data Analysis, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102125</td>
<td>Modern Methods of Data Analysis, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102184</td>
<td>Electronics for Physicists</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102179</td>
<td>Electronics for Physicists: Analog Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102182</td>
<td>Electronics for Physicists: Digital Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102517</td>
<td>Measurement Methods and Techniques in Experimental Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102518</td>
<td>Measurement Methods and Techniques in Experimental Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104869</td>
<td>Accelerator Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104871</td>
<td>Accelerator Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102121</td>
<td>Detectors for Particle and Astroparticle Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102119</td>
<td>Detectors for Particle and Astroparticle Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102319</td>
<td>General Relativity</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-106047</td>
<td>Modern Methods of Spectroscopy: Applications in Astroparticle Physics</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-PHYS-106117</td>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106193</td>
<td>Quantum Detectors and Sensors</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102207</td>
<td>Advanced Seminar in the Area Experimental Astroparticle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106532</td>
<td>Introduction to General Relativity</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106530</td>
<td>Block Practical Course: ETP Data Science</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
3.7 Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102033</td>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102035</td>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102034</td>
<td>Theoretical Particle Physics I, Fundamentals, with Exercises</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Elective Theoretical Particle Physics (Election:)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102221</td>
<td>Introduction to Theoretical Particle Physics, with ext. Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102425</td>
<td>Introduction to Theoretical Particle Physics, without ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102046</td>
<td>Theoretical Particle Physics II, with Exercises</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-104855</td>
<td>Introduction to Theoretical Cosmology</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104860</td>
<td>Monte Carlo Event Generators</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102986</td>
<td>Introduction to Flavor Physics, Fundamentals and Advanced Topics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102987</td>
<td>Introduction to Flavor Physics, Fundamentals</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-105064</td>
<td>Flavour Physics in the Standard Model and beyond</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105534</td>
<td>New Light Particles Beyond the Standard Model</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105833</td>
<td>New Light Particles Beyond the Standard Model, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102315</td>
<td>Symmetries, Groups and Extended Gauge Theories</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102317</td>
<td>Symmetries and Groups</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102319</td>
<td>General Relativity</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-103333</td>
<td>General Relativity II</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-105640</td>
<td>Precision Phenomenology at Colliders and Computational Methods, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105641</td>
<td>Precision Phenomenology at Colliders and Computational Methods, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105834</td>
<td>Mathematical Methods of Theoretical Physics (two hours per week)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105934</td>
<td>Classical Theory of Gauge Fields</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106055</td>
<td>Particle Physics with Extra Dimensions</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106117</td>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102208</td>
<td>Advanced Seminar in the Area Theoretical Particle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106532</td>
<td>Introduction to General Relativity</td>
<td>8 CR</td>
</tr>
</tbody>
</table>
3.8 Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Required Condensed Matter Theory (Election: 1 item)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102053 Condensed Matter Theory I, Fundamentals and Advanced Topics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102054 Condensed Matter Theory I, Fundamentals</td>
<td>8 CR</td>
</tr>
<tr>
<td>Elective Condensed Matter Theory (Election:)</td>
<td></td>
</tr>
<tr>
<td>M-PHYS-102308 Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102313 Condensed Matter Theory II: Many-Body Theory, Fundamentals</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102985 Theory of Magnetism II</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104862 Computational Condensed Matter Physics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-104548 Field Theories of Condensed Matter: Conformal Field Theory</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102171 Theoretical Molecular Biophysics, without Seminar</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102169 Theoretical Molecular Biophysics, with Seminar</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102295 Theoretical Nanooptics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102984 The ABC of DFT</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105094 Theoretical Quantum Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105381 Theory of Magnetism, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105655 Superconductivity, Josephson Effect and Applications, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105834 Mathematical Methods of Theoretical Physics (two hours per week)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105942 Theory and Applications of Quantum Machines</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106056 Theory of Strongly Correlated Electron Systems</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102209 Advanced Seminar in the Area Condensed Matter Theory</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106584 Superconductivity, Josephson Effect and Applications, without Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106586 Topology in Condensed Matter Physics: Fundamentals and Advanced Topics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106588 Topology in Condensed Matter Physics: Fundamentals and Selected Topics</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
3.9 Second Major in Physics: Condensed Matter

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102089</td>
<td>Electronic Properties of Solids I, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102090</td>
<td>Electronic Properties of Solids I, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102108</td>
<td>Electronic Properties of Solids II, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102109</td>
<td>Electronic Properties of Solids II, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102131</td>
<td>Physics of Semiconductors, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102301</td>
<td>Physics of Semiconductors, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106482</td>
<td>Surface Science, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-106483</td>
<td>Surface Science, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102408</td>
<td>Solid-State Optics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102989</td>
<td>Electron Microscopy I, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102990</td>
<td>Electron Microscopy I, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105537</td>
<td>Solid State Quantum Computing</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105871</td>
<td>Solid State Quantum Computing, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102191</td>
<td>Superconducting Nanostructures</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102227</td>
<td>Electron Microscopy II, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102844</td>
<td>Electron Microscopy II, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-104869</td>
<td>Accelerator Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104871</td>
<td>Accelerator Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102293</td>
<td>Spin Transport in Nanostructures</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104857</td>
<td>Solid State Quantum Technologies</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105068</td>
<td>Nanomaterials, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105071</td>
<td>Nanomaterials, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105555</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105556</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-104540</td>
<td>Molecular Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106323</td>
<td>Introduction to Neutron Scattering</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102203</td>
<td>Advanced Seminar in the Area Condensed Matter</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106399</td>
<td>Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
3.10 Second Major in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102097 Basics of Nanotechnology I</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102100 Basics of Nanotechnology II</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elective Nanophysics (Election: at least 6 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102089 Electronic Properties of Solids I, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102090 Electronic Properties of Solids I, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102108 Electronic Properties of Solids II, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102109 Electronic Properties of Solids II, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102131 Physics of Semiconductors, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102301 Physics of Semiconductors, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106482 Surface Science, with Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-106483 Surface Science, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102989 Electron Microscopy I, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102990 Electron Microscopy I, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102146 Nano-Optics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102167 Experimental Biophysics II, without Seminar</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102165 Experimental Biophysics II, with Seminar</td>
<td>14 CR</td>
</tr>
<tr>
<td>M-PHYS-102227 Electron Microscopy II, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102844 Electron Microscopy II, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105555 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105556 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102191 Superconducting Nanostructures</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102169 Theoretical Molecular Biophysics, with Seminar</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102171 Theoretical Molecular Biophysics, without Seminar</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102277 Theoretical Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102295 Theoretical Nanooptics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102293 Spin Transport in Nanostructures</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105068 Nanomaterials, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105071 Nanomaterials, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105094 Theoretical Quantum Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104857 Solid State Quantum Technologies</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-101933 Computational Photonics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103089 Computational Photonics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104862 Computational Condensed Matter Physics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-104540 Molecular Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102204 Advanced Seminar in the Area Nanophysics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106508 Quantum Optics at the Nano Scale, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106510 Quantum Optics at the Nano Scale, without Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-MACH-106539 Microscale Fluid Mechanics</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
Elective Optics and Photonics (Election: at least 14 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102408</td>
<td>Solid-State Optics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102146</td>
<td>Nano-Optics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102277</td>
<td>Theoretical Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102295</td>
<td>Theoretical Nanooptics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102337</td>
<td>Molecular Spectroscopy</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100430</td>
<td>Nonlinear Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-ETIT-100513</td>
<td>Photovoltaics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105555</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105556</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105558</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105559</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, without Exercises and without Lab</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102165</td>
<td>Experimental Biophysics II, with Seminar</td>
<td>14 CR</td>
</tr>
<tr>
<td>M-PHYS-102167</td>
<td>Experimental Biophysics II, without Seminar</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-105094</td>
<td>Theoretical Quantum Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-101933</td>
<td>Computational Photonics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103089</td>
<td>Computational Photonics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102205</td>
<td>Advanced Seminar in the Area Optics and Photonics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106508</td>
<td>Quantum Optics at the Nano Scale, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106510</td>
<td>Quantum Optics at the Nano Scale, without Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106399</td>
<td>Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
3.12 Second Major in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102114</td>
<td>Particle Physics I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102127</td>
<td>Modern Methods of Data Analysis, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102125</td>
<td>Modern Methods of Data Analysis, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102184</td>
<td>Electronics for Physicists</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102179</td>
<td>Electronics for Physicists: Analog Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102182</td>
<td>Electronics for Physicists: Digital Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104869</td>
<td>Accelerator Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104871</td>
<td>Accelerator Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102517</td>
<td>Measurement Methods and Techniques in Experimental Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102518</td>
<td>Measurement Methods and Techniques in Experimental Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102121</td>
<td>Detectors for Particle and Astroparticle Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102119</td>
<td>Detectors for Particle and Astroparticle Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102422</td>
<td>Particle Physics II - Flavour Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102154</td>
<td>Particle Physics II - Flavour Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104081</td>
<td>Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104084</td>
<td>Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104086</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104088</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105937</td>
<td>Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105939</td>
<td>Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106047</td>
<td>Modern Methods of Spectroscopy: Applications in Astroparticle Physics</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-PHYS-106117</td>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106193</td>
<td>Quantum Detectors and Sensors</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102206</td>
<td>Advanced Seminar in the Area Experimental Particle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106399</td>
<td>Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106530</td>
<td>Block Practical Course: ETP Data Science</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
3.13 Second Major in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102075</td>
<td>Astroparticle Physics I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102175</td>
<td>Introduction to Cosmology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102525</td>
<td>Astroparticle Physics II - Cosmic Rays, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102078</td>
<td>Astroparticle Physics II - Cosmic Rays, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105683</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105686</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102527</td>
<td>Astroparticle Physics II - Particles and Stars, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102081</td>
<td>Astroparticle Physics II - Particles and Stars, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102127</td>
<td>Modern Methods of Data Analysis, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102125</td>
<td>Modern Methods of Data Analysis, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102184</td>
<td>Electronics for Physicists</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102179</td>
<td>Electronics for Physicists: Analog Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102182</td>
<td>Electronics for Physicists: Digital Electronics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102517</td>
<td>Measurement Methods and Techniques in Experimental Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102518</td>
<td>Measurement Methods and Techniques in Experimental Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104869</td>
<td>Accelerator Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104871</td>
<td>Accelerator Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102121</td>
<td>Detectors for Particle and Astroparticle Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102119</td>
<td>Detectors for Particle and Astroparticle Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102319</td>
<td>General Relativity</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-106047</td>
<td>Modern Methods of Spectroscopy: Applications in Astroparticle Physics</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-PHYS-106117</td>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106193</td>
<td>Quantum Detectors and Sensors</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102207</td>
<td>Advanced Seminar in the Area Experimental Astroparticle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106532</td>
<td>Introduction to General Relativity</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106530</td>
<td>Block Practical Course: ETP Data Science</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
3.14 Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102221</td>
<td>Introduction to Theoretical Particle Physics, with ext. Exercises</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102425</td>
<td>Introduction to Theoretical Particle Physics, without ext. Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102033</td>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102035</td>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102034</td>
<td>Theoretical Particle Physics I, Fundamentals, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102036</td>
<td>Theoretical Particle Physics I, Fundamentals, without Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102046</td>
<td>Theoretical Particle Physics II, with Exercises</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102048</td>
<td>Theoretical Particle Physics II, without Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104855</td>
<td>Introduction to Theoretical Cosmology</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104860</td>
<td>Monte Carlo Event Generators</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105834</td>
<td>Mathematical Methods of Theoretical Physics (two hours per week)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102986</td>
<td>Introduction to Flavor Physics, Fundamentals and Advanced Topics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102987</td>
<td>Introduction to Flavor Physics, Fundamentals</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-105064</td>
<td>Flavour Physics in the Standard Model and beyond</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105534</td>
<td>New Light Particles Beyond the Standard Model</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105833</td>
<td>New Light Particles Beyond the Standard Model, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102315</td>
<td>Symmetries, Groups and Extended Gauge Theories</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102317</td>
<td>Symmetries and Groups</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102319</td>
<td>General Relativity</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-103333</td>
<td>General Relativity II</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-105640</td>
<td>Precision Phenomenology at Colliders and Computational Methods, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105641</td>
<td>Precision Phenomenology at Colliders and Computational Methods, without Exercises</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105934</td>
<td>Classical Theory of Gauge Fields</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106055</td>
<td>Particle Physics with Extra Dimensions</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106117</td>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102208</td>
<td>Advanced Seminar in the Area Theoretical Particle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106532</td>
<td>Introduction to General Relativity</td>
<td>8 CR</td>
</tr>
</tbody>
</table>
3.15 Second Major in Physics: Condensed Matter Theory

Credits: 14

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102053</td>
<td>Condensed Matter Theory I, Fundamentals and Advanced Topics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102054</td>
<td>Condensed Matter Theory I, Fundamentals</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102308</td>
<td>Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102313</td>
<td>Condensed Matter Theory II: Many-Body Theory, Fundamentals</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103331</td>
<td>Condensed Matter Theory II: Many-Body Theory, selected topics</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-PHYS-102985</td>
<td>Theory of Magnetism II</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104862</td>
<td>Computational Condensed Matter Physics</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-104548</td>
<td>Field Theories of Condensed Matter: Conformal Field Theory</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102171</td>
<td>Theoretical Molecular Biophysics, without Seminar</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102169</td>
<td>Theoretical Molecular Biophysics, with Seminar</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102295</td>
<td>Theoretical Nanooptics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102984</td>
<td>The ABC of DFT</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105094</td>
<td>Theoretical Quantum Optics</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105381</td>
<td>Theory of Magnetism, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105655</td>
<td>Superconductivity, Josephson Effect and Applications, with Exercises</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105834</td>
<td>Mathematical Methods of Theoretical Physics (two hours per week)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105942</td>
<td>Theory and Applications of Quantum Machines</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102209</td>
<td>Advanced Seminar in the Area Condensed Matter Theory</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106584</td>
<td>Superconductivity, Josephson Effect and Applications, without Exercises</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106586</td>
<td>Topology in Condensed Matter Physics: Fundamentals and Advanced Topics</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106588</td>
<td>Topology in Condensed Matter Physics: Fundamentals and Selected Topics</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

3.16 Second Major in Physics: Geophysics

Credits: 14

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-105225</td>
<td>Seismology</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102358</td>
<td>Physics of Seismic Instruments</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102367</td>
<td>Theory of Seismic Waves</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102368</td>
<td>Inversion and Tomography</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-101833</td>
<td>Geological Hazards and Risk</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104186</td>
<td>Seismic Data Processing with Final Report (Graded)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105227</td>
<td>Seismic Modeling</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106196</td>
<td>Array Techniques in Seismology (Graded)</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106322</td>
<td>In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106326</td>
<td>Seisms</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

3.17 Second Major in Physics: Meteorology

Credits: 14

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-104577</td>
<td>Selected Topics in Meteorology (Second Major, graded)</td>
<td>14 CR</td>
</tr>
</tbody>
</table>
3.18 Minor in Physics: Condensed Matter

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102087</td>
<td>Electronic Properties of Solids I, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102106</td>
<td>Electronic Properties of Solids II, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102130</td>
<td>Physics of Semiconductors, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102991</td>
<td>Electron Microscopy I, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106484</td>
<td>Surface Science, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102409</td>
<td>Solid-State Optics (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104858</td>
<td>Solid State Quantum Technologies (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105872</td>
<td>Solid State Quantum Computing, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104723</td>
<td>Superconducting Nanostructures (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105375</td>
<td>Spin Transport in Nanostructures (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105069</td>
<td>Nanomaterials, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103172</td>
<td>Electron Microscopy II, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104870</td>
<td>Accelerator Physics, with ext. exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104872</td>
<td>Accelerator Physics, without ext. exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105557</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104541</td>
<td>Molecular Electronics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106324</td>
<td>Introduction to Neutron Scattering (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102203</td>
<td>Advanced Seminar in the Area Condensed Matter</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106399</td>
<td>Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
3.19 Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102096</td>
<td>Basics of Nanotechnology I (Minor)</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102099</td>
<td>Basics of Nanotechnology II (Minor)</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-102087</td>
<td>Electronic Properties of Solids I, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102106</td>
<td>Electronic Properties of Solids II, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102130</td>
<td>Physics of Semiconductors, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-106484</td>
<td>Surface Science, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102991</td>
<td>Electron Microscopy I, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102147</td>
<td>Nano-Optics (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102166</td>
<td>Experimental Biophysics II, with Seminar (Minor)</td>
<td>14 CR</td>
</tr>
<tr>
<td>M-PHYS-102168</td>
<td>Experimental Biophysics II, without Seminar (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-103172</td>
<td>Electron Microscopy II, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105557</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104723</td>
<td>Superconducting Nanostructures (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-103177</td>
<td>Theoretical Nanooptics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105375</td>
<td>Spin Transport in Nanostructures (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105069</td>
<td>Nanomaterials, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102172</td>
<td>Theoretical Molecular Biophysics, without Seminar (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102170</td>
<td>Theoretical Molecular Biophysics, with Seminar (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102279</td>
<td>Theoretical Optics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105395</td>
<td>Theoretical Quantum Optics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104858</td>
<td>Solid State Quantum Technologies (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103090</td>
<td>Computational Photonics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104863</td>
<td>Computational Condensed Matter Physics (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-104561</td>
<td>Molecular Electronics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102204</td>
<td>Advanced Seminar in the Area Nanophysics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106509</td>
<td>Quantum Optics at the Nano Scale, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>
3.20 Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Elective Optics and Photonics (Election: at least 8 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102409 Solid-State Optics (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102147 Nano-Optics (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102279 Theoretical Optics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-103177 Theoretical Nano-optics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105557 X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105560 X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102166 Experimental Biophysics II, with Seminar (Minor)</td>
<td>14 CR</td>
</tr>
<tr>
<td>M-PHYS-102168 Experimental Biophysics II, without Seminar (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-105395 Theoretical Quantum Optics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-103090 Computational Photonics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103193 Computational Photonics, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102205 Advanced Seminar in the Area Optics and Photonics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106509 Quantum Optics at the Nano Scale, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106399 Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Elective Experimental Particle Physics (Election: at least 8 credits)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102115 Particle Physics I (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102128 Modern Methods of Data Analysis, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102126 Modern Methods of Data Analysis, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102185 Electronics for Physicists (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102180 Electronics for Physicists: Analog Electronics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102183 Electronics for Physicists: Digital Electronics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104870 Accelerator Physics, with ext. exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104872 Accelerator Physics, without ext. exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102519 Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103194 Measurement Methods and Techniques in Experimental Physics, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102122 Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102120 Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-103183 Particle Physics II - Flavour Physics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102155 Particle Physics II - Flavour Physics, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104082 Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104085 Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104087 Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104089 Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105938 Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105940 Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106047 Modern Methods of Spectroscopy: Applications in Astroparticle Physics</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-PHYS-106194 Quantum Detectors and Sensors (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102206 Advanced Seminar in the Area Experimental Particle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106399 Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106530 Block Practical Course: ETP Data Science</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
3.22 Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title (Minor)</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102076</td>
<td>Astroparticle Physics I (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102176</td>
<td>Introduction to Cosmology (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102128</td>
<td>Modern Methods of Data Analysis, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102126</td>
<td>Modern Methods of Data Analysis, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102185</td>
<td>Electronics for Physicists (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102180</td>
<td>Electronics for Physicists: Analog Electronics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102183</td>
<td>Electronics for Physicists: Digital Electronics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104870</td>
<td>Accelerator Physics, with ext. exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104872</td>
<td>Accelerator Physics, without ext. exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102519</td>
<td>Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103194</td>
<td>Measurement Methods and Techniques in Experimental Physics, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102122</td>
<td>Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102120</td>
<td>Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-103184</td>
<td>Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102082</td>
<td>Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105684</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105685</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103186</td>
<td>Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102086</td>
<td>Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102320</td>
<td>General Relativity (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-106118</td>
<td>Computational Methods for Particle Physics and Cosmology (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-106047</td>
<td>Modern Methods of Spectroscopy: Applications in Astroparticle Physics</td>
<td>2 CR</td>
</tr>
<tr>
<td>M-PHYS-106194</td>
<td>Quantum Detectors and Sensors (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102207</td>
<td>Advanced Seminar in the Area Experimental Astroparticle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106533</td>
<td>Introduction to General Relativity (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106530</td>
<td>Block Practical Course: ETP Data Science</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
3.23 Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102424</td>
<td>Introduction to Theoretical Particle Physics, with ext. Exercises (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102426</td>
<td>Introduction to Theoretical Particle Physics, without ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102037</td>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102038</td>
<td>Theoretical Particle Physics I, Fundamentals, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102044</td>
<td>Theoretical Particle Physics II, with Exercises (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-104856</td>
<td>Introduction to Theoretical Cosmology (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106118</td>
<td>Computational Methods for Particle Physics and Cosmology (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-104861</td>
<td>Monte Carlo Event Generators (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105835</td>
<td>Mathematical Methods of Theoretical Physics (two hours per week) (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103188</td>
<td>Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-103189</td>
<td>Introduction to Flavor Physics, Fundamentals (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-105582</td>
<td>New Light Particles Beyond the Standard Model (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102316</td>
<td>Symmetries, Groups and Extended Gauge Theories (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102318</td>
<td>Symmetries and Groups (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102320</td>
<td>General Relativity (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-103334</td>
<td>General Relativity II (Minor)</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-105639</td>
<td>Non-supersymmetric Extensions of the Standard Model (Minor)</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-105642</td>
<td>Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102208</td>
<td>Advanced Seminar in the Area Theoretical Particle Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106533</td>
<td>Introduction to General Relativity (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

3.24 Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102051</td>
<td>Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102052</td>
<td>Condensed Matter Theory I, Fundamentals (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102312</td>
<td>Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102314</td>
<td>Condensed Matter Theory II: Many-Body Theory, Fundamentals (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105943</td>
<td>Theory and Applications of Quantum Machines (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104863</td>
<td>Computational Condensed Matter Physics (Minor)</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-102172</td>
<td>Theoretical Molecular Biophysics, without Seminar (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102170</td>
<td>Theoretical Molecular Biophysics, with Seminar (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103177</td>
<td>Theoretical Nanooptics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105656</td>
<td>Superconductivity, Josephson Effect and Applications, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105385</td>
<td>Theory of Magnetism, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-105395</td>
<td>Theoretical Quantum Optics (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102209</td>
<td>Advanced Seminar in the Area Condensed Matter Theory</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-106587</td>
<td>Topology in Condensed Matter Physics: Fundamentals and Advanced Topics (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>
3.25 Minor in Physics: Geophysics

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-105226</td>
<td>Seismology (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-106325</td>
<td>Seismics (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102653</td>
<td>Physics of Seismic Instruments (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-102658</td>
<td>Inversion and Tomography (Minor)</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-102657</td>
<td>Theory of Seismic Waves (Minor)</td>
<td>6 CR</td>
</tr>
<tr>
<td>M-PHYS-105228</td>
<td>Seismic Modeling (Minor)</td>
<td>4 CR</td>
</tr>
<tr>
<td>M-PHYS-104522</td>
<td>Full-Waveform Inversion (Ungraded)</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

3.26 Minor in Physics: Meteorology

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-104578</td>
<td>Selected Topics in Meteorology (Minor, ungraded)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

3.27 Non-Physics Elective

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102184</td>
<td>Electronics for Physicists</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-PHYS-102091</td>
<td>Wildcard Non-Physics Elective, Module with 1 Brick</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103129</td>
<td>Wildcard Non-Physics Elective, Module with 2 Bricks</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103130</td>
<td>Wildcard Non-Physics Elective, Module with 3 Bricks</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103131</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

3.28 Advanced Physics Laboratory Course

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101395</td>
<td>Advanced Physics Laboratory Course</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

3.29 Specialization Phase

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101396</td>
<td>Specialization Phase</td>
<td>15 CR</td>
</tr>
</tbody>
</table>

3.30 Introduction to Scientific Methods

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101397</td>
<td>Introduction to Scientific Methods</td>
<td>15 CR</td>
</tr>
</tbody>
</table>
3.31 Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101394</td>
<td>Interdisciplinary Qualifications</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

3.32 Additional Examinations

Additional Examinations (Election: at most 30 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-ZAK-106099</td>
<td>Supplementary Studies on Sustainable Development</td>
<td>19 CR</td>
</tr>
<tr>
<td>M-ZAK-106235</td>
<td>Supplementary Studies on Culture and Society</td>
<td>22 CR</td>
</tr>
</tbody>
</table>
4 Modules

4.1 Module: Accelerator Physics, with ext. Exercises [M-PHYS-104869]

Responsible: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109904</td>
<td>Accelerator Physics, with ext. Exercises</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-104870 - Accelerator Physics, with ext. exercises (Minor) must not have been started.
2. The module M-PHYS-104871 - Accelerator Physics, without ext. Exercises must not have been started.
3. The module M-PHYS-104872 - Accelerator Physics, without ext. exercises (Minor) must not have been started.

Competence Goal

After attending the course, you will be able to present the basics of accelerator physics and calculate simple beam transport systems. You will be able to describe the basic accelerator types, compare their modes of operation and assess their suitability for use in physics experiments. You will be able to present the essential properties of synchrotron radiation, describe the physical principles as well as the most important technical concepts for its generation and calculate essential characteristics of a synchrotron radiation source. On this basis, you will be able to conceptually design radiation sources to given experimental requirements. You will be able to describe accelerator-relevant technologies and to identify, classify and justify the various methods for measuring and controlling beam parameters. Your acquired knowledge of the interaction of ensembles of particles with each other and with the radiation they produce will enable you to provide a sound description of the operation of the free-electron laser and to establish overall criteria for the optimization of accelerators for a given application. In the extended exercises you will deepen the learned material by means of selected practical examples and applications.

Content

- Basic types of accelerators (including electrostatic accelerators, linacs, circular accelerators, storage rings & colliders).
- Physics of synchrotron radiation, wigglers and undulators (electrodynamics of moving point charges, properties of normal synchrotron radiation and undulator radiation)
- Beam optics and beam dynamics (e.g., magnetic lenses, beam properties, transverse & longitudinal oscillation and damping, many-particle systems)
- Magnetic technology for accelerators and synchrotron radiation sources
- Measurement and control of beam parameters
- Free-electron laser
- Performance limits of accelerators (e.g., ultra-short electron pulses, high-intensity proton beams, beam-beam interactions in colliders)
- New technologies, current & future projects
Workload
240 hours consisting of attendance time (60 hours), preparation and wrap-up of the lecture, the integrated exercises and exam preparation (120 hours), preparation and execution of the practical exercises, evaluations and preparation of measurement protocols (60 hours).

Literature
- E.J.N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Accelerator Physics 1&2, Springer, 1993
4.2 Module: Accelerator Physics, with ext. exercises (Minor) [M-PHYS-104870]

Responsible: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Organisation: KIT Department of Physics

Part of:
Minor in Physics: Condensed Matter
Minor in Physics: Experimental Particle Physics
Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109903</td>
<td>Accelerator Physics, with ext. exercises (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-104869 - Accelerator Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-104871 - Accelerator Physics, without ext. Exercises must not have been started.
3. The module M-PHYS-104872 - Accelerator Physics, without ext. exercises (Minor) must not have been started.

Competence Goal

After attending the course, you will be able to present the basics of accelerator physics and calculate simple beam transport systems. You will be able to describe the basic accelerator types, compare their modes of operation and assess their suitability for use in physics experiments. You will be able to present the essential properties of synchrotron radiation, describe the physical principles as well as the most important technical concepts for its generation and calculate essential characteristics of a synchrotron radiation source. On this basis, you will be able to conceptually design radiation sources to given experimental requirements. You will be able to describe accelerator-relevant technologies and to identify, classify and justify the various methods for measuring and controlling beam parameters. Your acquired knowledge of the interaction of ensembles of particles with each other and with the radiation they produce will enable you to provide a sound description of the operation of the free-electron laser and to establish overall criteria for the optimization of accelerators for a given application. In the extended exercises you will deepen the learned material by means of selected practical examples and applications.

Content

- Basic types of accelerators (including electrostatic accelerators, linacs, circular accelerators, storage rings & colliders).
- Physics of synchrotron radiation, wigglers and undulators (electrodynamics of moving point charges, properties of normal synchrotron radiation and undulator radiation)
- Beam optics and beam dynamics (e.g., magnetic lenses, beam properties, transverse & longitudinal oscillation and damping, many-particle systems)
- Magnetic technology for accelerators and synchrotron radiation sources
- Measurement and control of beam parameters
- Free-electron laser
- Performance limits of accelerators (e.g., ultra-short electron pulses, high-intensity proton beams, beam-beam interactions in colliders)
- New technologies, current & future projects

Workload

240 hours consisting of attendance time (60 hours), preparation and wrap-up of the lecture, the integrated exercises (120 hours), preparation and execution of the practical exercises, evaluations and preparation of measurement protocols (60 hours).
Literature

- E.J.N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Acclerator Physics 1&2, Springer, 1993
Module: Accelerator Physics, without ext. Exercises [M-PHYS-104871]

Responsible
Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Organisation
KIT Department of Physics

Content
- Basic types of accelerators (including electrostatic accelerators, linacs, circular accelerators, storage rings & colliders).
- Physics of synchrotron radiation, wigglers and undulators (electrodynamics of moving point charges, properties of normal synchrotron radiation and undulator radiation).
- Beam optics and beam dynamics (e.g., magnetic lenses, beam properties, transverse & longitudinal oscillation and damping, many-particle systems).
- Magnetic technology for accelerators and synchrotron radiation sources.
- Measurement and control of beam parameters.
- Free-electron laser.
- Performance limits of accelerators (e.g., ultra-short electron pulses, high-intensity proton beams, beam-beam interactions in colliders).
- New technologies, current & future projects.

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:
1. The module M-PHYS-104869 - Accelerator Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-104870 - Accelerator Physics, with ext. exercises (Minor) must not have been started.
3. The module M-PHYS-104872 - Accelerator Physics, without ext. exercises (Minor) must not have been started.

Competence Goal
After attending the course, you will be able to present the basics of accelerator physics and calculate simple beam transport systems. You will be able to describe the basic accelerator types, compare their modes of operation and assess their suitability for use in synchrotron experiments. You will be able to present the essential properties of synchrotron radiation, describe the physical principles as well as the most important technical concepts for its generation and calculate essential characteristics of a synchrotron radiation source. On this basis, you will be able to conceptually design radiation sources to given experimental requirements. You will be able to describe accelerator-relevant technologies and to identify, classify and justify the various methods for measuring and controlling beam parameters. Your acquired knowledge of the interaction of particle ensembles with each other and with the radiation they produce will enable you to describe the operation of the free-electron laser in a well-founded manner and to establish overall criteria for the optimization of accelerators for a given application.

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Credits
6

Language
English

Duration
1 term

Level
4

Recurrence
Each winter term

Version
1

Mandatory
<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module</th>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109905</td>
<td>Accelerator Physics, without ext. Exercises</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Bernhard, Müller
Workload
180 hours consisting of attendance time (60 hours), preparation and wrap-up of the lecture, the integrated exercises and exam preparation (120 hours).

Literature
- E.J.N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Accelerator Physics 1&2, Springer, 1993
4 MODULES

4.4 Module: Accelerator Physics, without ext. exercises (Minor) [M-PHYS-104872]

Responsibility:
Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Organisation:
KIT Department of Physics

Part of:
- Minor in Physics: Condensed Matter
- Minor in Physics: Experimental Particle Physics
- Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Examiners</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109906</td>
<td>Accelerator Physics, without ext. exercises (Minor)</td>
<td>6 CR</td>
<td>Bernhard, Müller</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104869 - Accelerator Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-104870 - Accelerator Physics, with ext. exercises (Minor) must not have been started.
3. The module M-PHYS-104871 - Accelerator Physics, without ext. Exercises must not have been started.

Competence Goal
After attending the course, you will be able to present the basics of accelerator physics and calculate simple beam transport systems. You will be able to describe the basic accelerator types, compare their modes of operation and assess their suitability for use in physics experiments. You will be able to present the essential properties of synchrotron radiation, describe the physical principles as well as the most important technical concepts for its generation and calculate essential characteristics of a synchrotron radiation source. On this basis, you will be able to conceptually design radiation sources to given experimental requirements. You will be able to describe accelerator-relevant technologies and to identify, classify and justify the various methods for measuring and controlling beam parameters. Your acquired knowledge of the interaction of particle ensembles with each other and with the radiation they produce will enable you to describe the operation of the free-electron laser in a well-founded manner and to establish overall criteria for the optimization of accelerators for a given application.

Content

- Basic types of accelerators (including electrostatic accelerators, linacs, circular accelerators, storage rings & colliders).
- Physics of synchrotron radiation, wigglers and undulators (electrodynamics of moving point charges, properties of normal synchrotron radiation and undulator radiation)
- Beam optics and beam dynamics (e.g., magnetic lenses, beam properties, transverse & longitudinal oscillation and damping, many-particle systems)
- Magnetic technology for accelerators and synchrotron radiation sources
- Measurement and control of beam parameters
- Free-electron lasers
- Performance limits of accelerators (e.g., ultra-short electron pulses, high-intensity proton beams, beam-beam interactions in colliders)
- New technologies, current & future projects

Workload
180 hours consisting of attendance time (60 hours), preparation and wrap-up of the lecture and the integrated exercises (120 hours).

Literature

- E.J.N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Acclerator Physics 1&2, Springer, 1993
4.5 Module: Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training [M-PHYS-106399]

Responsible:
- Prof. Dr. Gerd Tilo Baumbach
- Prof. Dr. Anke-Susanne Müller
- Dr. Anton Plech
- Dr. Svetoslav Stankov

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Minor in Physics: Condensed Matter
- Minor in Physics: Optics and Photonics
- Minor in Physics: Experimental Particle Physics

Credits: 4
Grading scale: pass/fail
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
- T-PHYS–112943 Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training

Competence Certificate
The regular attendance of the entire block course is required. The successful completion will be evaluated by a written final report on the basic principles and performance of a selected experiment. The results of the student group are to be presented in a final seminar with a communicated time interval (oral presentations or posters).

Prerequisites
none

Competence Goal
In the lectures, the basic accelerator types, their principles of operation and applications will be described. In particular, synchrotron radiation sources will be presented and in comparison to particle colliders for experimental high-energy particle physics will be discussed. The properties of the synchrotron radiation with the physical fundamentals, technical concepts of its generation and essential characteristics will be presented. Accelerator-relevant technologies and various methods for measuring and control of beam parameters will be discussed.

The basic concepts of synchrotron radiation and X-ray physics and their applications for the characterization of structure and dynamics of crystalline solids and nanostructures will be introduced. X-ray scattering/diffraction, spectroscopy, and 2D and 3D X-ray imaging in real and reciprocal space, frequency and momentum spaces on laboratory sources and large-scale equipment will be presented.

Theoretical course content, tutorials and practical training are designed to enable students to understand high-tech accelerator instrumentation, to prepare and perform X-ray experiments on modern laboratory and large-scale equipment and apply the knowledge acquired in the lecture in a specific experiment.
Content
Introduction to accelerator physics with a focus on synchrotron radiation sources.

- Basic types of accelerators and their application
- Synchrotron radiation sources in comparison to colliders
- Physics of synchrotron radiation and its generation with wigglers and undulators
- Basics of beam optics and beam dynamics
- Measurement and control of beam parameters
- Free-electron lasers

Introduction to various application fields of the modern X-ray physics

- Theoretical and experimental fundamentals of X-ray physics, optics and analysis with emphasis on X-ray scattering, diffraction, spectroscopy, computed tomography, and X-ray microscopy
- Modern instrumentation in the X-ray laboratory and at large-scale facilities
- Examples of research from crystallography, nanoscience and life science on state-of-the-art X-ray equipment at the KIT Light Source.

Annotation
This module cannot be combined with an advanced seminar in the major in physics or second major in physics.

Workload
120 hours consisting of an attendance time (60 hours), a follow-up work (30 hours) and a preparation of seminar/poster incl. a rehearsal seminar (30 hours) during a two-weeks block course with lectures, tutorials and a practical training

Recommendation
Basics of classical electrodynamics, optics, quantum mechanics and basic knowledge of solid state physics.

Learning type
Two-weeks block course with lectures, tutorials and a practical training

Literature

- E. J. N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Accelerator Physics 1&2, Springer, 1993
- K. Wille: Physik der Teilchenbeschleuniger und Synchrotronstrahlungsquellen, Teubner Studienbücher
4.6 Module: Advanced Physics Laboratory Course [M-PHYS-101395]

Responsible: Dr. Gernot Guigas
PD Dr. Andreas Naber
Dr. Christoph Sürgers
Dr. Joachim Wolf

Organisation: KIT Department of Physics

Part of: Advanced Physics Laboratory Course

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102479 | Advanced Physics Laboratory Course | 6 CR | Guigas, Naber, Sürgers, Wolf |

Competence Certificate
The proof of performance must be provided for each individual experiment. This includes preparation, execution, evaluation and preparation of a protocol. To pass the laboratory course, it is necessary that all experiments are performed and the protocols are approved by the respective supervisors. For details see https://labs.physik.kit.edu/prakt-mod-fortg.php.

Prerequisites
none

Competence Goal
Students learn modern experimental methods and advanced techniques in the experiments. In doing so, they deepen their understanding of physical concepts and increase their ability to contrast theory and experiment. They improve the safe operation of even complex measurement setups and gain advanced knowledge of measurement data acquisition and processing. They will also learn to ensure error-free operation of complex measurement processes. They will gain a routine handling of data analysis programs for the evaluation of experimental data. They will develop a critical approach to measurement results and thus improve their ability to assess their reliability. Through the careful elaboration of their own experimental results, they increase their writing competence and deepen the correct citation of external sources.

Content
Experiments from the fields of atomic physics, nuclear physics, solid state physics, biophysics, and modern optics/quantum optics. A list of the experiments can be found at https://labs.physik.kit.edu/prakt-mod-fortg.php.

Annotation
Mandatory participation in preliminary meeting with safety briefing and radiation protection instruction.

Workload
5 experiments, 180 hours consisting of attendance time (60 hours), preparation, evaluation of experiments and preparation of protocols (120 hours).

Literature
Textbooks of experimental physics. Special material for each individual experiment is provided.
Module: Advanced Seminar in the Area Condensed Matter [M-PHYS-102203]

Responsible: Studiendekan Physik
Organisation: KIT Department of Physics
Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Minor in Physics: Condensed Matter

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Adv. Sem. in Condensed Matter (Election: 4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109971</td>
<td>Advanced Seminar: Recent Experiments in Quantum Physics</td>
<td>4 CR</td>
<td>Hunger, Le Tacon, Wernsdorfer, Zakeri-Lori</td>
</tr>
<tr>
<td>T-PHYS-111451</td>
<td>Advanced Seminar: Units of Measurement and Metrology: No Guessing but Precise Measurement!</td>
<td>4 CR</td>
<td>Wulfhekel</td>
</tr>
<tr>
<td>T-PHYS-106129</td>
<td>Advanced Seminar: Modern Particle Accelerators and Research with Photons</td>
<td>4 CR</td>
<td>Baumbach, Müller</td>
</tr>
<tr>
<td>T-PHYS-105789</td>
<td>Advanced Seminar: Optoelectronics - Fundamentals and Devices</td>
<td>4 CR</td>
<td>Hetterich, Kalt</td>
</tr>
<tr>
<td>T-PHYS-106523</td>
<td>Advanced Seminar: Quantum Optics</td>
<td>4 CR</td>
<td>Hunger, Naber, Rockstuhl, Wegener</td>
</tr>
<tr>
<td>T-PHYS-111014</td>
<td>Advanced Seminar: Superconductivity - from Basics to Application</td>
<td>4 CR</td>
<td>Le Tacon, Ustinov, Wulfhekel</td>
</tr>
</tbody>
</table>

Competence Certificate

Study achievement. Own presentation as well as regular attendance.

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102204 - Advanced Seminar in the Area Nanophysics must not have been started.
2. The module M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics must not have been started.
3. The module M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics must not have been started.
4. The module M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics must not have been started.
5. The module M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics must not have been started.
6. The module M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory must not have been started.

Competence Goal

Students are able to present a specialized scientific topic. This includes collecting the scientific material, using a correct citation technique, considering didactic aspects, structuring the presentation, designing the slides, giving the actual presentation and answering questions from the audience.

Content

Together with the presentation techniques, depending on the choice of topic, special scientific subjects up to the current state of the art are communicated.

Workload

120 hours composed of attendance time (30 h), wrap-up of the seminar (30 h) and preparation of the own presentation incl. rehearsal presentation (60 h)

Literature

Will be communicated in the seminar, depending on the topic and specialization, textbooks and/or scientific articles are suitable.
Module: Advanced Seminar in the Area Condensed Matter Theory [M-PHYS-102209]

Responsible:
Studiendekan Physik

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory
- Minor in Physics: Condensed Matter Theory

Elective Adv. Sem. in Condensed Matter Theory (Elect: 4 credits)

T-PHYS-104544	Advanced Seminar: Conformational Dynamics in Biomolecules	4 CR	Nienhaus, Wenzel
T-PHYS-111323	Advanced Seminar: Hydrodynamics in Classical and Quantum Fluids	4 CR	Garst, Schmalian
T-PHYS-112802	Advanced Seminar: Phenomena of the Quantum World	4 CR	Garst, Schmalian, Shnirman
T-PHYS-113133	Advanced Seminar: Quantum Mechanics: Selected Chapters	4 CR	Eder
T-PHYS-106523	Advanced Seminar: Quantum Optics	4 CR	Hunger, Naber, Rockstuhl, Wegener
T-PHYS-111889	Advanced Seminar: Quantum Phase Transitions	4 CR	Garst
T-PHYS-110829	Advanced Seminar: Topology in Condensed Matter Systems	4 CR	Garst, Mirlin, Schmalian
T-PHYS-111865	Advanced Seminar: Virtual Design of Materials	4 CR	Wenzel

Competence Certificate
Study achievement. Own presentation as well as regular attendance.

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:
1. The module M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter must not have been started.
2. The module M-PHYS-102204 - Advanced Seminar in the Area Nanophysics must not have been started.
3. The module M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics must not have been started.
4. The module M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics must not have been started.
5. The module M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics must not have been started.
6. The module M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics must not have been started.

Competence Goal
Students are able to present a specialized scientific topic. This includes collecting the scientific material, using a correct citation technique, considering didactic aspects, structuring the presentation, designing the slides, giving the actual presentation and answering questions from the audience.

Content
Together with the presentation techniques, depending on the choice of topic, special scientific subjects up to the current state of the art are communicated.

Workload
120 hours composed of attendance time (30 h), wrap-up of the seminar (30 h) and preparation of the own presentation incl. rehearsal presentation (60 h)

Literature
Will be communicated in the seminar, depending on the topic and specialization, textbooks and/or scientific articles are suitable.
4.9 Module: Advanced Seminar in the Area Experimental Astroparticle Physics [M-PHYS-102207]

| Responsible: | Studiendekan Physik |
| Organisation: | KIT Department of Physics |
| Part of: | Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
Minor in Physics: Experimental Astroparticle Physics |
Credits	4
Grading scale	pass/fail
Recurrence	Each term
Duration	1 term
Language	German/English
Level	4
Version	3

Elective Adv. Sem. in Exp. Astroparticle Physics (Election: 4 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
<th>Literature</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112801</td>
<td>Advanced Seminar: Accelerators and Detectors - Future Technologies for Research and Medicine</td>
<td>4 CR</td>
<td>Holzapfel, Husemann, Müller</td>
</tr>
<tr>
<td>T-PHYS-110293</td>
<td>Advanced Seminar: Astroparticle Physics</td>
<td>4 CR</td>
<td>Drexlin, Engel, Valerius</td>
</tr>
<tr>
<td>T-PHYS-112800</td>
<td>Advanced Seminar: Astroparticle Physics and Cosmology</td>
<td>4 CR</td>
<td>Drexlin, Engel, Valerius</td>
</tr>
<tr>
<td>T-PHYS-112236</td>
<td>Advanced Seminar: Unraveling the Puzzle of Dark Matter</td>
<td>4 CR</td>
<td>Mühleitner, Schwetz-Mangold</td>
</tr>
<tr>
<td>T-PHYS-106129</td>
<td>Advanced Seminar: Modern Particle Accelerators and Research with Photons</td>
<td>4 CR</td>
<td>Baumbach, Müller</td>
</tr>
</tbody>
</table>

Competence Certificate

Study achievement. Own presentation as well as regular attendance.

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter must not have been started.
2. The module M-PHYS-102204 - Advanced Seminar in the Area Nanophysics must not have been started.
3. The module M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics must not have been started.
4. The module M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics must not have been started.
5. The module M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics must not have been started.
6. The module M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory must not have been started.

Competence Goal

Students are able to present a specialized scientific topic. This includes collecting the scientific material, using a correct citation technique, considering didactic aspects, structuring the presentation, designing the slides, giving the actual presentation and answering questions from the audience.

Content

Together with the presentation techniques, depending on the choice of topic, special scientific subjects up to the current state of the art are communicated.

Workload

120 hours composed of attendance time (30 h), wrap-up of the seminar (30 h) and preparation of the own presentation incl. rehearsal presentation (60 h)

Literature

Will be communicated in the seminar, depending on the topic and specialization, textbooks and/or scientific articles are suitable.
Module: Advanced Seminar in the Area Experimental Particle Physics [M-PHYS-102206]

Responsible: Studiendekan Physik
Organisation: KIT Department of Physics
Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Adv. Sem. in Exp. Particle Physics (Elect: 4 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Duration</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112801</td>
<td>Advanced Seminar: Accelerators and Detectors - Future Technologies for Research and Medicine</td>
<td>4 CR</td>
<td>Holzapfel, Husemann, Müller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-106525</td>
<td>Advanced Seminar: Experimental and Theoretical Methods in Particle Physics</td>
<td>4 CR</td>
<td>Gieseke, Heinrich, Quast, Zeppenfeld</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-111864</td>
<td>Advanced Seminar: Low Energy Particle Physics (Belle II, LUXE)</td>
<td>4 CR</td>
<td>Ferber, Goldenzweig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-106129</td>
<td>Advanced Seminar: Modern Particle Accelerators and Research with Photons</td>
<td>4 CR</td>
<td>Baumbach, Müller</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-112235</td>
<td>Advanced Seminar: Particle Physics</td>
<td>4 CR</td>
<td>Ferber, Husemann, Klute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-107566</td>
<td>Advanced Seminar: Particle Physics at the Highest Energy at the LHC</td>
<td>4 CR</td>
<td>Husemann, Klute, Müller, Wolf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-111863</td>
<td>Advanced Seminar: Particle Physics beyond the Standard Model</td>
<td>4 CR</td>
<td>Klute</td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-105791</td>
<td>Advanced Seminar: Particle Physics and Experimental Methods</td>
<td>4 CR</td>
<td>Goldenzweig, Husemann, Müller, Müller, Quast</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Study achievement. Own presentation as well as regular attendance.

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter must not have been started.
2. The module M-PHYS-102204 - Advanced Seminar in the Area Nanophysics must not have been started.
3. The module M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics must not have been started.
4. The module M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics must not have been started.
5. The module M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics must not have been started.
6. The module M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory must not have been started.

Competence Goal
Students are able to present a specialized scientific topic. This includes collecting the scientific material, using a correct citation technique, considering didactic aspects, structuring the presentation, designing the slides, giving the actual presentation and answering questions from the audience.

Content
Together with the presentation techniques, depending on the choice of topic, special scientific subjects up to the current state of the art are communicated.

Workload
120 hours composed of attendance time (30 h), wrap-up of the seminar (30 h) and preparation of the own presentation incl. rehearsal presentation (60 h)
Literature
Will be communicated in the seminar, depending on the topic and specialization, textbooks and/or scientific articles are suitable.
Module: Advanced Seminar in the Area Nanophysics [M-PHYS-102204]

Responsible: Studiendekan Physik

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Adv. Sem. in Nanophysics (Election: 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109971</td>
<td>Advanced Seminar: Recent Experiments in Quantum Physics</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-104544</td>
<td>Advanced Seminar: Conformational Dynamics in Biomolecules</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-104560</td>
<td>Advanced Seminar: Light-optical Nanoscopy</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-111862</td>
<td>Advanced Seminar: Nano Optics</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-105789</td>
<td>Advanced Seminar: Optoelectronics - Fundamentals and Devices</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-111014</td>
<td>Advanced Seminar: Superconductivity - from Basics to Application</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-111865</td>
<td>Advanced Seminar: Virtual Design of Materials</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102203</td>
<td>Advanced Seminar in the Area Condensed Matter</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-102205</td>
<td>Advanced Seminar in the Area Optics and Photonics</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-102206</td>
<td>Advanced Seminar in the Area Experimental Particle Physics</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-102207</td>
<td>Advanced Seminar in the Area Experimental Astroparticle Physics</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-102208</td>
<td>Advanced Seminar in the Area Theoretical Particle Physics</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-102209</td>
<td>Advanced Seminar in the Area Condensed Matter Theory</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Study achievement. Own presentation as well as regular attendance.

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter must not have been started.
2. The module M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics must not have been started.
3. The module M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics must not have been started.
4. The module M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics must not have been started.
5. The module M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics must not have been started.
6. The module M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory must not have been started.

Competence Goal

Students are able to present a specialized scientific topic. This includes collecting the scientific material, using a correct citation technique, considering didactic aspects, structuring the presentation, designing the slides, giving the actual presentation and answering questions from the audience.

Content

Together with the presentation techniques, depending on the choice of topic, special scientific subjects up to the current state of the art are communicated.

Workload

120 hours composed of attendance time (30 h), wrap-up of the seminar (30 h) and preparation of the own presentation incl. rehearsal presentation (60 h)

Literature

Will be communicated in the seminar, depending on the topic and specialization, textbooks and/or scientific articles are suitable.
4.12 Module: Advanced Seminar in the Area Optics and Photonics [M-PHYS-102205]

Credits: 4

Grading scale: pass/fail

Recurrence: Each term

Duration: 1 term

Language: German/English

Level: 4

Version: 3

<table>
<thead>
<tr>
<th>Elective Adv. Sem. in Optics and Photonics (Elective: 4 credits)</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111451 Advanced Seminar: Units of Measurement and Metrology: No Guessing but Precise Measurement!</td>
<td>4</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-104544 Advanced Seminar: Conformational Dynamics in Biomolecules</td>
<td>4</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-104560 Advanced Seminar: Light-optical Nanoscopy</td>
<td>4</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-111862 Advanced Seminar: Nano Optics</td>
<td>4</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-105789 Advanced Seminar: Optoelectronics - Fundamentals and Devices</td>
<td>4</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-106523 Advanced Seminar: Quantum Optics</td>
<td>4</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Study achievement. Own presentation as well as regular attendance.

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter must not have been started.
2. The module M-PHYS-102204 - Advanced Seminar in the Area Nanophysics must not have been started.
3. The module M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics must not have been started.
4. The module M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics must not have been started.
5. The module M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics must not have been started.
6. The module M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory must not have been started.

Competence Goal
Students are able to present a specialized scientific topic. This includes collecting the scientific material, using a correct citation technique, considering didactic aspects, structuring the presentation, designing the slides, giving the actual presentation and answering questions from the audience.

Content
Together with the presentation techniques, depending on the choice of topic, special scientific subjects up to the current state of the art are communicated.

Workload
120 hours composed of attendance time (30 h), wrap-up of the seminar (30 h) and preparation of the own presentation incl. rehearsal presentation (60 h)

Literature
Will be communicated in the seminar, depending on the topic and specialization, textbooks and/or scientific articles are suitable.
Module: Advanced Seminar in the Area Theoretical Particle Physics [M-PHYS-102208]

Responsibility: Studiendekan Physik

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics
- Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Elective Adv. Sem. in Theoretical Particle Physics (Election: 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111324</td>
<td>Advanced Seminar: Advanced Topics in Quantum Field Theory and Physics Beyond the Standard</td>
<td>4 CR</td>
<td>Nierste</td>
</tr>
<tr>
<td>T-PHYS-106525</td>
<td>Advanced Seminar: Experimental and Theoretical Methods in Particle Physics</td>
<td>4 CR</td>
<td>Gieseke, Heinrich, Quast, Zeppenfeld</td>
</tr>
<tr>
<td>T-PHYS-112804</td>
<td>Advanced Seminar: Flavor Physics</td>
<td>4 CR</td>
<td>Blanke, Kahlhöfer</td>
</tr>
<tr>
<td>T-PHYS-106126</td>
<td>Advanced Seminar: General Relativity</td>
<td>4 CR</td>
<td>Klinkhamer</td>
</tr>
<tr>
<td>T-PHYS-109974</td>
<td>Advanced Seminar: General Relativity II</td>
<td>4 CR</td>
<td>Klinkhamer</td>
</tr>
<tr>
<td>T-PHYS-110830</td>
<td>Advanced Seminar: Higgs Meets Flavour</td>
<td>4 CR</td>
<td>Heinrich, Mühleitner</td>
</tr>
<tr>
<td>T-PHYS-111452</td>
<td>Advanced Seminar: Physics Beyond the Standard Model</td>
<td>4 CR</td>
<td>Nierste</td>
</tr>
<tr>
<td>T-PHYS-113133</td>
<td>Advanced Seminar: Quantum Mechanics: Selected Chapters</td>
<td>4 CR</td>
<td>Eder</td>
</tr>
<tr>
<td>T-PHYS-105793</td>
<td>Advanced Seminar: Special Relativity</td>
<td>4 CR</td>
<td>Klinkhamer</td>
</tr>
<tr>
<td>T-PHYS-112236</td>
<td>Advanced Seminar: Unraveling the Puzzle of Dark Matter</td>
<td>4 CR</td>
<td>Mühleitner, Schwetz-Mangold</td>
</tr>
</tbody>
</table>

Prerequisites
None

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter must not have been started.
2. The module M-PHYS-102204 - Advanced Seminar in the Area Nanophysics must not have been started.
3. The module M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics must not have been started.
4. The module M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics must not have been started.
5. The module M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics must not have been started.
6. The module M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory must not have been started.

Competence Goal
Students are able to present a specialized scientific topic. This includes collecting the scientific material, using a correct citation technique, considering didactic aspects, structuring the presentation, designing the slides, giving the actual presentation and answering questions from the audience.

Content
Together with the presentation techniques, depending on the choice of topic, special scientific subjects up to the current state of the art are communicated.

Workload
120 hours composed of attendance time (30 h), wrap-up of the seminar (30 h) and preparation of the own presentation incl. rehearsal presentation (60 h)
Literature
Will be communicated in the seminar, depending on the topic and specialization, textbooks and/or scientific articles are suitable.
4.14 Module: Array Techniques in Seismology (Graded) [M-PHYS-106196]

Responsible: apl. Prof. Dr. Joachim Ritter
Organisation: KIT Department of Physics
Part of: Second Major in Physics: Geophysics

Credits 4
Grading scale Grade to a tenth
Recurrence Irregular
Duration 1 term
Language English
Level 4
Version 1

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112590</td>
</tr>
</tbody>
</table>

Competence Certificate
Grading is based on written reports on exercises. A detailed rating scheme is distributed during the first lecture together with information on the required length of the reports and rating criteria.

Competence Goal
The students understand basic principles of array techniques. This includes the increase in signal-to-noise ratio due to stacking or beamforming and the estimation of simple shear-wave velocity profiles. They know how to determine the slowness or ray parameter of an incoming wavefield as well as its backazimuth. These parameters are used to estimate the location of a seismic source. Furthermore, they know how to divide different phase arrivals using a vespagram or an f-k analysis.

The students are able to work self-organized on a specific issue of array seismology, e.g., the location of a nuclear test or the local shear-wave velocity structure underneath a local array. They are able to read and understand technical and scientific literature on array seismology. They can outline and analyze seismological cases in which array techniques can solve specific problems such as seismic phase identification or source location estimation.

Content
- Fundamentals of seismic waves
- Measurable parameters of seismic waves using arrays
- Determination of source locations
- Determination of underground properties
- Global seismic arrays and their role for monitoring nuclear tests and earthquakes
- Training on array software and application to seismological data sets

Module grade calculation
Reports on exercises need to be submitted which are individually graded. The final module grade is calculated as average of all individually graded reports. A detailed rating scheme is distributed during the first lecture.

Workload
Total workload: 120h which consist of 15h lecture at GPI, 15h reading of research papers and lecture material, 15h preparation and wrap-up of lecture, 15h guided exercise in the computing room at GPI to learn about array software (basic Linux and Python knowledge required), 30h self-organized training with array software and application to data sets, and 30h preparation of reports on exercises.

Recommendation
Participants need to know the basics of seismology.

Literature
4.15 Module: Astroparticle Physics I [M-PHYS-102075]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of:
Major in Physics: Experimental Astroparticle Physics (Required Experimental Astroparticle Physics)
Second Major in Physics: Experimental Astroparticle Physics (Required Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102432</td>
<td>Astroparticle Physics I</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102076 - Astroparticle Physics I (Minor) must not have been started.

Competence Goal
Students will be introduced to the basic concepts of astroparticle physics. The lecture teaches both the theoretical concepts and the experimental methods of this new dynamic field of work at the interface of elementary particle physics, cosmology and astrophysics. Students will learn to understand the concepts through concrete case studies from current research and will be enabled to apply the learned methods independently.

Methodological skills acquisition:

- Understanding of the fundamentals of experimental astroparticle physics.
- Recognition of methodological cross-connections to elementary particle physics, astrophysics, and cosmology.
- Acquisition of the ability to present a current research topic independently as well as in a team setting
- Acquisition of the ability to implement the concepts and experimental methods in the master thesis

Content
The topics covered include a general introduction to the field with its fundamental issues, theoretical concepts and experimental methods. Corresponding to the very different energy scales (meV - 1020 eV) of astroparticle physics, the lecture is divided into a discussion of the processes in the thermal (low energies) and non-thermal (high energies) universe. A special focus of the lecture is a comprehensive presentation of modern experimental techniques, e.g. in the search for very rare processes. Based on this, in the second part of the lecture a comprehensive introduction to the "dark universe" and the search for dark matter is given.

The lecture is the basis of further lectures on this topic (Astroparticle Physics II).

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises(180 hours)

Recommendation
Basic knowledge from the lecture "Nuclei and Particles".

Literature

- Donald Perkins, Particle Astrophysics (Oxford University Press, 2. Auflage, 2009)
- Claus Grupen, Astroparticle Physics (Springer, 2005)
Module: Astroparticle Physics I (Minor) [M-PHYS-102076]

Responsible: Prof. Dr. Guido Drexlin
 Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: Minor in Physics: Experimental Astroparticle Physics

Credits: 8
Grading scale: pass/fail
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104379</td>
<td>Astroparticle Physics I (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-PHYS-102075 - Astroparticle Physics I** must not have been started.

Competence Goal
Students will be introduced to the basic concepts of astroparticle physics. The lecture teaches both the theoretical concepts and the experimental methods of this new dynamic field of work at the interface of elementary particle physics, cosmology and astrophysics. Students will learn to understand the concepts through concrete case studies from current research and will be enabled to apply the learned methods independently.

Methodological skills acquisition:

- Understanding of the fundamentals of experimental astroparticle physics.
- Recognition of methodological cross-connections to elementary particle physics, astrophysics, and cosmology.
- Acquisition of the ability to present a current research topic independently as well as in a team setting
- Acquisition of the ability to implement the concepts and experimental methods in the master thesis

Content
The topics covered include a general introduction to the field with its fundamental issues, theoretical concepts and experimental methods. Corresponding to the very different energy scales (meV - 1020 eV) of astroparticle physics, the lecture is divided into a discussion of the processes in the thermal (low energies) and non-thermal (high energies) universe. A special focus of the lecture is a comprehensive presentation of modern experimental techniques, e.g. in the search for very rare processes. Based on this, in the second part of the lecture a comprehensive introduction to the "dark universe" and the search for dark matter is given.

The lecture is the basis of further lectures on this topic (Astroparticle Physics II).

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Recommendation

Basic knowledge from the lecture "Nuclei and Particles".

Literature

- Donald Perkins, Particle Astrophysics (Oxford University Press, 2. Auflage, 2009)
- Claus Grupen, Astroparticle Physics (Springer, 2005)
Module: Astroparticle Physics II - Cosmic Rays, with ext. Exercises [M-PHYS-102525]

Responsible: Prof. Dr. Ralph Engel
Dr. Markus Roth

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Astroparticle Physics (Further Required Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-105108</td>
<td>Astroparticle Physics II - Cosmic Rays, with ext. Exercises</td>
<td>8 CR</td>
<td>Engel, Roth</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102082 - Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102078 - Astroparticle Physics II - Cosmic Rays, without ext. Exercises must not have been started.
3. The module M-PHYS-103184 - Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor) must not have been started.

Competence Goal
The students understand the basic terms and concepts of astrophysics of high-energy particles and apply them to the discussion of modern observational results. Typical approximations and considerations of astrophysics are comprehensible for the participants. In the extended exercises, students solve extensive problems in astroparticle physics and discuss them in the group.

Content
The lecture will be held as blackboard notes and with previously handed out visual material. Special emphasis will be placed on the explicit derivation of the essential relationships. Topics include astrophysical energy and size scales; cosmic ray properties; direct and indirect cosmic ray measurements; charged particle acceleration; galaxies and galactic magnetic fields; galactic and extra-galactic cosmic ray propagation; cosmic ray sources; particle physics and cosmic ray searches for exotic phenomena; high-energy neutrinos. Together with "Astroparticle Physics II: Gamma Radiation" the following semester, the two lectures provide a complete picture of high-energy particles with their underlying production and transport processes in the universe. The topic spectra of both lectures are designed in such a way that they can also be listened to individually.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours)

Literature

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (2nd Ed.)
- P. Schneider: Einführung in die Extragalaktische Astronomie und Kosmologie
- M. Longair: High Energy Astrophysics
- Thierry Courvoisier: High Energy Astrophysics
- Bradley W. Carroll and Dale Ostlie: An Introduction to Modern Astrophysics
4.18 Module: Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor) [M-PHYS-103184]

Responsibility: Prof. Dr. Ralph Engel
Dr. Markus Roth

Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-106317 | Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor) | 8 CR | Engel, Roth |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102082 - Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102078 - Astroparticle Physics II - Cosmic Rays, without ext. Exercises must not have been started.
3. The module M-PHYS-102525 - Astroparticle Physics II - Cosmic Rays, with ext. Exercises must not have been started.

Competence Goal
The students understand the basic terms and concepts of astrophysics of high-energy particles and apply them to the discussion of modern observational results. Typical approximations and considerations of astrophysics are comprehensible for the participants. In the extended exercises, students solve extensive problems in astroparticle physics and discuss them in the group.

Content
The lecture will be given as blackboard notes and with previously handed out visual material. Special emphasis will be placed on the explicit derivation of the essential relationships. Topics include astrophysical energy and size scales; cosmic ray properties; direct and indirect cosmic ray measurements; charged particle acceleration; galaxies and galactic magnetic fields; galactic and extra-galactic cosmic ray propagation; cosmic ray sources; particle physics and cosmic ray searches for exotic phenomena; high-energy neutrinos. Together with "Astroparticle Physics II: Gamma Radiation" the following semester, the two lectures provide a complete picture of high-energy particles with their underlying production and transport processes in the universe. The topic spectra of both lectures are designed in such a way that they can also be listened to individually.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Literature
- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (2nd Ed.)
- P. Schneider: Einführung in die Extragalaktische Astronomie und Kosmologie
- M. Longair: High Energy Astrophysics
- Thierry Courvoisier: High Energy Astrophysics
- Bradley W. Carroll and Dale Ostlie: An Introduction to Modern Astrophysics
Module: Astroparticle Physics II - Cosmic Rays, without ext. Exercises [M-PHYS-102078]

Responsible: Prof. Dr. Ralph Engel
Dr. Markus Roth

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Astroparticle Physics (Further Required Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-102382 | Astroparticle Physics II - Cosmic Rays, without ext. Exercises | 6 CR | Engel, Roth

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102082 - Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102525 - Astroparticle Physics II - Cosmic Rays, with ext. Exercises must not have been started.
3. The module M-PHYS-103184 - Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor) must not have been started.

Competence Goal

The students understand the basic terms and concepts of astrophysics of high-energy particles and apply them to the discussion of modern observational results. Typical approximations and considerations of astrophysics are comprehensible for the participants. In the exercises, students solve selected problems in astroparticle physics and discuss them in the group.

Content

The lecture will be held as blackboard notes and with previously handed out visual material. Special emphasis will be placed on the explicit derivation of the essential relationships. Topics include astrophysical energy and size scales; cosmic ray properties; direct and indirect cosmic ray measurements; charged particle acceleration; galaxies and galactic magnetic fields; galactic and extra-galactic cosmic ray propagation; cosmic ray sources; particle physics and cosmic ray searches for exotic phenomena; high-energy neutrinos. Together with "Astroparticle Physics II: Gamma Radiation" the following semester, the two lectures provide a complete picture of high-energy particles with their underlying production and transport processes in the universe. The topic spectra of both lectures are designed in such a way that they can also be listened to individually.

Workload

180 hours consisting of attendance time (45 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Literature

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (2nd Ed.)
- P. Schneider: Einführung in die Extragalaktische Astronomie und Kosmologie
- M. Longair: High Energy Astrophysics
- Thierry Courvoisier: High Energy Astrophysics
- Bradley W. Carroll and Dale Ostlie: An Introduction to Modern Astrophysics
4.20 Module: Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor) [M-PHYS-102082]

Responsible: Prof. Dr. Ralph Engel
Dr. Markus Roth

Organisation: KIT Department of Physics

Part of: Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104380</td>
<td>Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor)</td>
<td>6 CR</td>
<td>Engel, Roth</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102078 - Astroparticle Physics II - Cosmic Rays, without ext. Exercises must not have been started.
2. The module M-PHYS-102525 - Astroparticle Physics II - Cosmic Rays, with ext. Exercises must not have been started.
3. The module M-PHYS-103184 - Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor) must not have been started.

Competence Goal
The students understand the basic terms and concepts of astrophysics of high-energy particles and apply them to the discussion of modern observational results. Typical approximations and considerations of astrophysics are comprehensible for the participants. In the exercises, students solve selected problems in astroparticle physics and discuss them in the group.

Content
The lecture will be held as blackboard notes and with previously handed out visual material. Special emphasis will be placed on the explicit derivation of the essential relationships. Topics include astrophysical energy and size scales; cosmic ray properties; direct and indirect cosmic ray measurements; charged particle acceleration; galaxies and galactic magnetic fields; galactic and extra-galactic cosmic ray propagation; cosmic ray sources; particle physics and cosmic ray searches for exotic phenomena; high-energy neutrinos. Together with "Astroparticle Physics II: Gamma Radiation" the following semester, the two lectures provide a complete picture of high-energy particles with their underlying production and transport processes in the universe. The topic spectra of both lectures are designed in such a way that they can also be listened to individually.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture and preparation of the exercises (135 hours).

Literature
- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (2nd Ed.)
- P. Schneider: Einführung in die Extragalaktische Astronomie und Kosmologie
- M. Longair: High Energy Astrophysics
- Thierry Courvoisier: High Energy Astrophysics
- Bradley W. Carroll and Dale Ostlie: An Introduction to Modern Astrophysics
Module: Astroparticle Physics II - Gamma Rays and Neutrinos [M-PHYS-105683]

Responsible: Prof. Dr. Guido Drexlin

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Astroparticle Physics (Further Required Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Level</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111343</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos</td>
<td>6 CR</td>
<td>4</td>
<td>Drexlin, Engel</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none, the lecture is designed complementary to the module Astroparticle Physics I and can be heard independently of it.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105684 - Astroparticle Physics II - Gamma Rays and Neutrinos (Minor) must not have been started.
2. The module M-PHYS-105685 - Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-105686 - Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises must not have been started.

Competence Goal

After successful participation in this module, the student has an in-depth technical and survey knowledge in the field of high-energy astroparticle physics. He/she understands the most important formation processes of gamma rays and neutrinos, is able to interpret observed energy spectra of astrophysical objects and has basic knowledge of the astrophysics of galactic and extragalactic sources of high-energy particles.

Content

The fundamentals of astroparticle physics involving high-energy particles will be discussed, with emphasis on the application of gamma and neutrino astronomy to the study of astrophysical objects. Starting with the acceleration of charged particles, the first third of the lecture series introduces the main formation processes of gamma radiation, discusses the propagation of high-energy gamma radiation, and presents methods for detecting gamma radiation on Earth and in space. The second third of the lecture series discusses astrophysical objects and their image in gamma rays: supernova explosions and remnants, neutron stars and pulsars, black holes and Active Galactic Nuclei, and gamma-ray bursts. The course is rounded out by an introduction to the fundamentals and current issues in astronomy involving high-energy neutrinos.

Together with the course "Astroparticle Physics II: Cosmic Rays", which is offered in the WS, a complete picture of high-energy particles with their underlying production and transport processes in our universe is obtained. The subject spectra of both lectures are complementary in nature and can be heard independently, but complement each other appropriately. The lecture ATP II "Gamma Rays and Neutrinos" is complementary to further in-depth lectures (Astroparticle Physics II "Cosmic Rays" or "Particles and Stars").

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation

Basic knowledge of the physics of particles and nuclei and of experimental methods in this area is assumed.

Literature

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (Cambridge)
- M.S. Longair: High Energy Astrophysics (Cambridge)
- H. Bradt: Astrophysics Processes (Cambridge)

Further literature will be given in the lecture.
4.22 Module: Astroparticle Physics II - Gamma Rays and Neutrinos (Minor) [M-PHYS-105684]

Responsibility: Prof. Dr. Guido Drexlin
Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111344</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos (Minor)</td>
</tr>
<tr>
<td>Credits</td>
<td>6</td>
</tr>
<tr>
<td>Level</td>
<td>CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none, the lecture is designed complementary to the module Astroparticle Physics I and can be heard independently of it

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105683 - Astroparticle Physics II - Gamma Rays and Neutrinos must not have been started.
2. The module M-PHYS-105685 - Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-105686 - Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises must not have been started.

Competence Goal
After successful participation in this module, the student has an in-depth technical and survey knowledge in the field of high-energy astroparticle physics. He/she understands the most important formation processes of gamma rays and neutrinos, is able to interpret observed energy spectra of astrophysical objects and has basic knowledge of the astrophysics of galactic and extragalactic sources of high-energy particles.

Content
The fundamentals of astroparticle physics involving high-energy particles will be discussed, with emphasis on the application of gamma and neutrino astronomy to the study of astrophysical objects. Starting with the acceleration of charged particles, the first third of the lecture series introduces the main formation processes of gamma radiation, discusses the propagation of high-energy gamma radiation, and presents methods for detecting gamma radiation on Earth and in space. The second third of the lecture series discusses astrophysical objects and their image in gamma rays: supernova explosions and remnants, neutron stars and pulsars, black holes and Active Galactic Nuclei, and gamma-ray bursts. The course is rounded out by an introduction to the fundamentals and current issues in astronomy involving high-energy neutrinos.

Together with the course "Astroparticle Physics II: Cosmic Rays", which is offered in the WS, a complete picture of high-energy particles with their underlying production and transport processes in our universe is obtained. The subject spectra of both lectures are complementary in nature and can be heard independently, but complement each other appropriately. The lecture ATP II “Gamma Rays and Neutrinos” is complementary to further in-depth lectures (Astroparticle Physics II “Cosmic Rays” or “Particles and Stars”).

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture and preparation of the exercises (135 hours).

Recommendation
Basic knowledge of the physics of particles and nuclei and of experimental methods in this area is assumed.
Literature

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (Cambridge)
- M.S. Longair: High Energy Astrophysics (Cambridge)
- H. Bradt: Astrophysics Processes (Cambridge)

Further literature will be given in the lecture.
4.23 Module: Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises [M-PHYS-105686]

Responsible: Prof. Dr. Guido Drexlin
Organisation: KIT Department of Physics
Part of: Major in Physics: Experimental Astroparticle Physics (Further Required Experimental Astroparticle Physics)
Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111346</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises</td>
<td>8 CR</td>
<td>Drexlin, Engel</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none, the lecture is designed complementary to the module Astroparticle Physics I and can be heard independently of it

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105683 - Astroparticle Physics II - Gamma Rays and Neutrinos must not have been started.
2. The module M-PHYS-105684 - Astroparticle Physics II - Gamma Rays and Neutrinos (Minor) must not have been started.
3. The module M-PHYS-105685 - Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor) must not have been started.

Competence Goal

After successful participation in this module, the student has an in-depth technical and survey knowledge in the field of high-energy astroparticle physics. He/she understands the most important formation processes of gamma rays and neutrinos, is able to interpret observed energy spectra of astrophysical objects and has basic knowledge of the astrophysics of galactic and extragalactic sources of high-energy particles.

Content

The fundamentals of astroparticle physics involving high-energy particles will be discussed, with emphasis on the application of gamma and neutrino astronomy to the study of astrophysical objects. Starting with the acceleration of charged particles, the first third of the lecture series introduces the main formation processes of gamma radiation, discusses the propagation of high-energy gamma radiation, and presents methods for detecting gamma radiation on Earth and in space. The second third of the lecture series discusses astrophysical objects and their image in gamma rays: supernova explosions and remnants, neutron stars and pulsars, black holes and Active Galactic Nuclei, and gamma-ray bursts. The course is rounded out with an introduction to the fundamentals and current issues in astronomy involving high-energy neutrinos.

Together with the course "Astroparticle Physics II: Cosmic Rays", which is offered in the WS, a complete picture of high-energy particles with their underlying production and transport processes in our universe is obtained. The subject spectra of both lectures are complementary in nature and can be heard independently, but complement each other appropriately. The lecture ATP II " Gamma Rays and Neutrinos" is complementary to further in-depth lectures (Astroparticle Physics II " Cosmic Rays" or "Particles and Stars").

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation

Basic knowledge of the physics of particles and nuclei and of experimental methods in this area is assumed.
Literature

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (Cambridge)
- M.S. Longair: High Energy Astrophysics (Cambridge)
- H. Bradt: Astrophysics Processes (Cambridge)

Further literature will be given in the lecture.
4.24 Module: Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor) [M-PHYS-105685]

Responsible: Prof. Dr. Guido Drexlin
Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>8</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Recurrence</th>
<th>Each summer term</th>
<th>Duration</th>
<th>1 term</th>
<th>Language</th>
<th>English</th>
<th>Level</th>
<th>4</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Description</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111345</td>
<td>Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor)</td>
<td>8 CR</td>
<td>Drexlin, Engel</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none, the lecture is designed complementary to the module Astroparticle Physics I and can be heard independently of it

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105683 - Astroparticle Physics II - Gamma Rays and Neutrinos must not have been started.
2. The module M-PHYS-105684 - Astroparticle Physics II - Gamma Rays and Neutrinos (Minor) must not have been started.
3. The module M-PHYS-105686 - Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises must not have been started.

Competence Goal
After successful participation in this module, the student has an in-depth technical and survey knowledge in the field of high-energy astroparticle physics. He/she understands the most important formation processes of gamma rays and neutrinos, is able to interpret observed energy spectra of astrophysical objects and has basic knowledge of the astrophysics of galactic and extragalactic sources of high-energy particles.

Content
The fundamentals of astroparticle physics involving high-energy particles will be discussed, with emphasis on the application of gamma and neutrino astronomy to the study of astrophysical objects. Starting with the acceleration of charged particles, the first third of the lecture series introduces the main formation processes of gamma radiation, discusses the propagation of high-energy gamma radiation, and presents methods for detecting gamma radiation on Earth and in space. The second third of the lecture series discusses astrophysical objects and their image in gamma rays: supernova explosions and remnants, neutron stars and pulsars, black holes and Active Galactic Nuclei, and gamma-ray bursts. The course is rounded out by an introduction to the fundamentals and current issues in astronomy involving high-energy neutrinos.

Together with the course "Astroparticle Physics II: Cosmic Rays", which is offered in the WS, a complete picture of high-energy particles with their underlying production and transport processes in our universe is obtained. The subject spectra of both lectures are complementary in nature and can be heard independently, but complement each other appropriately. The lecture ATP II "Gamma Rays and Neutrinos" is complementary to further in-depth lectures (Astroparticle Physics II "Cosmic Rays" or "Particles and Stars").

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Recommendation
Basic knowledge of the physics of particles and nuclei and of experimental methods in this area is assumed.
Literature

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (Cambridge)
- M.S. Longair: High Energy Astrophysics (Cambridge)
- H. Bradt: Astrophysics Processes (Cambridge)

Further literature will be given in the lecture.
4.25 Module: Astroparticle Physics II - Particles and Stars, with ext. Exercises [M-PHYS-102527]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Astroparticle Physics (Further Required Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>T-PHYS-105110</td>
<td>Astroparticle Physics II - Particles and Stars, with ext. Exercises</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

If Experimental Astroparticle Physics is chosen as the main subject, the lecture Astroparticle Physics I or Cosmology must also be taken. The lecture ATP II - Particles and Stars is complementary to other in-depth lectures (Astroparticle Physics II - Cosmic Rays, Gamma Rays).

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102086 - Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102081 - Astroparticle Physics II - Particles and Stars, without ext. Exercises must not have been started.
3. The module M-PHYS-103186 - Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor) must not have been started.

Competence Goal

Students expand their knowledge of astroparticle physics to include the areas of stellar astrophysics, neutrino physics, and multimessenger astronomy. They are able to name current and past problems and understand approaches to solving them, and are familiar with current methods and technologies in research. Cross connections to other areas of physics, especially elementary particle physics are recognized.

Students are able to understand and construct simple models to analyze problems and concepts quantitatively. They are also able to independently familiarize themselves with current research results and to present and discuss their findings and calculations.

Furthermore, the students deepen their knowledge of an experiment in astroparticle physics through a practical exercise and are able to evaluate and interpret measurement data.

Content

Building on the introductory lectures Astroparticle Physics I and Cosmology, the lecture gives an in-depth insight into two key areas of modern experimental astroparticle physics.

In the first area, a comprehensive look at the fundamentals of experimental neutrino physics is provided. The focus is on the field of neutrino properties. Topics covered include an introduction to the phenomenon of neutrino oscillations including recent results on solar & atmospheric neutrinos, as well as reactor and accelerator neutrino experiments. In addition, emphasis will be placed on experiments for direct neutrino mass determination and the search for neutrinoless double beta decay.

In the second part of the lecture, an introduction is given to the field of stellar astrophysics with a special emphasis on late stellar phases. These are characterized by degenerate matter (white dwarfs and neutron stars) and form the precursors of supernova explosions (thermonuclear and core collapse SNe). Finally, methods of ATP to detect these processes with neutrino detectors and gravitational wave observatories will be discussed.

The lecture emphasizes an in-depth presentation of fundamental physical processes and experimental methods in astroparticle physics.
Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation
Basic knowledge of the physics of particles and nuclei and of fundamental experimental methods in this area is assumed.

Literature
- Donald Perkins, Particle Astrophysics (Oxford University Press)
- Kai Zuber, Neutrino physics (Routledge Chapman & Hall), 2nd Edition
- H.V. Klapdor-Kleingrothaus & Kai Zuber, Teilchenastrophysik (Teubner)

Further literature will be announced in the lecture.
Module: Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor) [M-PHYS-103186]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>TP-HY106319</td>
<td>Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor)</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Die Studienleistung wird durch erfolgreiche Teilnahme am Übungsbetrieb erbracht. Die Details werden in der ersten Vorlesung oder beim ersten Übungstermin bekannt gegeben.

Prerequisites
If Experimental Astroparticle Physics is chosen as the main subject, the lecture Astroparticle Physics I or Cosmology must also be taken. The lecture ATP II - Particles and Stars is complementary to other in-depth lectures (Astroparticle Physics II - Cosmic Rays, Gamma Rays).

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102086 - Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102081 - Astroparticle Physics II - Particles and Stars, without ext. Exercises must not have been started.
3. The module M-PHYS-102527 - Astroparticle Physics II - Particles and Stars, with ext. Exercises must not have been started.

Competence Goal
Students expand their knowledge of astroparticle physics to include the areas of stellar astrophysics, neutrino physics, and multimessenger astronomy. They are able to name current and past problems and understand approaches to solving them, and are familiar with current methods and technologies in research. Cross connections to other areas of physics, especially elementary particle physics are recognized.

Students are able to understand and construct simple models to analyze problems and concepts quantitatively. They are also able to independently familiarize themselves with current research results and to present and discuss their findings and calculations.

Furthermore, the students deepen their knowledge of an experiment in astroparticle physics through a practical exercise and are able to evaluate and interpret measurement data.

Content
Building on the introductory lectures Astroparticle Physics I and Cosmology, the lecture gives an in-depth insight into two key areas of modern experimental astroparticle physics.

In the first area, a comprehensive look at the fundamentals of experimental neutrino physics is provided. The focus is on the field of neutrino properties. Topics covered include an introduction to the phenomenon of neutrino oscillations including recent results on solar & atmospheric neutrinos, as well as reactor and accelerator neutrino experiments. In addition, emphasis will be placed on experiments for direct neutrino mass determination and the search for neutrinoless double beta decay.

In the second part of the lecture, an introduction is given to the field of stellar astrophysics with a special emphasis on late stellar phases. These are characterized by degenerate matter (white dwarfs and neutron stars) and form the precursors of supernova explosions (thermonuclear and core collapse SNe). Finally, methods of ATP to detect these processes with neutrino detectors and gravitational wave observatories will be discussed.

The lecture emphasizes an in-depth presentation of fundamental physical processes and experimental methods in astroparticle physics.

Workload
240 hours consisting of attendance time (45 hours), wrap-up of the lecture and preparation of the exercises (195 hours).
Recommendation
Basic knowledge of the physics of particles and nuclei and of fundamental experimental methods in this area is assumed.

Literature
- Donald Perkins, Particle Astrophysics (Oxford University Press)
- Kai Zuber, Neutrino physics (Routledge Chapman & Hall), 2nd Edition
- H.V. Klapdor-Kleingrothaus & Kai Zuber, Teilchenastrophysik (Teubner)

Further literature will be announced in the lecture.
4.27 Module: Astroparticle Physics II - Particles and Stars, without ext. Exercises [M-PHYS-102081]

Responsible: Prof. Dr. Guido Drexlin

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Astroparticle Physics (Further Required Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102498 | Astroparticle Physics II - Particles and Stars, without ext. Exercises | 6 CR | Drexlin, Valerius |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

If Experimental Astroparticle Physics is chosen as the main subject, the lecture Astroparticle Physics I or Cosmology must also be taken. The lecture ATP II - Particles and Stars is complementary to other in-depth lectures (Astroparticle Physics II - Cosmic Rays, Gamma Rays).

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102086 - Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102527 - Astroparticle Physics II - Particles and Stars, with ext. Exercises must not have been started.
3. The module M-PHYS-103186 - Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor) must not have been started.

Competence Goal

Students expand their knowledge of astroparticle physics to include the areas of stellar astrophysics, neutrino physics, and multimessenger astronomy. They are able to name current and past problems and understand approaches to solving them, and are familiar with current methods and technologies in research. Cross connections to other areas of physics, especially elementary particle physics are recognized.

Students are able to understand and construct simple models to analyze problems and concepts quantitatively. In addition, they are able to independently familiarize themselves with current research results and to present and discuss their findings and calculations.

Content

Building on the introductory lectures Astroparticle Physics I and Cosmology, the lecture gives an in-depth insight into two key areas of modern experimental astroparticle physics.

In the first area, a comprehensive look at the fundamentals of experimental neutrino physics is provided. The focus is on the field of neutrino properties. Topics covered include an introduction to the phenomenon of neutrino oscillations including recent results on solar & atmospheric neutrinos, as well as reactor and accelerator neutrino experiments. In addition, emphasis will be placed on experiments for direct neutrino mass determination and the search for neutrinoless double beta decay.

In the second part of the lecture, an introduction is given to the field of stellar astrophysics with a special emphasis on late stellar phases. These are characterized by degenerate matter (white dwarfs and neutron stars) and form the precursors of supernova explosions (thermonuclear and core collapse SNae). Finally, methods of ATP to detect these processes with neutrino detectors and gravitational wave observatories will be discussed.

The lecture emphasizes an in-depth presentation of fundamental physical processes and experimental methods in astroparticle physics.

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).
Recommendation
Basic knowledge of the physics of particles and nuclei and of fundamental experimental methods in this area is assumed.

Literature
- Donald Perkins, Particle Astrophysics (Oxford University Press)
- Kai Zuber, Neutrino physics (Routledge Chapman & Hall), 2nd Edition
- H.V. Klapdor-Kleinegrothaus & Kai Zuber, Teilchenastrophysik (Teubner)

Further literature will be announced in the lecture.
M 4.28 Module: Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor) [M-PHYS-102086]

Responsible: Prof. Dr. Guido Drexlin
Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104383</td>
<td>Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor)</td>
<td>6 CR</td>
<td>Drexlin, Valerius</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
If Experimental Astroparticle Physics is chosen as the main subject, the lecture Astroparticle Physics I or Cosmology must also be taken. The lecture ATP II - Particles and Stars is complementary to other in-depth lectures (Astroparticle Physics II - Cosmic Rays, Gamma Rays).

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102081 - Astroparticle Physics II - Particles and Stars, without ext. Exercises must not have been started.
2. The module M-PHYS-102527 - Astroparticle Physics II - Particles and Stars, with ext. Exercises must not have been started.
3. The module M-PHYS-103186 - Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor) must not have been started.

Competence Goal
Students expand their knowledge of astroparticle physics to include the areas of stellar astrophysics, neutrino physics, and multimessenger astronomy. They are able to name current and past problems and understand approaches to solving them, and are familiar with current methods and technologies in research. Cross connections to other areas of physics, especially elementary particle physics are recognized.

Students are able to understand and construct simple models to analyze problems and concepts quantitatively. In addition, they are able to independently familiarize themselves with current research results and to present and discuss their findings and calculations.

Content
Building on the introductory lectures Astroparticle Physics I and Cosmology, the lecture gives an in-depth insight into two key areas of modern experimental astroparticle physics.

In the first area, a comprehensive look at the fundamentals of experimental neutrino physics is provided. The focus is on the field of neutrino properties. Topics covered include an introduction to the phenomenon of neutrino oscillations including recent results on solar & atmospheric neutrinos, as well as reactor and accelerator neutrino experiments. In addition, emphasis will be placed on experiments for direct neutrino mass determination and the search for neutrinoless double beta decay.

In the second part of the lecture, an introduction is given to the field of stellar astrophysics with a special emphasis on late stellar phases. These are characterized by degenerate matter (white dwarfs and neutron stars) and form the precursors of supernova explosions (thermonuclear and core collapse SNe). Finally, methods of ATP to detect these processes with neutrino detectors and gravitational wave observatories will be discussed.

The lecture emphasizes an in-depth presentation of fundamental physical processes and experimental methods in astroparticle physics.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture and preparation of the exercises (135 hours).

Recommendation
Basic knowledge of the physics of particles and nuclei and of fundamental experimental methods in this area is assumed.
Literature

- Donald Perkins, Particle Astrophysics (Oxford University Press)
- Kai Zuber, Neutrino physics (Routledge Chapman & Hall), 2nd Edition
- H.V. Klapdor-Kleingrothaus & Kai Zuber, Teilchenastrophysik (Teubner)

Further literature will be announced in the lecture.
4.29 Module: Basics of Nanotechnology I [M-PHYS-102097]

Responsible: apl. Prof. Dr. Gernot Goll
Organisation: KIT Department of Physics
Part of:
- Major in Physics: Nanophysics (mandatory)
- Second Major in Physics: Nanophysics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102529 | Basics of Nanotechnology I | 4 CR | Goll |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102096 - Basics of Nanotechnology I (Minor) must not have been started.

Competence Goal

Students deepen their knowledge in one area of nano-physics, master the relevant theoretical concepts and are familiar with basic techniques and measurement methods of nano-analytics and lithography.

Content

Introduction to central areas of nanotechnology;

Teaching of the conceptual, theoretical and, in particular, methodological fundamentals:

- Methods of imaging and characterization (nanoanalytics)
 Basic concepts of electron microscopy and associated analytical capabilities are covered in an introductory manner. Scanning probe techniques such as tunneling and force microscopy for the investigation and imaging of conductive and insulating sample surfaces, respectively, are discussed. Complementary spectroscopic capabilities of the scanning probe techniques will be explained.
- Methods of nanostructure fabrication (lithography and self-assembly)
 Along the individual process steps from coating and exposure to structure transfer by etching and vapor deposition, the methods used will be explained, their application limits discussed and current developments highlighted.

The lecture "Nanotechnology II" covers application areas and current research topics in the summer semester.

Workload

120 hours consisting of attendance time (30 hours), wrap-up of lecture incl. exam preparation. (90 hours)

Recommendation

Basic knowledge of solid state physics and quantum mechanics is expected.

Literature

For follow-up and consolidation of the lecture material, reference is made to various textbooks as well as original and review articles. A detailed list will be given in the lecture.
4.30 Module: Basics of Nanotechnology I (Minor) [M-PHYS-102096]

Responsible: apl. Prof. Dr. Gernot Goll
Organisation: KIT Department of Physics
Part of: Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Basics of Nanotechnology I (Minor)</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through participation in the lecture and an oral review of success, e.g. in terms of a colloquium or a short presentation covering the topics of the lecture. Details will be announced in the first lecture.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102097 - Basics of Nanotechnology I must not have been started.

Competence Goal
Students deepen their knowledge in one area of nano-physics, master the relevant theoretical concepts and are familiar with basic techniques and measurement methods of nano-analytics and lithography.

Content
Introduction to central areas of nanotechnology;
Teaching of the conceptual, theoretical and, in particular, methodological fundamentals:

- Methods of imaging and characterization (nanoanalytics)
 Basic concepts of electron microscopy and associated analytical capabilities are covered in an introductory manner. Scanning probe techniques such as tunneling and force microscopy for the investigation and imaging of conductive and insulating sample surfaces, respectively, are discussed. Complementary spectroscopic capabilities of the scanning probe techniques will be explained.
- Methods of nanostructure fabrication (lithography and self-assembly)
 Along the individual process steps from coating and exposure to structure transfer by etching and vapor deposition, the methods used will be explained, their application limits discussed and current developments highlighted.

The lecture "Nanotechnology II" covers application areas and current research topics in the summer semester.

Workload
120 hours consisting of attendance time (30 hours), wrap-up of lecture incl. exam preparation (90 hours)

Recommendation
Basic knowledge of solid state physics and quantum mechanics is expected.

Literature
For follow-up and consolidation of the lecture material, reference is made to various textbooks as well as original and review articles. A detailed list will be given in the lecture.
4.31 Module: Basics of Nanotechnology II [M-PHYS-102100]

Responsible: apl. Prof. Dr. Gernot Goll

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (mandatory)
- Second Major in Physics: Nanophysics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102531 | Basics of Nanotechnology II | 4 CR | Goll |

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102099 - Basics of Nanotechnology II (Minor) must not have been started.

Competence Goal
The student deepens his knowledge in the field of nanophysics, masters the relevant theoretical concepts and is familiar with the basic application areas of nanophysics. The student is able to interpret current data and figures from the scientific literature and to present the current state of research as well as important “open questions”.

Content
Introduction to central areas of nanotechnology

Teaching of the conceptual, theoretical and especially methodological basics;

Applications and current developments in the fields of nanoelectronics, nanooptics, nanomechanics, nanotribology, biological nanostructures, self-organized nanostructures, among others.

In addition, the lecture "Fundamentals of Nanotechnology I" in the winter semester deals with methods of imaging, characterization and fabrication of nanostructures.

Workload
120 hours consisting of attendance time (30 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (90 hours)

Recommendation
Basic knowledge of solid state physics and quantum mechanics is expected.

Literature
For follow-up and consolidation of the lecture material, reference is made to various textbooks as well as original and review articles. A detailed list will be given in the lecture.
Module: Basics of Nanotechnology II (Minor) [M-PHYS-102099]

Responsible: apl. Prof. Dr. Gernot Goll
Organisation: KIT Department of Physics
Part of: Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-PHYS-102530 Basics of Nanotechnology II (Minor) 4 CR Goll

Competence Certificate
The course credit is achieved through participation in the lecture and an oral review of success, e.g. in terms of a colloquium or a short presentation covering the topics of the lecture. Details will be announced in the first lecture.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:
1. The module M-PHYS-102100 - Basics of Nanotechnology II must not have been started.

Competence Goal
The student deepens his knowledge in the field of nanophysics, masters the relevant theoretical concepts and is familiar with the basic application areas of nanophysics. The student is able to interpret current data and figures from the scientific literature and to present the current state of research as well as important "open questions".

Content
Introduction to central areas of nanotechnology
Teaching of the conceptual, theoretical and especially methodological basics;
Applications and current developments in the fields of nanoelectronics, nanooptics, nanomechanics, nanotribology, biological nanostructures, self-organized nanostructures, among others.
In addition, the lecture "Fundamentals of Nanotechnology I" in the winter semester deals with methods of imaging, characterization and fabrication of nanostructures.

Workload
120 hours consisting of attendance time (30 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (90 hours)

Recommendation
Basic knowledge of solid state physics and quantum mechanics is expected.

Literature
For follow-up and consolidation of the lecture material, reference is made to various textbooks as well as original and review articles. A detailed list will be given in the lecture.
4.33 Module: Block Practical Course: ETP Data Science [M-PHYS-106530]

Responsible: Prof. Dr. Torben Ferber
Dr. rer. nat. Jan Kieseler
Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Minor in Physics: Experimental Particle Physics
- Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-113159</td>
<td>Block Practical Course: ETP Data Science</td>
<td>2 CR</td>
<td>Ferber, Kieseler, Klute</td>
</tr>
</tbody>
</table>

Competence Certificate
The regular attendance of the entire block course is required. The successful completion will be evaluated by a short oral test on the preparatory work and a final presentation in the week after the course.

Prerequisites
None (preparatory material and exercises will be sent around in advance of the course)

Competence Goal
The students are familiar with the basic concepts of calorimetry, the simulation of particle showers, and the use of machine learning for the determination of the incident particle energy. This includes the interaction of high energetic particles with matter, the evolution of electromagnetic and hadronic showers through the material, and the detection of signals for determining the original particle energy. The students know different neural network architectures in addition to classical methods for energy reconstruction based on these signals.

The theoretical course content, tutorials and practical training are combined and designed to enable students to develop an intuitive understanding of the advantages and disadvantages of different calorimeter types for high energy physics experiments. Furthermore, they can simulate the response of those calorimeters with state-of-the art simulation software, explore different geometries, and are able to understand, choose, and train suitable neural network architectures for energy reconstruction hands-on.

Content

- Introduction to high-energy physics calorimetry
- Hands-on simulation of calorimeter designs with the Geant4 simulation software
- Hands-on implementation of neural network building blocks
- Application of advanced neural networks to particle energy reconstruction in calorimeters

Annotation
This module cannot be combined with an advanced seminar or any other non-graded module in the major in physics or second major in physics.

Workload
60 hours consisting of preparatory work (15 hours) in advance to the course start, an attendance time (30 hours) during the one-week block course with lectures, tutorials and a practical training, and a preparation of a final presentation (15 hours) after the block course.

Recommendation
Basic knowledge of python and neural networks is helpful

Learning type
One-week block course with lectures, tutorials and a practical training
Literature
A list will be sent around in advance of the course.
4.34 Module: Classical Theory of Gauge Fields [M-PHYS-105934]

Responsible: Prof. Dr. Ulrich Nierste
Dr. Robert Ziegler

Organisation: KIT Department of Physics

Part of:
Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111943 | Classical Theory of Gauge Fields | | 4 CR | Nierste, Ziegler |

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Competence Goal
The participants have a deeper understanding of field theoretical concepts such as gauge invariance, Noether theorem, Goldstone theorem, Higgs mechanism and topological solitons. Students are familiar with the representation theory of non-Abelian Lie groups and the construction of gauge invariant Lagrangians.

Content
This module teaches the classical aspects of gauge field theories as an introduction or complement to quantum field theory. As an introduction and motivation, the gauge principle in electrodynamics is treated before the foundations of classical field theory are discussed. After an introduction to the representation theory of Lie groups, non-Abelian gauge field theories are discussed, in particular the construction of gauge-invariant Lagrangian densities. Furthermore, spontaneous breaking of global and gauge symmetries in the context of the Higgs mechanism is considered. Finally, non-linear aspects of the field equations are discussed using topological solitons and monopoles as examples, and the underlying elements of homotopy theory are presented.

Workload
120 hours consisting of attendance time (30 hours), wrap-up of the lecture and preparation of the exam (90 hours).

Literature
Will be stated on the lecture website and in the lecture itself.
Module: Computational Condensed Matter Physics [M-PHY-104862]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics
Part of: Major in Physics: Nanophysics (Elective Nanophysics)
 Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
 Second Major in Physics: Nanophysics (Elective Nanophysics)
 Second Major in Physics: Condensed Matter Theory

Credits 12
Grading scale Grade to a tenth
Recurrence Irregular
Duration 1 term
Language German
Level 4
Version 1

Mandatory
T-PHY-109895 Computational Condensed Matter Physics 12 CR Wenzel

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104863 - Computational Condensed Matter Physics (Minor) must not have been started.

Competence Goal
In recent decades, simulation has established itself as a third pillar of research alongside analytical theory and experiment. It often bridges the gap from principled insights to applications to specific systems. Students develop and gain knowledge of materials-specific simulation for condensed matter systems, from ordered solids to soft matter. Students become familiar with available simulation techniques and apply them to specific problems in condensed matter. They acquire key skills in the use of open-source software to solve simulation problems in condensed matter, in autonomy, in synthesizing the results of different methods for a holistic description in the simulation of material properties.

Content

- Quantum mechanics of many-particle systems
- Methods of quantum chemistry (LCAO, Hartree Fock, density functional theory, electron correlations)
- Applications to molecules and solids
- Simulation methods for classical many-particle systems (Monte Carlo, molecular dynamics)
- Applications to structure formation in polymers, glasses, and solids.
- Introduction to multiscale simulations (QM/MM, multilevel methods) and artificial intelligence techniques.
- Modeling of electronic transport

Workload
360 hours consisting of attendance time (60 hours lecture, 30 hours exercises), follow-up of the lecture incl. exam preparation and working on the exercises (270 hours)

Literature

- Mark Newman: Computational Physics
- Szabo: Modern Quantum Chemistry
- Kurt Binder: Monte Carlo Simulation in Statistical Physics
- Leach: Molecular Modeling
4.36 Module: Computational Condensed Matter Physics (Minor) [M-PHYS-104863]

Responsible: Prof. Dr. Wolfgang Wenzel

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Nanophysics
- Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-109894 | Computational Condensed Matter Physics (Minor) | 12 CR | Wenzel |

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module **M-PHYS-104862 - Computational Condensed Matter Physics** must not have been started.

Competence Goal

In recent decades, simulation has established itself as a third pillar of research alongside analytical theory and experiment. It often bridges the gap from principled insights to applications to specific systems. Students develop and gain knowledge of materials-specific simulation for condensed matter systems, from ordered solids to soft matter. Students become familiar with available simulation techniques and apply them to specific problems in condensed matter. They acquire key skills in the use of open-source software to solve simulation problems in condensed matter, in autonomy, in synthesizing the results of different methods for a holistic description in the simulation of material properties.

Content

- Quantum mechanics of many-particle systems
- Methods of quantum chemistry (LCAO, Hartree Fock, density functional theory, electron correlations)
- Applications to molecules and solids
- Simulation methods for classical many-particle systems (Monte Carlo, molecular dynamics)
- Applications to structure formation in polymers, glasses, and solids.
- Introduction to multiscale simulations (QM/MM, multilevel methods) and artificial intelligence techniques.
- Modeling of electronic transport

Workload

360 hours consisting of attendance time (60 hours lecture, 30 hours exercises), wrap-up of the lecture and work on the exercises (270 hours)

Recommendation

Knowledge of quantum mechanics and solid state theory.

Literature

- Mark Newman: Computational Physics
- Szabo: Modern Quantum Chemistry
- Kurt Binder: Monte Carlo Simulation in Statistical Physics
- Leach: Molecular Modeling
4.37 Module: Computational Methods for Particle Physics and Cosmology [M-PHYS-106117]

Responsible:	TT-Prof. Dr. Felix Kahlhöfer
Organisation:	KIT Department of Physics
Part of:	Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
	Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
	Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
	Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
	Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
	Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-112378 | Computational Methods for Particle Physics and Cosmology | 6 CR | Kahlhöfer |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Competence Goal

Students know how to confront theoretical models with experimental data in order to identify preferred models and promising measurements. Students can use tools like FeynRules and MadGraph to calculate cross sections and generate events for processes beyond the Standard Model of particle physics. Students know how to infer model parameters from data using Markov chain Monte Carlos and perform a Bayesian model comparison. Students have some experience with machine learning and understand the range of possible applications of deep neural networks in particle physics and cosmology.

Content

The aim of this module is to explore modern methods for connecting theoretical models in particle physics and cosmology with data from experiments and observations. After a general introduction into the fundamental concepts of Frequentist and Bayesian statistics, such as likelihoods and posteriors, the module will focus on four main challenges:

- How to obtain testable predictions from a given physical theory.
- How to infer the preferred parameter regions of a model from data.
- How to identify preferred models and design experiments to test them.
- How to handle large and complex data sets.

In particular, we will discuss Monte Carlo methods and machine learning techniques and apply them to practical examples.

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation

Experience in programming with Python and Mathematica is desirable. Basic knowledge of theoretical particle physics and cosmology is helpful but not required.

Literature

- D. S. Sivia, “Data Analysis. A Bayesian Tutorial”
4.38 Module: Computational Methods for Particle Physics and Cosmology (Minor) [M-PHYS-106118]

Responsible: TT-Prof. Dr. Felix Kahlhöfer

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Experimental Astroparticle Physics
- Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>CR</th>
<th>Level</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112379</td>
<td>Computational Methods for Particle Physics and Cosmology (Minor)</td>
<td>6</td>
<td>4</td>
<td>Kahlhöfer</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Competence Goal
Students know how to confront theoretical models with experimental data in order to identify preferred models and promising measurements. Students can use tools like FeynRules and MadGraph to calculate cross sections and generate events for processes beyond the Standard Model of particle physics. Students know how to infer model parameters from data using Markov chain Monte Carlos and perform a Bayesian model comparison. Students have some experience with machine learning and understand the range of possible applications of deep neural networks in particle physics and cosmology.

Content
The aim of this module is to explore modern methods for connecting theoretical models in particle physics and cosmology with data from experiments and observations. After a general introduction into the fundamental concepts of Frequentist and Bayesian statistics, such as likelihoods and posteriors, the module will focus on four main challenges:

- How to obtain testable predictions from a given physical theory.
- How to infer the preferred parameter regions of a model from data.
- How to identify preferred models and design experiments to test them.
- How to handle large and complex data sets.

In particular, we will discuss Monte Carlo methods and machine learning techniques and apply them to practical examples.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. preparation of the exercises (135 hours).

Recommendation
Experience in programming with Python and Mathematica is desireable. Basic knowledge of theoretical particle physics and cosmology is helpful but not required.

Literature

- D. S. Sivia, “Data Analysis. A Bayesian Tutorial”
- G. Bohm, G. Zech, “Introduction to Statistics and Data Analysis for Physicists”, https://www-library.desy.de/preparch/books/vstatmp_engl.pdf
Module: Computational Photonics, with ext. Exercises [M-PHYS-101933]

Module: Computational Photonics, with ext. Exercises [M-PHYS-101933]

Responsible: Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103633</td>
<td>Computational Photonics, with ext. Exercises</td>
<td>8 CR</td>
<td>Rockstuhl</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-103090 - Computational Photonics, with ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-103089 - Computational Photonics, without ext. Exercises must not have been started.
3. The module M-PHYS-103193 - Computational Photonics, without ext. Exercises (Minor) must not have been started.

Competence Goal

The students can use a computer to solve optical problems and can use a computer to visualize details of the light matter interaction, know different strategies to solve Maxwell’s equations on rigorous grounds, know how spatial symmetries and the arrangement of matter in space can be used to formulate Maxwell’s equations such that they are amenable for a numerical solution, can implement programs with a reasonable complexity by themselves, can use a computer to discuss and explore optical phenomena, and are familiar with basic computational strategies that emerge in photonics, but comparably in any other scientific discipline as well.

The student can independently work out the numerical implementation of algorithms that were not explicitly presented in the lecture. That requires understanding of basic computational strategies. The student is, therefore, able to transfer technical knowledge to new domains. The student can develop on its own novel algorithms to solve given problems in the field of computational photonics.

Content

- Transfer Matrix Method to describe the optical response from stratified media
- Finite Differences to characterize eigenmode in fiber waveguides
- Beam propagation method to describe the evolution of light in the realm of integrated optics
- Grating methods to predict reflection and transmission from periodically arranged material in 1D and 2D
- Mie Theory to describe the scattering of light from individual cylindrical or spherical objects
- Finite-Difference Time-Domain method as a general purpose tool to solve micro- and nanooptical problems
- Multiple Multipole Method as an approach to describe light scattering from single objects with an arbitrary shape
- Greens’ Methods to discuss equally the scattering from single objects but embedded in an inhomogeneous background
- Boundary Integral Method to discuss scattering from objects highly efficient using expressions for the fields on the surface

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation

Interest in theoretical physics, optics and electrodynamics. Moreover, interest in computational aspects is important.
Literature

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Principles of Optics" M. Born and E. Wolf
- "Light Scattering by Small Particles" H. C. van de Hulst

Specific references for the individual topics will be given during the lectures.
The lecture material that will be fully made available online.
4.40 Module: Computational Photonics, with ext. Exercises (Minor) [M-PHYS-103090]

Responsible: Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Nanophysics
- Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-106132 | Computational Photonics, with ext. Exercises (Minor) | 8 CR | Rockstuhl |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-103089 - Computational Photonics, without ext. Exercises must not have been started.
2. The module M-PHYS-101933 - Computational Photonics, with ext. Exercises must not have been started.
3. The module M-PHYS-103193 - Computational Photonics, without ext. Exercises (Minor) must not have been started.

Competence Goal
The students can use a computer to solve optical problems and can use a computer to visualize details of the light matter interaction, know different strategies to solve Maxwell's equations on rigorous grounds, know how spatial symmetries and the arrangement of matter in space can be used to formulate Maxwell's equations such that they are amenable for a numerical solution, can implement programs with a reasonable complexity by themselves, can use a computer to discuss and explore optical phenomena, and are familiar with basic computational strategies that emerge in photonics, but comparable in any other scientific discipline as well.

The student can independently work out the numerical implementation of algorithms that were not explicitly presented in the lecture. That requires understanding of basic computational strategies. The student is, therefore, able to transfer technical knowledge to new domains. The student can develop on its own novel algorithms to solve given problems in the field of computational photonics.

Content

- Transfer Matrix Method to describe the optical response from stratified media
- Finite Differences to characterize eigenmode in fiber waveguides
- Beam propagation method to describe the evolution of light in the realm of integrated optics
- Grating methods to predict reflection and transmission from periodically arranged material in 1D and 2D
- Mie Theory to describe the scattering of light from individual cylindrical or spherical objects
- Finite-Difference Time-Domain method as a general purpose tool to solve micro- and nanooptical problems
- Multiple Multipole Method as an approach to describe light scattering from single objects with an arbitrary shape
- Greens’ Methods to discuss equally the scattering from single objects but embedded in an inhomogeneous background
- Boundary Integral Method to discuss scattering from objects highly efficient using expressions for the fields on the surface

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and work on the exercises (180 hours).

Recommendation
Interest in theoretical physics, optics and electrodynamics. Moreover, interest in computational aspects is important.
Literature

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Principles of Optics" M. Born and E. Wolf
- "Light Scattering by Small Particles" H. C. van de Hulst

Specific references for the individual topics will be given during the lectures. The lecture material that will be fully made available online.
4.41 Module: Computational Photonics, without ext. Exercises [M-PHYS-103089]

Responsible: Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Exam</th>
<th>Language</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106131</td>
<td>Computational Photonics, without ext. Exercises</td>
<td>6 CR</td>
<td>Rockstuhl</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-101933 - Computational Photonics, with ext. Exercises must not have been started.
2. The module M-PHYS-103090 - Computational Photonics, with ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-103193 - Computational Photonics, without ext. Exercises (Minor) must not have been started.

Competence Goal

The students can use a computer to solve optical problems and can use a computer to visualize details of the light matter interaction, know different strategies to solve Maxwell's equations on rigorous grounds, know how spatial symmetries and the arrangement of matter in space can be used to formulate Maxwell's equations such that they are amenable for a numerical solution, can implement programs with a reasonable complexity by themselves, can use a computer to discuss and explore optical phenomena, and are familiar with basic computational strategies that emerge in photonics, but comparably in any other scientific discipline as well.

Content

- Transfer Matrix Method to describe the optical response from stratified media
- Finite Differences to characterize eigenmode in fiber waveguides
- Beam propagation method to describe the evolution of light in the realm of integrated optics
- Grating methods to predict reflection and transmission from periodically arranged material in 1D and 2D
- Mie Theory to describe the scattering of light from individual cylindrical or spherical objects
- Finite-Difference Time-Domain method as a general purpose tool to solve micro- and nanooptical problems
- Multiple Multipole Method as an approach to describe light scattering from single objects with an arbitrary shape
- Greens' Methods to discuss equally the scattering from single objects but embedded in an inhomogeneous background
- Boundary Integral Method to discuss scattering from objects highly efficient using expressions for the fields on the surface

Annotation

For students of the KIT Faculty of Computer Science: The exams in this module have to be registered via admissions from ISS (KIT Faculty of Computer Science). For this, an e-mail with matriculation number and name of the desired exam to Beratung-informatik@informatik.kit.edu is sufficient.

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (135 hours).

Recommendation

Interest in theoretical physics, optics and electrodynamics. Moreover, interest in computational aspects is important.
Literature

- “Classical Electrodynamics” John David Jackson
- “Theoretical Optics: An Introduction” Hartmann Römer
- “Principles of Optics” M. Born and E. Wolf
- “Light Scattering by Small Particles” H. C. van de Hulst

Specific references for the individual topics will be given during the lectures. The lecture material that will be fully made available online.
Module: Computational Photonics, without ext. Exercises (Minor) [M-PHYS-103193]

Responsibility: Prof. Dr. Carsten Rockstuhl
Organisation: KIT Department of Physics
Part of: Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106326</td>
<td>Computational Photonics, without ext. Exercises (Minor)</td>
<td>6 CR Rockstuhl</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-101933 - Computational Photonics, with ext. Exercises must not have been started.
2. The module M-PHYS-103090 - Computational Photonics, with ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-103089 - Computational Photonics, without ext. Exercises must not have been started.

Competence Goal
The students can use a computer to solve optical problems and can use a computer to visualize details of the light matter interaction, know different strategies to solve Maxwell's equations on rigorous grounds, know how spatial symmetries and the arrangement of matter in space can be used to formulate Maxwell's equations such that they are amenable for a numerical solution, can implement programs with a reasonable complexity by themselves, can use a computer to discuss and explore optical phenomena, and are familiar with basic computational strategies that emerge in photonics, but comparably in any other scientific discipline as well.

Content
- Transfer Matrix Method to describe the optical response from stratified media
- Finite Differences to characterize eigenmode in fiber waveguides
- Beam propagation method to describe the evolution of light in the realm of integrated optics
- Grating methods to predict reflection and transmission from periodically arranged material in 1D and 2D
- Mie Theory to describe the scattering of light from individual cylindrical or spherical objects
- Finite-Difference Time-Domain method as a general purpose tool to solve micro- and nanooptical problems
- Multiple Multipole Method as an approach to describe light scattering from single objects with an arbitrary shape
- Greens' Methods to discuss equally the scattering from single objects but embedded in an inhomogeneous background
- Boundary Integral Method to discuss scattering from objects highly efficient using expressions for the fields on the surface

Workload
180 hours consisting of attendance time (45 hours), wrap-up of lecture and completion of exercises (135 hours).

Recommendation
Interest in theoretical physics, optics and electrodynamics. Moreover, interest in computational aspects is important.
Literature

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Principles of Optics" M. Born and E. Wolf
- "Light Scattering by Small Particles" H. C. van de Hulst

Specific references for the individual topics will be given during the lectures.
The lecture material that will be fully made available online.
4.43 Module: Condensed Matter Theory I, Fundamentals [M-PHYS-102054]

Responsible:
- Prof. Dr. Markus Garst
- Prof. Dr. Alexander Mirlin
- Prof. Dr. Alexander Shnirman

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Required Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 CR</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-PHYS-102559</th>
<th>Condensed Matter Theory I, Fundamentals</th>
<th>8 CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Garst, Mirlin, Shnirman</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102051 - Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor) must not have been started.
2. The module M-PHYS-102052 - Condensed Matter Theory I, Fundamentals (Minor) must not have been started.
3. The module M-PHYS-102053 - Condensed Matter Theory I, Fundamentals and Advanced Topics must not have been started.

Competence Goal
Gaining understanding of phenomena and concepts in condensed matter theory, mastering basic theoretical tools for their description, and acquiring the ability to analyze and solve theoretically a limited class of problems in the field of condensed matter physics.

Content
Lectures and exercises convey and deepen the basic concepts of condensed matter theory, particular attention is paid to crystalline solids. The main subjects of the lecture are:

- Crystal lattices, electrons in periodic potentials, dynamics of Bloch electrons;
- Electronic transport properties of solids, Boltzmann equation;
- Solids in an external magnetic field: Pauli paramagnetism, Landau diamagnetism, de Haas-van Alphen effect;
- Electron-electron interaction, Stoner theory of ferromagnetism;
- Landau theory of Fermi liquids; Phonons and electron-phonon interaction

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, statistical physics and thermodynamics is required.
Literature

- C. Kittel, Quantum Theory of Solids.
- A. A. Abrikosov, Fundamentals of the Theory of Metals
Module: Condensed Matter Theory I, Fundamentals (Minor) [M-PHYS-102052]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of: Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102557</td>
<td>Condensed Matter Theory I, Fundamentals (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Course work, ungraded.

The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102051 - Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor) must not have been started.
2. The module M-PHYS-102053 - Condensed Matter Theory I, Fundamentals and Advanced Topics must not have been started.
3. The module M-PHYS-102054 - Condensed Matter Theory I, Fundamentals must not have been started.

Competence Goal

Gaining understanding of phenomena and concepts in condensed matter theory, mastering basic theoretical tools for their description, and acquiring the ability to analyze and solve theoretically a limited class of problems in the field of condensed matter physics.

Content

Lectures and exercises convey and deepen the basic concepts of condensed matter theory, particular attention is paid to crystalline solids. The main subjects of the lecture are:

- Crystal lattices, electrons in periodic potentials, dynamics of Bloch electrons;
- Electronic transport properties of solids, Boltzmann equation;
- Solids in an external magnetic field: Pauli paramagnetism, Landau diamagnetism, de Haas-van Alphen effect;
- Electron-electron interaction, Stoner theory of ferromagnetism;
- Landau theory of Fermi liquids; Phonons and electron-phonon interaction

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture and work on the exercises (180 hours).

Recommendation

Basic knowledge of solid state physics, quantum mechanics, statistical physics and thermodynamics is required.

Literature

- C. Kittel, Quantum Theory of Solids.
- A. A. Abrikosov, Fundamentals of the Theory of Metals
Module: Condensed Matter Theory I, Fundamentals and Advanced Topics [M-PHYS-102053]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of:
Major in Physics: Condensed Matter Theory (Required Condensed Matter Theory)
Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102558</td>
<td>Condensed Matter Theory I, Fundamentals and Advanced Topics</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102051 - Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor) must not have been started.
2. The module M-PHYS-102052 - Condensed Matter Theory I, Fundamentals (Minor) must not have been started.
3. The module M-PHYS-102054 - Condensed Matter Theory I, Fundamentals must not have been started.

Competence Goal

Gaining understanding of phenomena and concepts in condensed matter theory, mastering basic theoretical tools for their description, and acquiring the ability to analyze and solve theoretically a broader class of problems in the field of condensed matter physics.

Content

Lectures and exercises convey and deepen the basic concepts of condensed matter theory, particular attention is paid to crystalline solids. The main subjects of the lecture are:

- Crystal lattices, electrons in periodic potentials, dynamics of Bloch electrons;
- Electronic transport properties of solids, Boltzmann equation;
- Solids in the external magnetic field: Pauli paramagnetism, Landau diamagnetism, de Haas–van Alphen effect;
- Electron-electron interaction, Stoner theory of ferromagnetism;
- Landau theory of Fermi liquids; Phonons and electron-phonon interaction;
- Superconductivity: BCS theory, electrodynamics of superconductors, Ginzburg-Landau theory.

Workload

360 hours consisting of attendance time (90 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (270 hours)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, statistical physics and thermodynamics is required.
Literature

- C. Kittel, Quantum Theory of Solids.
- A. A. Abrikosov, Fundamentals of the Theory of Metals
Module: Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor) [M-PHYS-102051]

Responsible:
Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
Prof. Dr. Alexander Shnirman

Organisation:
KIT Department of Physics

Part of:
Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Credits</th>
<th>Module Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102556</td>
<td>12 CR</td>
<td>Garst, Mirlin, Shnirman</td>
<td>Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor)</td>
</tr>
</tbody>
</table>

Competence Certificate
Course work, ungraded.
The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102052 - Condensed Matter Theory I, Fundamentals (Minor) must not have been started.
2. The module M-PHYS-102053 - Condensed Matter Theory I, Fundamentals and Advanced Topics must not have been started.
3. The module M-PHYS-102054 - Condensed Matter Theory I, Fundamentals must not have been started.

Competence Goal
Gaining understanding of phenomena and concepts in condensed matter theory, mastering basic theoretical tools for their description, and acquiring the ability to analyze and solve theoretically a broader class of problems in the field of condensed matter physics.

Content
Lectures and exercises convey and deepen the basic concepts of condensed matter theory, particular attention is paid to crystalline solids. The main subjects of the lecture are:

- Crystal lattices, electrons in periodic potentials, dynamics of Bloch electrons;
- Electronic transport properties of solids, Boltzmann equation;
- Solids in the external magnetic field: Pauli paramagnetism, Landau diamagnetism, de Haas-van Alphen effect;
- Electron-electron interaction, Stoner theory of ferromagnetism;
- Landau theory of Fermi liquids; Phonons and electron-phonon interaction;
- Superconductivity: BCS theory, electrodynamics of superconductors, Ginzburg-Landau theory.

Workload
360 hours consisting of attendance time (90 hours), wrap-up of the lecture and work on the exercises (270 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, statistical physics and thermodynamics is required.

Literature
- C. Kittel, Quantum Theory of Solids.
- A. A. Abrikosov, Fundamentals of the Theory of Metals
Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals [M-PHYS-102313]

Responsibility:
Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
PD Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Condensed Matter Theory II: Many-Body Systems, Fundamentals</td>
<td></td>
<td>Garst, Mirlin, Narozhnyy, Schmalian</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics must not have been started.
2. The module M-PHYS-102312 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor) must not have been started.
3. The module M-PHYS-102314 - Condensed Matter Theory II: Many-Body Theory, Fundamentals (Minor) must not have been started.
4. The module M-PHYS-103331 - Condensed Matter Theory II: Many-Body Theory, selected topics must not have been started.

Competence Goal
Mastering advanced field-theoretical approaches of condensed matter physics. Acquiring an ability to apply these methods for the solution of a limited class of advanced problems in the field of condensed matter physics.

Content
Estimated structure of the lecture:

1. Green's functions for non-interacting particles
2. Many-body Green's functions
3. Feynman diagrams (interacting fermions, Fermi fluids, collective excitations)
4. Green's functions and diagrammatic technique at finite temperatures (Matsubara diagrammatic technique)
5. Functional formulation of many-body theory
6. Superconducting systems
7. Non-equilibrium systems and Keldysh technique
8. Many-body systems in one dimension

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation
In general this lecture should be attended after Theory of Condensed Matter I.
Literature

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
4.48 Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals (Minor) [M-PHYS-102314]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
PD Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104592</td>
<td>Condensed Matter Theory II: Many-Body Systems, Fundamentals (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Course work, ungraded.
The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics must not have been started.
2. The module M-PHYS-102312 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor) must not have been started.
3. The module M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals must not have been started.
4. The module M-PHYS-103331 - Condensed Matter Theory II: Many-Body Theory, selected topics must not have been started.

Competence Goal

Mastering advanced field-theoretical approaches of condensed matter physics. Acquiring an ability to apply these methods for the solution of a limited class of advanced problems in the field of condensed matter physics.

Content

Estimated structure of the lecture:

1. Green's functions for non-interacting particles
2. Many-body Green’s functions
3. Feynman diagrams (interacting fermions, Fermi fluids, collective excitations)
4. Green's functions and diagrammatic technique at finite temperatures (Matsubara diagrammatic technique)
5. Functional formulation of many-body theory
6. Superconducting systems
7. Non-equilibrium systems and Keldysh technique
8. Many-body systems in one dimension

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture and work on the exercises (180 hours).

Recommendation

In general this lecture should be attended after Theory of Condensed Matter I.
Literature

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics [M-PHYS-102308]

Responsible:
- Prof. Dr. Markus Garst
- Prof. Dr. Alexander Mirlin
- PD Dr. Boris Narozhnyy
- Prof. Dr. Jörg Schmalian

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-PHYS-102312 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor)** must not have been started.
2. The module **M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals** must not have been started.
3. The module **M-PHYS-102314 - Condensed Matter Theory II: Many-Body Theory, Fundamentals (Minor)** must not have been started.
4. The module **M-PHYS-103331 - Condensed Matter Theory II: Many-Body Theory, selected topics** must not have been started.

Competence Goal
Mastering advanced field-theoretical approaches of condensed matter physics. Acquiring an ability to apply these methods for the solution of a broader class of advanced problems in the field of condensed matter physics.

Content
Estimated structure of the lecture:

1. Green's functions for non-interacting particles
2. Many-body Green's functions
3. Feynman diagrams (interacting fermions, Fermi fluids, collective excitations)
4. Green's functions and diagrammatic technique at finite temperatures (Matsubara diagrammatic technique)
5. Functional formulation of many-body theory
6. Superconducting systems
7. Non-equilibrium systems and Keldysh technique
8. Many-body systems in one dimension
9. Kondo effect
10. Strongly correlated electrons: Hubbard model and Mott metal-insulator transition
11. Introduction to mesoscopic physics

Workload
360 hours consisting of attendance time (90 hours), follow-up of the lecture incl. exam preparation and working on the exercises (270 hours)
Recommendation

In general this lecture should be attended after Theory of Condensed Matter I.

Literature

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor) [M-PHYS-102312]

Module: Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor) [M-PHYS-102312]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
PD Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Time</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102562</td>
<td>Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics (Minor)</td>
<td>12 CR</td>
<td>Garst, Mirlin, Narozhnyy, Schmalian</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Course work, ungraded.

The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics must not have been started.
2. The module M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals must not have been started.
3. The module M-PHYS-102314 - Condensed Matter Theory II: Many-Body Theory, Fundamentals (Minor) must not have been started.
4. The module M-PHYS-103331 - Condensed Matter Theory II: Many-Body Theory, selected topics must not have been started.

Competence Goal

Mastering advanced field-theoretical approaches of condensed matter physics. Acquiring an ability to apply these methods for the solution of a broader class of advanced problems in the field of condensed matter physics.

Content

Estimated structure of the lecture:

1. Green's functions for non-interacting particles
2. Many-body Green's functions
3. Feynman diagrams (interacting fermions, Fermi fluids, collective excitations)
4. Green's functions and diagrammatic technique at finite temperatures (Matsubara diagrammatic technique)
5. Functional formulation of many-body theory
6. Superconducting systems
7. Non-equilibrium systems and Keldysh technique
8. Many-body systems in one dimension
9. Kondo effect
10. Strongly correlated electrons: Hubbard model and Mott metal-insulator transition
11. Introduction to mesoscopic physics

Workload

360 hours consisting of attendance time (90 hours), wrap-up of the lecture and work on the exercises (270 hours).

Recommendation

In general this lecture should be attended after Theory of Condensed Matter I.
Literature

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
Module: Condensed Matter Theory II: Many-Body Theory, selected topics [M-PHYS-103331]

- **Responsible:** Prof. Dr. Markus Garst
 Prof. Dr. Alexander Mirlin
 PD Dr. Boris Narozhnyy
 Prof. Dr. Jörg Schmalian

- **Organisation:** KIT Department of Physics

- **Part of:** Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-106676 | Condensed Matter Theory II: Many-Body Systems, selected topics | 2 CR | Garst, Mirlin, Narozhnyy, Schmalian |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Exercises are offered to complement the lecture. Prerequisite for the participation in the oral module final examination is the passing of the course work in the exercises. The course work takes place in the form of exercises. To pass, 50% of the exercises must be passed.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics must not have been started.
2. The module M-PHYS-102312 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor) must not have been started.
3. The module M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals must not have been started.
4. The module M-PHYS-102314 - Condensed Matter Theory II: Many-Body Theory, Fundamentals (Minor) must not have been started.

Competence Goal

Acquiring basic knowledge about advanced field-theoretical approaches of condensed matter physics.

Content

Estimated structure of the lecture:

- Green's functions for non-interacting particles
- Many-body Green's functions
- Feynman diagrams

Workload

60 hours consisting of attendance time (15 hours), wrap-up of the lecture incl. exam preparation (45 hours).

Recommendation

In general this lecture should be attended after Theory of Condensed Matter I.
Literature

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
Module: Detectors for Particle and Astroparticle Physics, with ext. Exercises [M-PHYS-102121]

Responsible: PD Dr. Frank Hartmann
Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

Credits 8

Grading scale Grade to a tenth

Recurrence Each winter term

Duration 1 term

Language English

Level 4

Version 1

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

- **T-PHYS-102378** Detectors for Particle and Astroparticle Physics, with ext. Exercises 8 CR Hartmann, Husemann, Klute

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module **M-PHYS-102119** - Detectors for Particle and Astroparticle Physics, without ext. Exercises must not have been started.
2. The module **M-PHYS-102120** - Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor) must not have been started.
3. The module **M-PHYS-102122** - Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor) must not have been started.

Competence Goal

Advanced study in one area of experimental particle and astroparticle physics. Students learn experimental aspects of measuring particle properties. Thus, they learn the basics for a detailed analysis of experimental data, the operation of complex experiments and the work with modern particle detectors. The practical exercises introduce the students to experimental work with detectors in teams. In extended exercises, basic principles of sensors and their design optimization are simulated on the computer.

Content

Interaction of electrons, photons, muons, charged and neutral hadrons with matter; electronic detection of particle radiation and measurement of deposited energy and particle identification; gas-filled detectors, scintillators, photomultipliers, silicon detectors, electromagnetic and hadronic calorimeters, detector systems, triggers and data acquisition, reconstruction of physical objects in detector systems, applications outside basic research.

Workload

240 hours, of which attendance time (60 hours). The remaining hours are used for preparation for the experiments, preparation of practical protocols, follow-up of the lecture material and preparation for the examination (180 hours).

Recommendation

Basic knowledge of experimental nuclear and particle physics, e.g. from the lecture Modern Experimental Physics III in the bachelor’s program in physics. Basic knowledge of electronics is also helpful.
Literature

- C. Grupen: Particle Detectors, Cambridge University Press (2011)
- Particle Data Group: The Review of Particle Physics
4.53 Module: Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor) [M-PHYS-102122]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible:
PD Dr. Frank Hartmann
Prof. Dr. Markus Klute

Organisation:
KIT Department of Physics

Part of:
- Minor in Physics: Experimental Particle Physics
- Minor in Physics: Experimental Astroparticle Physics

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102431</td>
<td>Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102119 - Detectors for Particle and Astroparticle Physics, without ext. Exercises must not have been started.
2. The module M-PHYS-102120 - Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-102121 - Detectors for Particle and Astroparticle Physics, with ext. Exercises must not have been started.

Competence Goal
Advanced study in one area of experimental particle and astroparticle physics. Students learn experimental aspects of measuring particle properties. Thus, they learn the basics for a detailed analysis of experimental data, the operation of complex experiments and the work with modern particle detectors. The practical exercises introduce the students to experimental work with detectors in teams. In extended exercises, basic principles of sensors and their design optimization are simulated on the computer.

Content
Interaction of electrons, photons, muons, charged and neutral hadrons with matter; electronic detection of particle radiation and measurement of deposited energy and particle identification; gas-filled detectors, scintillators, photomultipliers, silicon detectors, electromagnetic and hadronic calorimeters, detector systems, triggers and data acquisition, reconstruction of physical objects in detector systems, applications outside basic research.

Workload
240 hours, of which attendance time (60 hours). The remaining hours are for preparation for the experiments, preparation of practical protocols and follow-up of the lecture material (180 hours).

Recommendation
Basic knowledge of experimental nuclear and particle physics, e.g. from the lecture Modern Experimental Physics III in the bachelor's program in physics. Basic knowledge of electronics is also helpful.

Literature
- C. Grupen: Particle Detectors, Cambridge University Press (2011)
- Particle Data Group: The Review of Particle Physics
Module: Detectors for Particle and Astroparticle Physics, without ext. Exercises [M-PHYS-102119]

Responsible: PD Dr. Frank Hartmann
Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of:
Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

Credits 6
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102120 - Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102121 - Detectors for Particle and Astroparticle Physics, with ext. Exercises must not have been started.
3. The module M-PHYS-102122 - Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor) must not have been started.

Competence Goal
Advanced study in one area of experimental particle and astroparticle physics. Students learn experimental aspects of measuring particle properties. Thus, they learn the basics for a detailed analysis of experimental data, the operation of complex experiments and the work with modern particle detectors. The practical exercises introduce the students to experimental work with detectors in teams.

Content
Interaction of electrons, photons, muons, charged and neutral hadrons with matter; electronic detection of particle radiation and measurement of deposited energy and particle identification; gas-filled detectors, scintillators, photomultipliers, silicon detectors, electromagnetic and hadronic calorimeters, detector systems, triggers and data acquisition, reconstruction of physical objects in detector systems, applications outside basic research.

Workload
180 hours consisting of attendance time (45 hours), follow-up of the lecture incl. exam preparation and processing of the exercises and the internship (135 hours).

Recommendation
Basic knowledge of experimental nuclear and particle physics, e.g. from the lecture Modern Experimental Physics III in the bachelor's program in physics. Basic knowledge of electronics is also helpful.

Literature
- C. Grupen: Particle Detectors, Cambridge University Press (2011)
- Particle Data Group: The Review of Particle Physics
Module: Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor) [M-PHYS-102120]

 Responsible: PD Dr. Frank Hartmann
 Prof. Dr. Markus Klute

 Organisation: KIT Department of Physics
 Part of: Minor in Physics: Experimental Particle Physics
 Minor in Physics: Experimental Astroparticle Physics

 Credits 6
 Grading scale pass/fail
 Recurrence Each winter term
 Duration 1 term
 Language English
 Level 4
 Version 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104454</td>
<td>Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor)</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Hartmann, Husemann, Klute

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102119 - Detectors for Particle and Astroparticle Physics, without ext. Exercises must not have been started.
2. The module M-PHYS-102121 - Detectors for Particle and Astroparticle Physics, with ext. Exercises must not have been started.
3. The module M-PHYS-102122 - Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor) must not have been started.

Competence Goal
Advanced study in one area of experimental particle and astroparticle physics. Students learn experimental aspects of measuring particle properties. Thus, they learn the basics for a detailed analysis of experimental data, the operation of complex experiments and the work with modern particle detectors. The practical exercises introduce the students to experimental work with detectors in teams.

Content
Interaction of electrons, photons, muons, charged and neutral hadrons with matter; electronic detection of particle radiation and measurement of deposited energy and particle identification; gas-filled detectors, scintillators, photomultipliers, silicon detectors, electromagnetic and hadronic calorimeters, detector systems, triggers and data acquisition, reconstruction of physical objects in detector systems, applications outside basic research.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. working on the exercises and the internship (135 hours).

Recommendation
Basic knowledge of experimental nuclear and particle physics, e.g. from the lecture Modern Experimental Physics III in the bachelor's program in physics. Basic knowledge of electronics is also helpful.

Literature
- C. Grupen: Particle Detectors, Cambridge University Press (2011)
- Particle Data Group: The Review of Particle Physics
Module: Electron Microscopy I, with Exercises [M-PHYS-102989]

Responsible: TT-Prof. Dr. Yolita Eggeler
Organisation: KIT Department of Physics
Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-105965 | Electron Microscopy I, with Exercises | 8 CR | Eggeler |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

None, the lectures Electron Microscopy I and II are independent of each other.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102990 - Electron Microscopy I, without Exercises must not have been started.
2. The module M-PHYS-102991 - Electron Microscopy I, with Exercises (Minor) must not have been started.

Competence Goal

From analogies to light microscopy, students will understand parallels and differences between light microscopy and transmission electron microscopy (TEM) as well as image formation in the transmission electron microscope. Students will be able to describe and explain the interaction between high energy electrons and solids (kinematic diffraction theory and its limitations in electron-solid interaction, dynamic diffraction theory). Using theoretical concepts for dynamic electron diffraction and the imaging process, interpret TEM images (What contrasts arise for perfect solids and defects in solids?). Through application examples from solid state physics and materials research, students will learn and understand the applications and limitations of TEM.

In the practical exercises the theoretical concepts from the lecture as well as TEM imaging modes will be visualized, practiced and deepened by working in small groups.

Content

Transmission electron microscopy (TEM), high-resolution TEM, scanning transmission electron microscopy, kinematic and dynamic electron diffraction in the solid state, TEM contrast generation with application examples from materials and solid state physics, electron holography, transmission electron microscopy with phase plates.

Workload

240 hours, of which attendance time (60 hours). The remaining hours are for preparation for the experiments, preparation of practical protocols, wrap-up of the lecture material and preparation for the examination (180 hours).

Recommendation

Basic knowledge of optics, solid state physics, materials physics or materials science, quantum mechanics

Literature

L. Reimer, H. Kohl, Transmission Electron Microscopy, Springer Verlag
Module: Electron Microscopy I, with Exercises (Minor) [M-PHYS-102991]

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

| T-PHYS-105968 | Electron Microscopy I, with Exercises (Minor) | 8 CR | Eggeler |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none, the lectures Electron Microscopy I and II are independent of each other

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102989 - Electron Microscopy I, with Exercises must not have been started.
2. The module M-PHYS-102990 - Electron Microscopy I, without Exercises must not have been started.

Competence Goal

From analogies to light microscopy, students will understand parallels and differences between light microscopy and transmission electron microscopy (TEM) as well as image formation in the transmission electron microscope. Students will be able to describe and explain the interaction between high energy electrons and solids (kinematic diffraction theory and its limitations in electron-solid interaction, dynamic diffraction theory). Using theoretical concepts for dynamic electron diffraction and the imaging process, interpret TEM images (What contrasts arise for perfect solids and defects in solids?). Through application examples from solid state physics and materials research, students will learn and understand the applications and limitations of TEM.

In the practical exercises the theoretical concepts from the lecture as well as TEM imaging modes will be visualized, practiced and deepened by working in small groups.

Content

Transmission electron microscopy (TEM), high-resolution TEM, scanning transmission electron microscopy, kinematic and dynamic electron diffraction in the solid state, TEM contrast generation with application examples from materials and solid state physics, electron holography, transmission electron microscopy with phase plates.

Workload

240 hours, of which attendance time (60 hours). The remaining hours are used for preparation for the experiments, preparation of practical protocols and wrap-up of the lecture material (180 hours).

Recommendation

Basic knowledge of optics, solid state physics, materials physics or materials science, quantum mechanics

Literature

L. Reimer, H. Kohl, Transmission Electron Microscopy, Springer Verlag
Module: Electron Microscopy I, without Exercises [M-PHYS-102990]

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-105967 | Electron Microscopy I, without Exercises | 4 CR | Eggeler |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none, the lectures Electron Microscopy I and II are independent of each other

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102989 - Electron Microscopy I, with Exercises must not have been started.
2. The module M-PHYS-102991 - Electron Microscopy I, with Exercises (Minor) must not have been started.

Competence Goal

From analogies to light microscopy, students will understand parallels and differences between light microscopy and transmission electron microscopy (TEM) as well as image formation in the transmission electron microscope. Students will be able to describe and explain the interaction between high energy electrons and solids (kinematic diffraction theory and its limitations in electron-solid interaction, dynamic diffraction theory). Using theoretical concepts for dynamic electron diffraction and the imaging process, interpret TEM images (What contrasts arise for perfect solids and defects in solids?). Through application examples from solid state physics and materials research, students will learn and understand the applications and limitations of TEM.

Content

Transmission electron microscopy (TEM), high-resolution TEM, scanning transmission electron microscopy, kinematic and dynamic electron diffraction in the solid state, TEM contrast generation with application examples from materials and solid state physics, electron holography, transmission electron microscopy with phase plates.

Workload

120 hours, of which attendance time (30 hours). The remaining hours are used for wrap-up of the lecture material and preparation for the exam (90 hours).

Recommendation

Basic knowledge of optics, solid state physics, materials physics or materials science, quantum mechanics

Literature

L. Reimer, H. Kohl, Transmission Electron Microscopy, Springer Verlag
Module: Electron Microscopy II, with Exercises [M-PHYS-102227]

Responsible: TT-Prof. Dr. Yolita Eggeler

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

Credits: 8

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German/English

Level: 4

Version: 1

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102844 - Electron Microscopy II, without Exercises must not have been started.
2. The module M-PHYS-103172 - Electron Microscopy II, with Exercises (Minor) must not have been started.

Competence Goal

Students should be able to understand and explain image formation in scanning electron microscopy and scanning ion microscopy, nanostructuring with focused ion beams, and analytical procedures in electron microscopy (chemical analysis, electronic properties). On the basis of application examples from materials and solid-state physics, students should be able to recognize possible applications and limitations of the methods. The students should be able to assess which method(s) is (are) suitable for specific problems from micro- and nanocharacterization.

In the practical exercises, the theoretical concepts from the lecture as well as imaging modes in scanning electron microscopy and scanning ion microscopy are visualized, practiced and deepened by working in small groups. Students should be able to adjust a scanning electron microscope for simple applications.

Content

Scanning electron microscopy, imaging and patterning with focused ion beams, analytical techniques in electron microscopy (energy dispersive X-ray spectroscopy and electron energy loss spectroscopy).

Workload

240 hours, of which attendance time (60 hours). The remaining hours are for preparation for the experiments, preparation of practical protocols, wrap-up of the lecture material and preparation for the examination (180 hours).

Recommendation

Basic knowledge of optics, solid state physics, materials physics and materials science

Literature

- L. Reimer, Scanning Electron Microscopy, Springer
4.60 Module: Electron Microscopy II, with Exercises (Minor) [M-PHYS-103172]

Responsible: TT-Prof. Dr. Yolita Eggeler

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Condensed Matter
- Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106306</td>
<td>Electron Microscopy II, with Exercises (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102844 - Electron Microscopy II, without Exercises must not have been started.
2. The module M-PHYS-102227 - Electron Microscopy II, with Exercises must not have been started.

Competence Goal
Students should be able to understand and explain image formation in scanning electron microscopy and scanning ion microscopy, nanostructuring with focused ion beams, and analytical procedures in electron microscopy (chemical analysis, electronic properties). On the basis of application examples from materials and solid-state physics, students should be able to recognize possible applications and limitations of the methods. The students should be able to assess which method(s) is (are) suitable for specific problems from micro- and nanocharacterization.

In the practical exercises, the theoretical concepts from the lecture as well as imaging modes in scanning electron microscopy and scanning ion microscopy are visualized, practiced and deepened by working in small groups. Students should be able to adjust a scanning electron microscope for simple applications.

Content
Scanning electron microscopy, imaging and patterning with focused ion beams, analytical techniques in electron microscopy (energy dispersive X-ray spectroscopy and electron energy loss spectroscopy).

Workload
240 hours, of which attendance time (60 hours). The remaining hours are used for preparation for the experiments, preparation of practical protocols and wrap-up of the lecture material (180 hours).

Recommendation
Basic knowledge of optics, solid state physics, materials physics and materials science

Literature
- L. Reimer, Scanning Electron Microscopy, Springer
Module: Electron Microscopy II, without Exercises [M-PHYS-102844]

Responsibility: TT-Prof. Dr. Yolita Eggeler

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

Credits: 4

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German/English

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-105817</td>
<td>Electron Microscopy II, without Exercises</td>
<td>4 CR</td>
<td>CR</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102227 - Electron Microscopy II, with Exercises must not have been started.
2. The module M-PHYS-103172 - Electron Microscopy II, with Exercises (Minor) must not have been started.

Competence Goal

Students should be able to understand and explain image formation in scanning electron microscopy and scanning ion microscopy, nanostructuring with focused ion beams, and analytical procedures in electron microscopy (chemical analysis, electronic properties). On the basis of application examples from materials and solid-state physics, students should be able to recognize possible applications and limitations of the methods. The students should be able to assess which method(s) is (are) suitable for specific problems from micro- and nanocharacterization.

Content

Scanning electron microscopy, imaging and patterning with focused ion beams, analytical techniques in electron microscopy (energy dispersive X-ray spectroscopy and electron energy loss spectroscopy).

Workload

120 hours, of which attendance time (30 hours). The remaining hours are used for wrap-up of the lecture material and preparation for the exam (90 hours).

Recommendation

Basic knowledge of optics, solid state physics, materials physics and materials science

Literature

- L. Reimer, Scanning Electron Microscopy, Springer

Responsible: Prof. Dr. Matthieu Le Tacon
Prof. Dr. Wolfgang Wernsdorfer
Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Required Condensed Matter)
- Major in Physics: Nanophysics (Required Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Required Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

Credits: 10
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Le Tacon, Wernsdorfer, Wulfhekel</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102577</td>
<td>Electronic Properties of Solids I, with Exercises</td>
<td>10 CR</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102087 - Electronic Properties of Solids I, with Exercises (Minor) must not have been started.
2. The module M-PHYS-102090 - Electronic Properties of Solids I, without Exercises must not have been started.

Competence Goal

Students will be familiar with the most common experimental methods for studying the electronic properties of condensed matter and some of the key theoretical concepts that underlie them. They master the basic tools for studying and understanding heat transport, scattering mechanisms, phase transitions, and magnetism. Exercises will reinforce the acquired knowledge and apply it to classical condensed matter problems.

Content

- Metal and insulators: Band structure, Fermi surface
- Electronic and heat transport - scattering mechanisms
- Phase transitions: Landau theory, critical exponents
- Atomic magnetism and magnetic interactions
- Magnetic structures, dynamics

Annotation

The course will be given in English. Questions and discussions in German are welcome as well.

Workload

300 hours consisting of attendance time (75 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (225 hours)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics and statistical physics is assumed.
Literature

- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter
Module: Electronic Properties of Solids I, with Exercises (Minor) [M-PHYS-102087]

Responsible: Prof. Dr. Matthieu Le Tacon
Prof. Dr. Wolfgang Wernsdorfer
Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of:
Minor in Physics: Condensed Matter
Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102575</td>
<td>Electronic Properties of Solids I, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102089 - Electronic Properties of Solids I, with Exercises must not have been started.
2. The module M-PHYS-102090 - Electronic Properties of Solids I, without Exercises must not have been started.

Competence Goal
Students will be familiar with the most common experimental methods for studying the electronic properties of condensed matter and some of the key theoretical concepts that underlie them. They master the basic tools for studying and understanding heat transport, scattering mechanisms, phase transitions, and magnetism. Exercises will reinforce the acquired knowledge and apply it to classical condensed matter problems.

Content

- Metal and insulators: Band structure, Fermi surface
- Electronic and heat transport - scattering mechanisms
- Phase transitions: Landau theory, critical exponents
- Atomic magnetism and magnetic interactions
- Magnetic structures, dynamics

Annotation
The course will be given in English. Questions and discussions in German are welcome as well.

Workload
300 hours consisting of attendance time (75 hours), wrap-up of the lecture and preparation of the exercises (225 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics and statistical physics is assumed.

Literature

- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter
Exercise Sheet 4

1. \(\int_0^2 f(x) \, dx \)

2. Consider the function \(f(x) = \frac{1}{x} \) for \(x \neq 0 \).
 a) Find the domain of \(f \).
 b) Determine the range of \(f \).
 c) Sketch the graph of \(f \).

3. Let \(g(x) = \sin(x) + \cos(x) \) for \(0 \leq x \leq \pi \).
 a) Find the critical points of \(g \).
 b) Determine the intervals where \(g \) is increasing or decreasing.
 c) Identify the local extrema of \(g \).

4. Suppose \(f(x) = x^3 - 3x^2 + 2 \).
 a) Find the intervals where \(f \) is increasing or decreasing.
 b) Identify the local extrema of \(f \).
 c) Determine the concavity of \(f \).

5. Consider the function \(h(x) = \frac{x^2 - 1}{x^2 + 1} \).
 a) Find the domain of \(h \).
 b) Determine the range of \(h \).
 c) Sketch the graph of \(h \).
4.65 Module: Electronic Properties of Solids II, with Exercises [M-PHYS-102108]

 Responsible: Prof. Dr. Matthieu Le Tacon
 Dr. Johannes Rotzinger
 Prof. Dr. Alexey Ustinov
 Prof. Dr. Wolfgang Wernsdorfer

 Organisation: KIT Department of Physics

 Part of:
 Major in Physics: Condensed Matter (Elective Condensed Matter)
 Major in Physics: Nanophysics (Elective Nanophysics)
 Second Major in Physics: Condensed Matter (Required Elective Condensed Matter)
 Second Major in Physics: Nanophysics (Elective Nanophysics)

 Credits 8
 Grading scale Grade to a tenth
 Recurrence Each summer term
 Duration 1 term
 Language English
 Level 4
 Version 1

 Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104422</td>
<td>Electronic Properties of Solids II, with Exercises</td>
<td>8</td>
<td>CR</td>
<td>Each summer term</td>
<td>1 term</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

 Le Tacon, Rotzinger, Ustinov, Wernsdorfer

 Competence Certificate
 Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

 Prerequisites
 none

 Modeled Conditions
 The following conditions have to be fulfilled:

 1. The module M-PHYS-102106 - Electronic Properties of Solids II, with Exercises (Minor) must not have been started.
 2. The module M-PHYS-102109 - Electronic Properties of Solids II, without Exercises must not have been started.

 Competence Goal
 Students know the physical properties of superconductivity, a thermodynamic state of the electronic system of solids. They understand classical and modern experimental findings as well as basic theoretical models, such as the concept of the energy gap or the quasiparticle, which is also commonly used outside superconductivity. They apply the acquired knowledge to specific problems. The students are able to familiarize themselves with current literature on the subject of superconductivity.

 Content
 Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

 Annotation
 The course will be given in English. Questions and discussions in German are welcome as well.

 Workload
 240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

 Recommendation
 Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

 Literature
4.66 Module: Electronic Properties of Solids II, with Exercises (Minor) [M-PHYS-102106]

Responsible: Prof. Dr. Matthieu Le Tacon
Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of:
Minor in Physics: Condensed Matter
Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course Description</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104420</td>
<td>Electronic Properties of Solids II, with Exercises (Minor)</td>
<td>8 CR</td>
<td>Le Tacon, Rotzinger, Ustinov, Wernsdorfer</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102108 - Electronic Properties of Solids II, with Exercises must not have been started.
2. The module M-PHYS-102109 - Electronic Properties of Solids II, without Exercises must not have been started.

Competence Goal
Students know the physical properties of superconductivity, a thermodynamic state of the electronic system of solids. They understand classical and modern experimental findings as well as basic theoretical models, such as the concept of the energy gap or the quasiparticle, which is also commonly used outside superconductivity. They apply the acquired knowledge to specific problems. The students are able to familiarize themselves with current literature on the subject of superconductivity.

Content
Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Annotation
The course will be given in English. Questions and discussions in German are welcome as well.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

4.67 Module: Electronic Properties of Solids II, without Exercises [M-PHYS-102109]

Responsible: Prof. Dr. Matthieu Le Tacon
Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Required Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>T-PHYS-104423 - Electronic Properties of Solids II, without Exercises</td>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102106 - Electronic Properties of Solids II, with Exercises (Minor) must not have been started.
2. The module M-PHYS-102108 - Electronic Properties of Solids II, with Exercises must not have been started.

Competence Goal

Students know the physical properties of superconductivity, a thermodynamic state of the electronic system of solids. They understand classical and modern experimental findings as well as basic theoretical models, such as the concept of the energy gap or the quasiparticle, which is also commonly used outside of superconductivity. Students are able to familiarize themselves with current literature on superconductivity.

Content

Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Annotation

The course will be given in English. Questions and discussions in German are welcome as well.

Workload

120 hours consisting of attendance time (30 hours), wrap-up of the lecture incl. exam preparation (90 hours)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

4.68 Module: Electronics for Physicists [M-PHYS-102184]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Non-Physics Elective

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-104479 | Electronics for Physicists | 10 CR | Rabbertz, Simon |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102180 - Electronics for Physicists: Analog Electronics (Minor) must not have been started.
2. The module M-PHYS-102179 - Electronics for Physicists: Analog Electronics must not have been started.
3. The module M-PHYS-102182 - Electronics for Physicists: Digital Electronics must not have been started.
4. The module M-PHYS-102183 - Electronics for Physicists: Digital Electronics (Minor) must not have been started.
5. The module M-PHYS-102185 - Electronics for Physicists (Minor) must not have been started.

Competence Goal

Deepening knowledge in technical aspects of experimental physics, with an emphasis on instrumentation for particle and astroparticle physics. Providing a basic understanding of analog and digital electronics and their application in experimental physics. Understanding of analog and digital circuits and their construction and testing. Use of modern measurement equipment such as digital oscilloscopes and evaluation of the measurement results obtained in comparison with circuit simulations of analog electronics. Use and programming of modern digital electronics hardware (FPGAs) and evaluation of the results obtained.

Content

Introduction to analog and digital electronics:

- The "electronics chain" of detectors in experimental physics
- Fundamentals, linear networks, passive components, filters
- Elementary circuit analysis and simulation
- Operational amplifiers, Bipolar and field effect transistors
- Basic circuits with one and two transistors
- Number systems, circuit algebra, logic devices, flip-flops, memories
- Analog-to-digital converters
- Programmable electronics: CPLDs, FPGAs
- Packaging and interconnection technology
- Noise in detector systems

Workload

300 hours consisting of attendance time (75 hours), follow-up of the lecture incl. exam preparation and processing of the exercises and the internship (225 hours).

Recommendation

Interest in electronics
Literature

Literature will be mentioned in the lecture. A script will also be provided.
Module: Electronics for Physicists (Minor) [M-PHYS-102185]

4.69 Module: Electronics for Physicists (Minor) [M-PHYS-102185]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Experimental Particle Physics
- Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104480</td>
<td>Electronics for Physicists (Minor)</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the practical exercises. The details will be announced in the first lecture or at the first practical exercises.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-PHYS-102180 - Electronics for Physicists: Analog Electronics (Minor)** must not have been started.
2. The module **M-PHYS-102179 - Electronics for Physicists: Analog Electronics** must not have been started.
3. The module **M-PHYS-102182 - Electronics for Physicists: Digital Electronics** must not have been started.
4. The module **M-PHYS-102183 - Electronics for Physicists: Digital Electronics (Minor)** must not have been started.
5. The module **M-PHYS-102184 - Electronics for Physicists** must not have been started.

Competence Goal
Deepening knowledge in technical aspects of experimental physics, with an emphasis on instrumentation for particle and astroparticle physics.
Providing a basic understanding of analog and digital electronics and their application in experimental physics. Understanding of analog and digital circuits and their construction and testing. Use of modern measurement equipment such as digital oscilloscopes and evaluation of the measurement results obtained in comparison with circuit simulations of analog electronics. Use and programming of modern digital electronics hardware (FPGAs) and evaluation of the results obtained.

Content
Introduction to analog and digital electronics:

- The “electronics chain” of detectors in experimental physics
- Fundamentals, linear networks, passive components, filters
- Elementary circuit analysis and simulation
- Operational amplifiers, Bipolar and field effect transistors
- Basic circuits with one and two transistors
- Number systems, circuit algebra, logic devices, flip-flops, memories
- Analog-to-digital converters
- Programmable electronics: CPLDs, FPGAs
- Packaging and interconnection technology
- Noise in detector systems

Workload
300 hours consisting of attendance time (75 hours), wrap-up of lecture and completion of exercises and lab (225 hours).

Recommendation
Interest in electronics

Literature
Literature will be mentioned in the lecture. A script will also be provided.
4.70 Module: Electronics for Physicists: Analog Electronics [M-PHYS-102179]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

** Organisation:** KIT Department of Physics

Part of: Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

T-PHYS-104475
Electronics for Physicists: Analog Electronics
6 CR
Rabbertz, Simon

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102180 - Electronics for Physicists: Analog Electronics (Minor) must not have been started.
2. The module M-PHYS-102182 - Electronics for Physicists: Digital Electronics must not have been started.
3. The module M-PHYS-102183 - Electronics for Physicists: Digital Electronics (Minor) must not have been started.
4. The module M-PHYS-102184 - Electronics for Physicists must not have been started.
5. The module M-PHYS-102185 - Electronics for Physicists (Minor) must not have been started.

Competence Goal

Deepening knowledge in technical aspects of experimental physics, with an emphasis on instrumentation for particle and astroparticle physics.
Provide a basic understanding of analog electronics and its application in experimental physics. Understanding of analog circuits and their construction and testing. Use of modern measurement equipment such as digital oscilloscopes and evaluation of the measurement results obtained using, among other things, circuit simulation programs.

Content

Introduction to analog electronics:

- The "electronics chain" of detectors in experimental physics
- Fundamentals, linear networks, passive components, filters
- Elementary circuit analysis and simulation
- Operational amplifiers, Bipolar and field effect transistors
- Basic circuits with one and two transistors
- Packaging and interconnection technology
- Noise in detector systems

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and processing of the exercises and the internship (135 hours).

Recommendation

Interest in electronics

Literature

Literature will be mentioned in the lecture. A script will also be provided.
4.71 Module: Electronics for Physicists: Analog Electronics (Minor) [M-PHYS-102180]

Mandatory

| T-PHYS-104476 | Electronics for Physicists: Analog Electronics (Minor) | 6 CR | Rabbertz, Simon |

Competence Certificate

The course credit is achieved through successful participation in the practical exercises. The details will be announced in the first lecture or at the first practical exercises.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102179 - Electronics for Physicists: Analog Electronics must not have been started.
2. The module M-PHYS-102182 - Electronics for Physicists: Digital Electronics must not have been started.
3. The module M-PHYS-102183 - Electronics for Physicists: Digital Electronics (Minor) must not have been started.
4. The module M-PHYS-102184 - Electronics for Physicists must not have been started.
5. The module M-PHYS-102185 - Electronics for Physicists (Minor) must not have been started.

Competence Goal

Deepening knowledge in technical aspects of experimental physics, with an emphasis on instrumentation for particle and astroparticle physics. Provide a basic understanding of analog electronics and its application in experimental physics. Understanding of analog circuits and their construction and testing. Use of modern measurement equipment such as digital oscilloscopes and evaluation of the measurement results obtained using, among other things, circuit simulation programs.

Content

Introduction to analog electronics:

- The "electronics chain" of detectors in experimental physics
- Fundamentals, linear networks, passive components, filters
- Elementary circuit analysis and simulation
- Operational amplifiers, Bipolar and field effect transistors
- Basic circuits with one and two transistors
- Packaging and interconnection technology
- Noise in detector systems

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture and work on the exercises and the internship (135 hours).

Recommendation

Interest in electronics

Literature

Literature will be mentioned in the lecture. A script will also be provided.
Module: Electronics for Physicists: Digital Electronics [M-PHYS-102182]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104477</td>
<td>Electronics for Physicists: Digital Electronics</td>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102183 - Electronics for Physicists: Digital Electronics (Minor) must not have been started.
2. The module M-PHYS-102179 - Electronics for Physicists: Analog Electronics must not have been started.
3. The module M-PHYS-102180 - Electronics for Physicists: Analog Electronics (Minor) must not have been started.
4. The module M-PHYS-102184 - Electronics for Physicists must not have been started.
5. The module M-PHYS-102185 - Electronics for Physicists (Minor) must not have been started.

Competence Goal
Deepening knowledge in technical aspects of experimental physics, with an emphasis on instrumentation for particle and astroparticle physics.
Providing a basic understanding of digital electronics and its application in experimental physics. Understanding of digital circuits and their construction and testing. Use and programming of modern digital electronics hardware (FPGAs) and evaluation of the obtained results.

Content
Introduction to digital electronics:

- The “electronics chain” of detectors in experimental physics
- Number systems, circuit algebra, logic devices, flip-flops, memories
- Analog-to-digital converters
- Programmable electronics: CPLDs, FPGAs

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and processing of the exercises and the internship (135 hours).

Recommendation
Interest in electronics

Literature
Literature will be mentioned in the lecture. A script will also be provided.
Module: Electronics for Physicists: Digital Electronics (Minor) [M-PHYS-102183]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics

Part of:
Minor in Physics: Experimental Particle Physics
Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-104478 | Electronics for Physicists: Digital Electronics (Minor) | 6 CR | Rabbertz, Simon |

Competence Certificate

The course credit is achieved through successful participation in the practical exercises. The details will be announced in the first lecture or at the first practical exercises.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102182 - Electronics for Physicists: Digital Electronics must not have been started.
2. The module M-PHYS-102179 - Electronics for Physicists: Analog Electronics must not have been started.
3. The module M-PHYS-102180 - Electronics for Physicists: Analog Electronics (Minor) must not have been started.
4. The module M-PHYS-102184 - Electronics for Physicists must not have been started.
5. The module M-PHYS-102185 - Electronics for Physicists (Minor) must not have been started.

Competence Goal

Deepening knowledge in technical aspects of experimental physics, with an emphasis on instrumentation for particle and astroparticle physics. Providing a basic understanding of digital electronics and its application in experimental physics. Understanding of digital circuits and their construction and testing. Use and programming of modern digital electronics hardware (FPGAs) and evaluation of the obtained results.

Content

Introduction to digital electronics:

- The “electronics chain” of detectors in experimental physics
- Number systems, circuit algebra, logic devices, flip-flops, memories
- Analog-to-digital converters
- Programmable electronics: CPLDs, FPGAs

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture and work on the exercises and the internship (135 hours).

Recommendation

Interest in electronics

Literature

Literature will be mentioned in the lecture. A script will also be provided.
4.74 Module: Experimental Biophysics II, with Seminar [M-PHYS-102165]

Responsible: Prof. Dr. Ulrich Nienhaus
Organisation: KIT Department of Physics
Part of: Major in Physics: Nanophysics (Required Elective Nanophysics)
Major in Physics: Optics and Photonics (Elective Optics and Photonics)
Second Major in Physics: Nanophysics (Elective Nanophysics)
Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102532 | Experimental Biophysics II, with Seminar | 14 CR | Nienhaus |

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102166 - Experimental Biophysics II, with Seminar (Minor) must not have been started.
2. The module M-PHYS-102167 - Experimental Biophysics II, without Seminar must not have been started.
3. The module M-PHYS-102168 - Experimental Biophysics II, without Seminar (Minor) must not have been started.

Competence Goal
The students

- are able to describe the basic structure of biomatter and are familiar with its structural, dynamic and energetic properties.
- understand the physical principles of biomolecular spectroscopy and can appreciate the application of the various methods to the study of biomolecular processes.
- are familiar with the basic approaches to relaxation and fluctuation spectroscopy.
- understand the physical principles of interactions essential to molecular functional processes (chemical bonding, electron transfer, energy transfer) and the parameters that determine transition rates.
- acquire in-depth knowledge during the exercises by solving exercise problems. They present their results and thus further develop their abilities to share the acquired knowledge with the other students.
- independently acquire in-depth knowledge on a special topic of biophysics and give a presentation on this topic. They thus develop their skills in scientific presentation, which includes the selection of the material from a didactic point of view, the structuring of the lecture, the slide design, the actual presentation and answering questions from the audience.

Content
After a brief introduction to the structure, dynamics and energetics of biomolecules, light-optical spectroscopic methods (including optical absorption and fluorescence, infrared and Raman spectroscopy) are introduced, which can be used to observe biomolecular structures and their changes as a function of time. Light microscopy including super-resolution techniques are covered as well. The physical principles on which important biomolecular processes (ligand binding, energy and electron transfer in photosynthesis) are based are then discussed.

Workload
420 hours consisting of attendance time (120 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises as well as the seminar presentation (300 hours).

Recommendation
Fundamentals of quantum mechanics, thermodynamics, and solid state physics are assumed.
Literature

- G. U. Nienhaus: Skripten zur Vorlesung Biophysik I und II
- E. Sackmann & R. Merkel: Lehrbuch der Biophysik
- C. Cantor & P. Schimmel: Biophysical Chemistry
- I. N. Serdyuk, N. R. Zaccai & J. Zaccai: Methods in Molecular Biophysics
Module: Experimental Biophysics II, with Seminar (Minor) [M-PHYS-102166]

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:
1. The module M-PHYS-102165 - Experimental Biophysics II, with Seminar must not have been started.
2. The module M-PHYS-102167 - Experimental Biophysics II, without Seminar must not have been started.
3. The module M-PHYS-102168 - Experimental Biophysics II, without Seminar (Minor) must not have been started.

Competence Goal

The students

• are able to describe the basic structure of biomatter and are familiar with its structural, dynamic and energetic properties.
• understand the physical principles of biomolecular spectroscopy and can appreciate the application of the various methods to the study of biomolecular processes.
• are familiar with the basic approaches to relaxation and fluctuation spectroscopy.
• understand the physical principles of interactions essential to molecular functional processes (chemical bonding, electron transfer, energy transfer) and the parameters that determine transition rates.
• acquire in-depth knowledge during the exercises by solving exercise problems. They present their results and thus further develop their abilities to share the acquired knowledge with the other students.
• independently acquire in-depth knowledge on a special topic of biophysics and give a presentation on this topic. They thus develop their skills in scientific presentation, which includes the selection of the material from a didactic point of view, the structuring of the lecture, the slide design, the actual presentation and answering questions from the audience.

Content

After a brief introduction to the structure, dynamics and energetics of biomolecules, light-optical spectroscopic methods (including optical absorption and fluorescence, infrared and Raman spectroscopy) are introduced, which can be used to observe biomolecular structures and their changes as a function of time. Light microscopy including super-resolution techniques are covered as well. The physical principles on which important biomolecular processes (ligand binding, energy and electron transfer in photosynthesis) are based are then discussed.

Workload

420 hours consisting of attendance time (120 hours), wrap-up of the lecture and preparation of the exercises as well as the seminar presentation (300 hours).

Recommendation

Fundamentals of quantum mechanics, thermodynamics, and solid state physics are assumed.
Literature

- G. U. Nienhaus: Skripten zur Vorlesung Biophysik I und II
- E. Sackmann & R. Merkel: Lehrbuch der Biophysik
- C. Cantor & P. Schimmel: Biophysical Chemistry
- I. N. Serdyuk, N. R. Zaccai & J. Zaccai: Methods in Molecular Biophysics
4.76 Module: Experimental Biophysics II, without Seminar [M-PHYS-102167]

Responsible: Prof. Dr. Ulrich Nienhaus
Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Required Elective Nanophysics)
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-104471 | Experimental Biophysics II, without Seminar | 12 CR | Nienhaus |

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102165 - Experimental Biophysics II, with Seminar must not have been started.
2. The module M-PHYS-102166 - Experimental Biophysics II, with Seminar (Minor) must not have been started.
3. The module M-PHYS-102168 - Experimental Biophysics II, without Seminar (Minor) must not have been started.

Competence Goal
The students

- are able to describe the basic structure of biomatter and are familiar with its structural, dynamic and energetic properties.
- understand the physical principles of biomolecular spectroscopy and can appreciate the application of the various methods to the study of biomolecular processes.
- are familiar with the basic approaches to relaxation and fluctuation spectroscopy.
- understand the physical principles of interactions essential to molecular functional processes (chemical bonding, electron transfer, energy transfer) and the parameters that determine transition rates.
- acquire in-depth knowledge during the exercises by solving exercise problems. They present their results and thus further develop their ability to share the acquired knowledge with the other students.

Content
After a brief introduction to the structure, dynamics and energetics of biomolecules, light-optical spectroscopic methods (including optical absorption and fluorescence, infrared and Raman spectroscopy) are introduced, which can be used to observe biomolecular structures and their changes as a function of time. Light microscopy including super-resolution techniques are covered as well. The physical principles on which important biomolecular processes (ligand binding, energy and electron transfer in photosynthesis) are based are then discussed.

Workload
360 hours consisting of attendance time (90 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (270 hours).

Recommendation
Fundamentals of quantum mechanics, thermodynamics, and solid state physics are assumed.

Literature

- G. U. Nienhaus: Skripten zur Vorlesung Biophysik I und II
- E. Sackmann & R. Merkel: Lehrbuch der Biophysik
- C. Cantor & P. Schimmel: Biophysical Chemistry
- I. N. Serdyuk, N. R. Zaccai & J. Zaccai: Methods in Molecular Biophysics
Module: Experimental Biophysics II, without Seminar (Minor) [M-PHYS-102168]

Responsible: Prof. Dr. Ulrich Nienhaus
Organisation: KIT Department of Physics
Part of: Minor in Physics: Nanophysics
Minor in Physics: Optics and Photonics

Credits: 12
Grading scale: pass/fail
Recurrence: Each summer term
Duration: 1 term
Language: German
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104472</td>
<td>Experimental Biophysics II, without Seminar (Minor)</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Nienhaus

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102165 - Experimental Biophysics II, with Seminar must not have been started.
2. The module M-PHYS-102166 - Experimental Biophysics II, with Seminar (Minor) must not have been started.
3. The module M-PHYS-102167 - Experimental Biophysics II, without Seminar must not have been started.

Competence Goal
The students

- are able to describe the basic structure of biomatter and are familiar with its structural, dynamic and energetic properties.
- understand the physical principles of biomolecular spectroscopy and can appreciate the application of the various methods to the study of biomolecular processes.
- are familiar with the basic approaches to relaxation and fluctuation spectroscopy.
- understand the physical principles of interactions essential to molecular functional processes (chemical bonding, electron transfer, energy transfer) and the parameters that determine transition rates.
- acquire in-depth knowledge during the exercises by solving exercise problems. They present their results and thus further develop their ability to share the acquired knowledge with the other students.

Content
After a brief introduction to the structure, dynamics and energetics of biomolecules, light-optical spectroscopic methods (including optical absorption and fluorescence, infrared and Raman spectroscopy) are introduced, which can be used to observe biomolecular structures and their changes as a function of time. Light microscopy including super-resolution techniques are covered as well. The physical principles on which important biomolecular processes (ligand binding, energy and electron transfer in photosynthesis) are based are then discussed.

Workload
360 hours consisting of attendance time (90 hours), wrap-up of the lecture and preparation of the exercises (270 hours).

Recommendation
Fundamentals of quantum mechanics, thermodynamics, and solid state physics are assumed.

Literature
- G. U. Nienhaus: Skripten zur Vorlesung Biophysik I und II
- E. Sackmann & R. Merkel: Lehrbuch der Biophysik
- C. Cantor & P. Schimmel: Biophysical Chemistry
- I. N. Serdyuk, N. R. Zaccai & J. Zaccai: Methods in Molecular Biophysics
4.78 Module: Field Theories of Condensed Matter: Conformal Field Theory [M-PHYS-104548]

Responsible: PD Dr. Igor Gornyi
PD Dr. Boris Narozhnyy

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-109320 | Field Theories of Condensed Matter: Conformal Field Theory | 8 CR | Gornyi, Narozhnyy |

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
None

Competence Goal
The students understand the theory of condensed matter and know the most important phenomena and concepts in the physics of low-dimensional quantum systems, as well as the corresponding field-theoretical approaches.

Content
Preliminary structure:

1. Introduction
2. Conformal transformations, conformal group in d dimensions, conformal algebra in 2 dimensions
3. Conformal theories in 2 dimensions, central charge, Virasoro algebra
4. Scaling approach to critical phenomena, Ising model, Potts model
5. Bosonization in 1+1 dimensions, Gaussian model, XXZ model
6. Non-Abelian bosonization, Sugawara construction

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation (180 hours)

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and statistical physics is assumed. It is recommended to take this course after the course Theorie der Kondensierten Materie I.

Literature
E. Brezin and J. Zinn-Justin (Editors), Fields, Strings, and critical Phenomena (Les Houches 1988)
P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory.
T. Giamarchi, Quantum Physics in One Dimension
A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems
Module: Flavour Physics in the Standard Model and beyond [M-PHYS-105064]

Responsible: Dr. Monika Blanke
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Irregular
Duration: 1 term
Language: English
Level: 4
Version: 1

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110281</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Competence Goal
Students will learn and deepen the methodology of Theoretical Flavour Physics. They have an understanding of the phenomenology of the flavor sector in and beyond the Standard Model.

Content
- Flavour and CP violation in the Standard Model
- Determination of CKM elements
- Phenomenology of flavour and CP violating processes
- Flavour physics beyond the Standard Model: Minimal Flavour Violation
- New sources of flavour and CP violation
- Selected "hot topics" in rare meson decays

Workload
120 hours consisting of attendance time (30 hours), wrap-up of lecture incl. exam preparation (90 hours).

Recommendation
Basic knowledge of the Standard Model of particle physics, in particular of the strong and weak interaction as well as the Yukawa sector, e.g. from the lecture "Introduction to Theoretical Particle Physics". It is recommended to attend the lecture on experimental flavor physics in parallel.

Literature
Will be given in the lecture
Module: Full-Waveform Inversion (Ungraded) [M-PHYS-104522]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: Minor in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109272</td>
<td>Full-Waveform Inversion</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Final pass based on successful participation of the exercises.

Prerequisites
None

Competence Goal
The students know the fundamentals about full-waveform inversion from theory to practical implementation. They understand the basic concept of full-waveform inversion and grid-based finite-difference schemes to solve the wave equation. They understand important practical aspects such as numerical effects and critical performance issues. Students are able to implement a basic full-waveform inversion algorithm and apply it to simple data sets. They can analyze important factors influencing the success of full-waveform inversion and assess the quality of inversion results.

Content
- Introduction to full-waveform inversion (FWI)
- Solution of the wave equation with the finite-difference method
- Practical issues and numerical effects
- Adjoint-state method
- Adaption of the adjoint-state method for FWI
- FWI of shallow seismic wavefields

Module grade calculation
The coursework is not graded.

Workload
180 h hours composed of contact time (45 h), wrap-up of the lectures and solving the exercises (135 h)

Recommendation
Knowledge of differential calculus is essential. Experience with Matlab and general computer skills are beneficial.

Learning type
4060181 Seismic Full Waveform Inversion (V2)
4060182 Exercises to Seismic Full Waveform Inversion (Ü1)

Literature
- Andreas Fichtner, "Full Seismic Waveform Modelling and Inversion", 2011, Springer.
4.81 Module: General Relativity [M-PHYS-102319]

Responsible: Prof. Dr. Frans Klinkhamer
Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102395</td>
<td>General Relativity</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102320 - General Relativity (Minor) must not have been started.
2. The module M-PHYS-106532 - Introduction to General Relativity must not have been started.
3. The module M-PHYS-106533 - Introduction to General Relativity (Minor) must not have been started.

Competence Goal

The students broaden their intellectual horizon by learning and thinking about one of the great achievements of humanity, the discovery of the dynamic nature of spacetime. Students know and understand the basic ideas of Special Relativity and are familiar with the main concepts and techniques of General Relativity. They know different cosmological models. Participants of the course can apply the concepts and techniques they have learned to solve selected practical problems.

Content

This lecture consists of three parts.
The first part reviews the basic ideas of Special Relativity.
The second part introduces the main concepts and techniques of General Relativity.
The third part discusses cosmological models.

Workload

Approximately 300 hours, consisting of 75 hours for direct presence and further time for literature study, preparation of exercise problems or tasks, and possibly preparation for the final oral exam.

Recommendation

A basic understanding of classical mechanics, classical electrodynamics, and quantum mechanics.

Literature

Module: General Relativity (Minor) [M-PHYS-102320]

Responsible: Prof. Dr. Frans Klinkhamer
Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Astroparticle Physics
Minor in Physics: Theoretical Particle Physics

Credits: 10
Grading scale: pass/fail
Recurrence: Irregular
Duration: 1 term
Language: English
Level: 4
Version: 2

Mandatory
T-PHYS-102446 General Relativity (Minor) 10 CR Klinkhamer

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102319 - General Relativity must not have been started.
2. The module M-PHYS-106532 - Introduction to General Relativity must not have been started.
3. The module M-PHYS-106533 - Introduction to General Relativity (Minor) must not have been started.

Competence Goal
The students broaden their intellectual horizon by learning and thinking about one of the great achievements of humanity, the discovery of the dynamic nature of spacetime. Students know and understand the basic ideas of Special Relativity and are familiar with the main concepts and techniques of General Relativity. They know different cosmological models. Participants of the course can apply the concepts and techniques they have learned to solve selected practical problems.

Content
This lecture consists of three parts.
The first part reviews the basic ideas of Special Relativity.
The second part introduces the main concepts and techniques of General Relativity.
The third part discusses cosmological models.

Workload
Approximately 300 hours, consisting of 75 hours for direct presence and further time for literature study, preparation of exercise problems or tasks.

Recommendation
A basic understanding of classical mechanics, classical electrodynamics, and quantum mechanics.

Literature
4.83 Module: General Relativity II [M-PHYS-103333]

Responsible: Prof. Dr. Frans Klinkhamer

Organisation: KIT Department of Physics

Part of: Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

Credits 10
Grading scale Grade to a tenth
Recurrence Irregular
Duration 1 term
Language English
Level 4
Version 1

Mandatory
T-PHYS-106678 General Relativity II 10 CR Klinkhamer

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-103334 - General Relativity II (Minor) must not have been started.

Competence Goal
The students are familiar with the concepts of modern cosmology and understand how various realms of physics come into play for the description of the universe and its history. During the course of the lecture they have deepened their understanding of previous physics courses and can apply this knowledge to problems that require an interdisciplinary approach.

Content
This lecture course is a follow-up of ART I (GR I) and is divided into three parts:
The first part deals with the physics of the early universe.
The second part discusses spacetime structure from the viewpoint of global discrete symmetries, topology, and spacetime defects.
The third part introduces basic ideas of string theory as a particular approach to quantum gravity.

Workload
Approximately 300 hours, consisting of 75 hours for direct presence and further time for literature study, preparation of exercise problems or tasks, and possibly preparation for the final oral exam.

Recommendation
GR I (ART I)

Literature
Module: General Relativity II (Minor) [M-PHYS-103334]

Responsibility: Prof. Dr. Frans Klinkhamer
Organization: KIT Department of Physics
Part of: Minor in Physics: Theoretical Particle Physics

Credits: 10
Grading scale: pass/fail
Recurrence: Irregular
Duration: 1 term
Language: English
Level: 4
Version: 1

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-103333 - General Relativity II must not have been started.

Competence Goal
The students are familiar with the concepts of modern cosmology and understand how various realms of physics come into play for the description of the universe and its history. During the course of the lecture they have deepened their understanding of previous physics courses and can apply this knowledge to problems that require an interdisciplinary approach.

Content
This lecture course is a follow-up of ART I (GR I) and is divided into three parts:
The first part deals with the physics of the early universe.
The second part discusses spacetime structure from the viewpoint of global discrete symmetries, topology, and spacetime defects.
The third part introduces basic ideas of string theory as a particular approach to quantum gravity.

Workload
Approximately 300 hours, consisting of 75 hours for direct presence and further time for literature study, preparation of exercise problems or tasks.

Recommendation
GR I (ART I)

Literature

Module: Geological Hazards and Risk [M-PHYS-101833]

M 4.85 Module: Geological Hazards and Risk [M-PHYS-101833]

Responsible: Dr. Andreas Schäfer
Organisation: KIT Department of Physics
Part of: Second Major in Physics: Geophysics

Credits 8
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 5

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103525</td>
<td></td>
</tr>
<tr>
<td>Geological Hazards and Risk</td>
<td>8 CR</td>
</tr>
<tr>
<td>Schäfer</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Active and regular attendance of lecture and practicals. Project work (graded).

Prerequisites
none

Competence Goal
The students understand basic concepts of hazard and risk. They can explain in detail different aspects of earthquake hazard, volcanic hazard as well as other geological hazards, can compare and evaluate those hazards. They have fundamental knowledge of risk reduction and risk management. They know methods of risk modelling and are able to apply them.

Content
- Earthquake Hazards
 - Short introduction to seismology and seismometry (occurrence of tectonic earthquakes, types of seismic waves, magnitude, intensity, source physics)
 - Induced seismicity
 - Engineering seismology, Recurrence intervals, Gutenberg-Richter, PGA, PGV, spectral acceleration, hazard maps
 - Earthquake statistics
 - Liquefaction
- Tsunami Hazards
- Landslide Hazards
- Hazards from Sinkholes
- Volcanic Hazards
 - Short introduction to physical volcanology
 - Types of volcanic hazards
- The Concept of Risk, Damage and Loss
- Data Analysis and the use of GIS in Risk analysis
- Risk Modelling - Scenario Analysis
- Risk Reduction and Risk Management
- Analysis Feedback and Prospects in the Risk Modelling Industry

Module grade calculation
Project work will be graded.

Workload
- 60 h: active attendance during lectures and exercises
- 90 h: review, preparation and weekly assignments
- 90 h: project work
Learning type
4060121 Geological Hazards and Risk (V2)
4060122 Übungen zu Geological Hazards and Risk (Ü2)

Literature
Literature will be provided by the lecturer.
Module: In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region [M-PHYS-106322]

 Responsible: Prof. Dr. Andreas Rietbrock
 Organisation: KIT Department of Physics
 Part of: Second Major in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112830</td>
<td>In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Students solve exercise sheets, prepare and give a presentation and write a final report.

Competence Goal

Students understand the geodynamic and tectonic situation in the Mediterranean and especially in seismic active regions. They gain profound knowledge about seismic hazard, can explain the concept of seismic hazard assessment, and can apply it. They can name different monitoring methods, explain them and apply them under guidance.

Content

- Geodynamics of the Mediterranean
- Tectonics in Greece, Italy and the Balkans
- Seismic hazard, with focus on the Mediterranean
- Seismic monitoring
- Field work

Module grade calculation

The final mark is computed from all submissions.

Workload

180 h in total, composed of:

1. Lecture at KIT before in-situ part: 15 h
2. Data analysis at KIT: 5 h
3. Preparation of presentation and handout: 30 h
4. In-situ lecture: 80 h
5. Wrap-up of lectures, solving exercise sheets and preparation of report: 50 h

Learning type

4060351 (In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region),
4060352 (Exercises on In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region).

Literature

Will be announced during the lecture.
4.87 Module: Interdisciplinary Qualifications [M-PHYS-101394]

Responsible: Studiendekan Physik
Organisation: KIT Department of Physics
Part of: Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Once</td>
<td>1 term</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Electives Interdisciplinary Qualifications (Election: at least 4 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111562</td>
<td>Selfassignment-MScPhysics-graded</td>
<td>2 CR</td>
<td>Studiendekan Physik</td>
</tr>
<tr>
<td>T-PHYS-111565</td>
<td>Selfassignment-MScPhysics-ungraded</td>
<td>2 CR</td>
<td>Studiendekan Physik</td>
</tr>
</tbody>
</table>

Prerequisites
none

Annotation
Interdisciplinary qualifications (IQ) completed at the House-of-Competence (HoC), at the Zentrum für Angewandte Kulturwissenschaften (ZAK) or at the Sprachenzentrum (SpZ) can be assigned in self-service. First, select a partial accomplishment named "self-assignment" in your study schedule and second, assign an IQ-achievement via the tab "IQ achievements".
4.88 Module: Introduction to Cosmology [M-PHYS-102175]

Responsible: Prof. Dr. Guido Drexlin
Organisation: KIT Department of Physics
Part of: Major in Physics: Experimental Astroparticle Physics (Required Experimental Astroparticle Physics)
Second Major in Physics: Experimental Astroparticle Physics (Required Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-102384 Introduction to Cosmology 6 CR Drexlin

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102176 - Introduction to Cosmology (Minor) must not have been started.

Competence Goal
Students will be introduced to the basic concepts of cosmology. The lecture will provide both the theoretical concepts and an overview of modern experimental methods and observational techniques. The students will be enabled to understand the concepts by means of concrete case studies from modern cosmology and will be enabled to apply the learned methods in the context of later independent research.

Methodological Competency Acquisition:

- Understanding of the fundamentals of cosmology
- Recognition of methodological cross-connections to elementary particle physics and astroparticle physics.
- Acquisition of the ability to work independently on current research topics as preparation for the master thesis.

Content
The lecture offers an introduction to modern cosmology, which has taken an enormous upswing in recent years due to the use of state-of-the-art technologies (Planck satellite, galaxy surveys such as 2df and SDSS) and accompanying computationally intensive simulations (Millennium). The large number of observations has led to the establishment of a so-called concordance model of cosmology, in which the contributions of dark energy and dark matter dominate the evolution of large-scale structures in the universe.

Starting from a description of the early universe with the supporting pillars of the Big Bang theory (Hubble expansion, nucleosynthesis, cosmic background radiation) and the phase transitions and symmetry breaking that occur in the process, the formation and evolution of large-scale structures in the universe up to today's "dark universe" is discussed (comparison of "top-down" with "bottom-up" models). Special attention is given to a detailed presentation of the most modern experimental techniques and methods of analysis, which have found their way into wide areas of physics.

The lecture thus provides a coherent picture of modern cosmology and discusses fundamental issues also in neighboring disciplines such as particle physics and astrophysics and can therefore be complemented with other lectures in the field of Experimental Astroparticle Physics and Experimental Particle Physics.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation
Basic knowledge from lecture "Nuclei and Particles"

Literature
Will be mentioned in the lecture.
Module: Introduction to Cosmology (Minor) [M-PHYS-102176]

Responsibility: Prof. Dr. Guido Drexlin
Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandate

<table>
<thead>
<tr>
<th>M-PHYS-102433</th>
<th>Introduction to Cosmology (Minor)</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 CR</td>
<td>Drexlin</td>
</tr>
</tbody>
</table>

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102175 - Introduction to Cosmology must not have been started.

Competence Goal

Students will be introduced to the basic concepts of cosmology. The lecture will provide both the theoretical concepts and an overview of modern experimental methods and observational techniques. The students will be enabled to understand the concepts by means of concrete case studies from modern cosmology and will be enabled to apply the learned methods in the context of later independent research.

Methodological Competency Acquisition:

- Understanding of the fundamentals of cosmology
- Recognition of methodological cross-connections to elementary particle physics and astroparticle physics.
- Acquisition of the ability to work independently on current research topics as preparation for the master thesis.

Content

The lecture offers an introduction to modern cosmology, which has taken an enormous upswing in recent years due to the use of state-of-the-art technologies (Planck satellite, galaxy surveys such as 2dF and SDSS) and accompanying computationally intensive simulations (Millennium). The large number of observations has led to the establishment of a so-called concordance model of cosmology, in which the contributions of dark energy and dark matter dominate the evolution of large-scale structures in the universe.

Starting from a description of the early universe with the supporting pillars of the Big Bang theory (Hubble expansion, nucleosynthesis, cosmic background radiation) and the phase transitions and symmetry breaking that occur in the process, the formation and evolution of large-scale structures in the universe up to today's "dark universe" is discussed (comparison of "top-down" with "bottom-up" models). Special attention is given to a detailed presentation of the most modern experimental techniques and methods of analysis, which have found their way into wide areas of physics.

The lecture thus provides a coherent picture of modern cosmology and discusses fundamental issues also in neighboring disciplines such as particle physics and astrophysics and can therefore be complemented with other lectures in the field of Experimental Astroparticle Physics and Experimental Particle Physics.

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture and preparation of the exercises (135 hours).

Recommendation

Basic knowledge from lecture "Nuclei and Particles"

Literature

Will be mentioned in the lecture.
4.90 Module: Introduction to Flavor Physics, Fundamentals [M-PHYS-102987]

Responsible: Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-105963 Introduction to Flavor Physics, Fundamentals 10 CR Nierste

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102986 - Introduction to Flavor Physics, Fundamentals and Advanced Topics must not have been started.
2. The module M-PHYS-103188 - Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor) must not have been started.
3. The module M-PHYS-103189 - Introduction to Flavor Physics, Fundamentals (Minor) must not have been started.

Competence Goal

Students will learn the methodology of Theoretical Flavour Physics, be able to solve complex mathematical problems such as calculating the decay amplitudes of mesons, and understand the phenomenology of the Yukawa sector.

Content

Workload

300 h consisting of attendance time (75 h), wrap-up of the lecture incl. exam preparation and working on the exercises (225 h)

Recommendation

It is useful to have prior knowledge about quantized fields and the standard model of particle physics, e.g. from the lecture "Introduction to Theoretical Particle Physics" (4026021). For students interested in theory it is useful to attend the lecture "Theoretical Particle Physics I" in parallel.

Literature

To be stated in the lecture.
Module: Introduction to Flavor Physics, Fundamentals (Minor) [M-PHYS-103189]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106322</td>
<td>Introduction to Flavor Physics, Fundamentals (Minor)</td>
<td>10</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102986 - Introduction to Flavor Physics, Fundamentals and Advanced Topics must not have been started.
2. The module M-PHYS-103188 - Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor) must not have been started.
3. The module M-PHYS-102987 - Introduction to Flavor Physics, Fundamentals must not have been started.

Competence Goal
Students will learn the methodology of Theoretical Flavour Physics, be able to solve complex mathematical problems such as calculating the decay amplitudes of mesons, and understand the phenomenology of the Yukawa sector.

Content

Workload
300 h consisting of attendance time (75 h), wrap-up of the lecture and work on the exercises (225 h)

Recommendation
It is useful to have prior knowledge about quantized fields and the standard model of particle physics, e.g. from the lecture "Introduction to Theoretical Particle Physics" (4026021). For students interested in theory it is useful to attend the lecture "Theoretical Particle Physics I" in parallel.

Literature
To be stated in the lecture.
Module: Introduction to Flavor Physics, Fundamentals and Advanced Topics [M-PHYS-102986]

Responsible: Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

M Mandatory

T-PHYS-105962 Introduction to Flavor Physics, Fundamentals and Advanced Topics 12 CR Nierste

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102987 - Introduction to Flavor Physics, Fundamentals must not have been started.
2. The module M-PHYS-103188 - Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor) must not have been started.
3. The module M-PHYS-103189 - Introduction to Flavor Physics, Fundamentals (Minor) must not have been started.

Competence Goal
Students will learn the methodology of Theoretical Flavour Physics, be able to solve complex mathematical problems such as calculating the decay amplitudes of mesons, and understand the phenomenology of the Yukawa sector. In addition, participants will have an understanding of CP asymmetries and decay rates of rare decays and their sensitivity to physics beyond the Standard Model.

Content

Workload
360 h consisting of attendance time (90 h), wrap-up of the lecture incl. exam preparation and working on the exercises (270 h)

Recommendation
It is useful to have prior knowledge about quantized fields and the standard model of particle physics, e.g. from the lecture "Introduction to Theoretical Particle Physics" (4026021). For students interested in theory it is useful to attend the lecture "Theoretical Particle Physics I" in parallel.

Literature
To be stated in the lecture.
Module: Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor) [M-PHYS-103188]

M

4.93 Module: Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor) [M-PHYS-103188]

Responsible: Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: Minor in Physics: Theoretical Particle Physics

Credits: 12

Grading scale: pass/fail

Recurrence: Irregular

Duration: 1 term

Language: English

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106321</td>
<td>Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor)</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102987 - Introduction to Flavor Physics, Fundamentals must not have been started.
2. The module M-PHYS-102986 - Introduction to Flavor Physics, Fundamentals and Advanced Topics must not have been started.
3. The module M-PHYS-103189 - Introduction to Flavor Physics, Fundamentals (Minor) must not have been started.

Competence Goal

Students will learn the methodology of Theoretical Flavour Physics, be able to solve complex mathematical problems such as calculating the decay amplitudes of mesons, and understand the phenomenology of the Yukawa sector. In addition, participants will have an understanding of CP asymmetries and decay rates of rare decays and their sensitivity to physics beyond the Standard Model.

Content

Workload

360 h consisting of attendance time (90 h), wrap-up of the lecture incl. exam preparation and working on the exercises (270 h)

Recommendation

It is useful to have prior knowledge about quantized fields and the standard model of particle physics, e.g. from the lecture "Introduction to Theoretical Particle Physics" (4026021). For students interested in theory it is useful to attend the lecture "Theoretical Particle Physics I" in parallel.

Literature

To be stated in the lecture.
4.94 Module: Introduction to General Relativity [M-PHYS-106532]

** Responsible:** Prof. Dr. Thomas Schwetz-Mangold
** Organisation:** KIT Department of Physics
** Part of:**
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Theoretical Particle Physics

** Credits:** 8
** Grading scale:** Grade to a tenth
** Recurrence:** Each winter term
** Duration:** 1 term
** Language:** English
** Level:** 4
** Version:** 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-113186</td>
<td>Introduction to General Relativity</td>
<td>8</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

** Competence Certificate**
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

** Prerequisites**
none

** Modeled Conditions**
The following conditions have to be fulfilled:

1. The module M-PHYS-102319 - General Relativity must not have been started.
2. The module M-PHYS-102320 - General Relativity (Minor) must not have been started.
3. The module M-PHYS-106533 - Introduction to General Relativity (Minor) must not have been started.

** Competence Goal**
Students know and understand the basic ideas of Special Relativity and are familiar with the main concepts and techniques of General Relativity. Students know about black holes, gravitational waves and simple cosmological models. Participants of the course can apply the concepts and techniques they have learned to solve selected problems in General Relativity.

** Content**
This lecture gives an introduction to General Relativity, the theory of space time and gravity. After a brief review of special relativity, the necessary tools to describe curved space time are introduced, as well as concepts such as the equivalence principle and geodesic motion. The Einstein equations are discussed, which relate the geometry of space time to the matter and energy content of it. In the second part of the lecture some important application of the General Relativity are discussed, including black holes, gravitational waves and the basics of cosmology.

** Workload**
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

** Recommendation**
Basic knowledge on Special Relativity

** Literature**
- S. Carrol, Spacetime and Geometry - An Introduction to General Relativity, Cambridge Univ. Press 2019;
- S. Weinberg, Gravitation and Cosmology, Wiley, 1972;

more literature will be provided during the lecture
4.95 Module: Introduction to General Relativity (Minor) [M-PHYS-106533]

Responsible: Prof. Dr. Thomas Schwetz-Mangold
Organisation: KIT Department of Physics
Part of:
- Minor in Physics: Experimental Astroparticle Physics
- Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Credits
- 8

Grading scale
- pass/fail

Recurrence
- Each winter term

Duration
- 1 term

Language
- English

Level
- 4

Version
- 1

Mandatory

| T-PHYS-113189 | Introduction to General Relativity (Minor) | 8 CR | Schwetz-Mangold |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
- none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-106532 - Introduction to General Relativity must not have been started.
2. The module M-PHYS-102319 - General Relativity must not have been started.
3. The module M-PHYS-102320 - General Relativity (Minor) must not have been started.

Competence Goal
Students know and understand the basic ideas of Special Relativity and are familiar with the main concepts and techniques of General Relativity. Students know about black holes, gravitational waves and simple cosmological models. Participants of the course can apply the concepts and techniques they have learned to solve selected problems in General Relativity.

Content
This lecture gives an introduction to General Relativity, the theory of space time and gravity. After a brief review of special relativity, the necessary tools to describe curved space time are introduced, as well as concepts such as the equivalence principle and geodesic motion. The Einstein equations are discussed, which relate the geometry of space time to the matter and energy content of it. In the second part of the lecture some important application of the General Relativity are discussed, including black holes, gravitational waves and the basics of cosmology.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Recommendation
Basic knowledge on Special Relativity

Literature

- S. Carrol, Spacetime and Geometry - An Introduction to General Relativity, Cambridge Univ. Press 2019;
- S. Weinberg, Gravitation and Cosmology, Wiley, 1972;

more literature will be provided during the lecture
Module: Introduction to Neutron Scattering [M-PHYS-106323]

Responsible: PD Dr. Frank Weber

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)

Credits: 6

Grading scale: Grade to a tenth

Recurrence: Irregular

Duration: 1 term

Language: English

Level: 4

Version: 1

Mandatory

| T-PHYS-112831 | Introduction to Neutron Scattering | 6 CR | Weber |

Competence Certificate

Zur Verwendung als Schwerpunkt- oder Ergänzungsfach:
Mündliche Prüfung. Im Rahmen des Schwerpunktfachs des MSc Physik wird das Modul zusammen mit weiteren belegten Modulen geprüft. Die Dauer der mündlichen Prüfung beträgt insgesamt ca. 60 Minuten.

Competence Goal

The students understand the theoretical and technical basic principles of neutron scattering experiments. For a specific scientific question, the students are able to evaluate various neutron scattering techniques and select the best-suited one. Student are able to critically read and assess scientific publications based on neutron scattering techniques.

Content

This lecture familiarizes the students with the basic principles of neutron scattering, the theoretical description and experimental realization of neutron scattering experiments. We will discuss methods for structure determination and imaging based on nuclear and magnetic scattering mechanisms. Applications to investigate lattice and magnetic degrees of freedom discussed along with a short introduction to second quantization formalism and linear response theory. An overview and short comparison of complementary scattering methods (x-ray, electron) is given. The lecture will be illustrated with examples from current work on quantum materials.

- Basics of the neutron–matter interaction
- Concepts for the theoretical description of neutron scattering
- Production and detection of neutrons
- Structure determination with neutrons
- Inelastic neutron scattering – neutron spectroscopy
- Introduction: 2nd quantization, linear response
- Complementary scattering techniques

Workload

180 hours, composed of attendance time (45 hours), wrap-up of the lecture, working on the exercises and exam preparation (135 hours).

Recommendation

Basic knowledge of condensed matter physics, quantum mechanics, as well as thermodynamics and statistical physics are expected.

Literature

- Experimental Neutron Scattering, Willis & Carlile, Oxford
- Introduction to the theory of thermal neutron scattering, Squires, Dover
- Neutron scattering in condensed matter physics, Furrer & Strässle, World Scientific
- Neutron and synchrotron spectroscopy, ed.:Hippert et al., Springer
- Solid-State Spectroscopy, Kuzmani, Springer
- Festkörperphysik, Gross und Marx, Oldenburg
Module: Introduction to Neutron Scattering (Minor) [M-PHYS-106324]

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competition Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Competition Goal
The students understand the theoretical and technical basic principles of neutron scattering experiments. For a specific scientific question, the students are able to evaluate various neutron scattering techniques and select the best-suited one. Student are able to critically read and assess scientific publications based on neutron scattering techniques.

Content
This lecture familiarizes the students with the basic principles of neutron scattering, the theoretical description and experimental realization of neutron scattering experiments. We will discuss methods for structure determination and imaging based on nuclear and magnetic scattering mechanisms. Applications to investigate lattice and magnetic degrees of freedom discussed along with a short introduction to second quantization formalism and linear response theory. An overview and short comparison of complementary scattering methods (x-ray, electron) is given. The lecture will be illustrated with examples from current work on quantum materials.

- Basics of the neutron-matter interaction
- Concepts for the theoretical description of neutron scattering
- Production and detection of neutrons
- Structure determination with neutrons
- Inelastic neutron scattering – neutron spectroscopy
- Introduction: 2nd quantization, linear response
- Complementary scattering techniques

Workload
180 hours, composed of attendance time (45 hours), wrap-up of the lecture and work on the exercises (135 hours).

Recommendation
Basic knowledge of condensed matter physics, quantum mechanics, as well as thermodynamics and statistical physics are expected.

Literature
- Experimental Neutron Scattering, Willis & Carlile, Oxford
- Introduction to the theory of thermal neutron scattering, Squires, Dover
- Neutron scattering in condensed matter physics, Furrer & Strässle, World Scientific
- Neutron and synchrotron spectroscopy, ed.:Hippert et al., Springer
- Solid-State Spectroscopy, Kuzman, Springer
- Festkörperphysik, Gross und Marx, Oldenburg
Module: Introduction to Scientific Methods [M-PHYS-101397]

Responsible: Studiendekan Physik

Organisation: KIT Department of Physics

Part of: Introduction to Scientific Methods

Credits

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102480</td>
</tr>
</tbody>
</table>

Competence Certificate

Study achievement, ungraded.

Prerequisites

The following subjects of the course of study have to be passed:

- Major in Physics
- Second Major in Physics
- Minor in Physics
- Non-Physics Elective
- Advanced Physics Laboratory Course

Competence Goal

Students learn basic working methods that are necessary for successful scientific research. The working methods themselves are independent of the respective field of specialization, but are practiced and learned on the basis of a concrete task (topic of the master's thesis).

Workload

approx. 450 hours
Module: Introduction to Theoretical Cosmology [M-PHYS-104855]

Responsible:
TT-Prof. Dr. Felix Kahlhöfer
Prof. Dr. Thomas Schwetz-Mangold

Organisation:
KIT Department of Physics

Part of:
Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>T-PHYS-109887</th>
<th>Introduction to Theoretical Cosmology</th>
<th>8 CR</th>
</tr>
</thead>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104856 - Introduction to Theoretical Cosmology (Minor) must not have been started.

Competence Goal
Students learn different aspects of the Big Bang theory. They understand the basic physical concepts and learn relevant methods of theoretical physics applied in cosmology.

Content
The lecture gives an introduction in the standard model of cosmology, the so-called LCDM model. The fundamental physics principles of the model are discussed. Starting from fundamental theories such as general relativity, particle physics, thermodynamics and statistical physics, we derive the properties and predictions of the LCDM model. We consider the expansion of the Universe, dark matter, dark energy, cosmic structure formation, cosmic microwave background radiation, and the theory of Inflation.

Workload
240 h consisting of attendance time (60 h), wrap-up of the lecture incl. exam preparation and working on the exercises (180 h)

Recommendation
Basic knowledge of General Relativity is recommended, but all required concepts will be introduced. Basic knowledge of particle physics is helpful.

Literature
- S. Dodelson, Modern Cosmology;
- S. Weinberg, Cosmology;
- V. Mukhanov, Physical Foundations of Cosmology;

Additional literature will be announced in the lecture.
Module: Introduction to Theoretical Cosmology (Minor) [M-PHYS-104856]

Responsible:
TT-Prof. Dr. Felix Kahlhöfer
Prof. Dr. Thomas Schwetz-Mangold

Organisation:
KIT Department of Physics

Part of:
Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109888</td>
<td>Introduction to Theoretical Cosmology (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104855 - Introduction to Theoretical Cosmology must not have been started.

Competence Goal
Students learn different aspects of the Big Bang theory. They understand the basic physical concepts and learn relevant methods of theoretical physics applied in cosmology.

Content
The lecture gives an introduction in the standard model of cosmology, the so-called LCDM model. The fundamental physics principles of the model are discussed. Starting from fundamental theories such as general relativity, particle physics, thermodynamics and statistical physics, we derive the properties and predictions of the LCDM model. We consider the expansion of the Universe, dark matter, dark energy, cosmic structure formation, cosmic microwave background radiation, and the theory of inflation.

Workload
240 h consisting of attendance time (60 h), wrap-up of the lecture and working on the exercises (180 h)

Recommendation
Basic knowledge of General Relativity is recommended, but all required concepts will be introduced. Basic knowledge of particle physics is helpful.

Literature

- S. Dodelson, Modern Cosmology;
- S. Weinberg, Cosmology;
- V. Mukhanov, Physical Foundations of Cosmology;

Additional literature will be announced in the lecture.
Module: Introduction to Theoretical Particle Physics, with ext. Exercises [M-PHYS-102221]

Responsible:
PD Dr. Stefan Gieseke
Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>CR</th>
<th>Course</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104536</td>
<td>Introduction to Theoretical Particle Physics, with ext. Exercises</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102424 - Introduction to Theoretical Particle Physics, with ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102425 - Introduction to Theoretical Particle Physics, without ext. Exercises must not have been started.
3. The module M-PHYS-102426 - Introduction to Theoretical Particle Physics, without ext. Exercises (Minor) must not have been started.

Competence Goal

The students obtain basic knowledge about the topics, concepts and tools used in theoretical particle physics. They obtain an overview of the typical questions and problems. The students deepen their knowledge in the exercises tailored to the lecture.

Content

Lagrange densities, symmetries and conservation laws, Feynman rules, cross sections, elementary processes in QED, spontaneous symmetry breaking, Higgs mechanism, Standard Model of particle physics, decay rates, Higgs boson phenomenology

Workload

300 hours consisting of attendance time (75 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (225 hours)

Recommendation

Basic knowledge in quantum mechanics I and II

Literature

Will be provided in the first lecture.
Module: Introduction to Theoretical Particle Physics, with ext. Exercises (Minor) [M-PHYS-102424]

Responsible:
- PD Dr. Stefan Gieseke
- Prof. Dr. Gudrun Heinrich
- Prof. Dr. Kirill Melnikov
- Prof. Dr. Milada Margarete Mühlleitner
- Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:
- Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104791</td>
<td>Introduction to Theoretical Particle Physics, with ext. Exercises (Minor)</td>
<td>10 CR</td>
<td>Gieseke, Heinrich, Melnikov, Mühlleitner, Steinhauser</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102221 - Introduction to Theoretical Particle Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-102425 - Introduction to Theoretical Particle Physics, without ext. Exercises must not have been started.
3. The module M-PHYS-102426 - Introduction to Theoretical Particle Physics, without ext. Exercises (Minor) must not have been started.

Competence Goal
The students obtain basic knowledge about the topics, concepts and tools used in theoretical particle physics. They obtain an overview of the typical questions and problems. The students deepen their knowledge in the exercises tailored to the lecture.

Content
Lagrange densities, symmetries and conservation laws, Feynman rules, cross sections, elementary processes in QED, spontaneous symmetry breaking, Higgs mechanism, Standard Model of particle physics, decay rates, Higgs boson phenomenology

Workload
300 hours consisting of attendance time (75 hours), wrap-up of the lecture and preparation of the exercises (225 hours).

Recommendation
Basic knowledge in quantum mechanics I and II

Literature
Will be provided in the first lecture.
Module: Introduction to Theoretical Particle Physics, without ext. Exercises [M-PHYS-102425]

 Responsible:
 PD Dr. Stefan Gieseke
 Prof. Dr. Gudrun Heinrich
 Prof. Dr. Kirill Melnikov
 Prof. Dr. Milada Margarete Mühlleitner
 Prof. Dr. Matthias Steinhauser

 Organisation:
 KIT Department of Physics

 Part of:
 Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
 Second Major in Physics: Theoretical Particle Physics

 Credits 8
 Grading scale Grade to a tenth
 Recurrence Each winter term
 Duration 1 term
 Language German/English
 Level 4
 Version 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104792</td>
<td>Introduction to Theoretical Particle Physics, without ext. Exercises</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102221 - Introduction to Theoretical Particle Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-102424 - Introduction to Theoretical Particle Physics, with ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-102426 - Introduction to Theoretical Particle Physics, without ext. Exercises (Minor) must not have been started.

Competence Goal
The students obtain basic knowledge about the topics, concepts and tools used in theoretical particle physics. They obtain an overview of the typical questions and problems.

Content
Lagrange densities, symmetries and conservation laws, Feynman rules, cross sections, elementary processes in QED, spontaneous symmetry breaking, Higgs mechanism, Standard Model of particle physics, decay rates, Higgs boson phenomenology

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation
Basic knowledge in quantum mechanics I and II

Literature
Will be provided in the first lecture.
Module: Introduction to Theoretical Particle Physics, without ext. Exercises (Minor) [M-PHYS-102426]

Responsible:
PD Dr. Stefan Gieseke
Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:
Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102221 - Introduction to Theoretical Particle Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-102424 - Introduction to Theoretical Particle Physics, with ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-102425 - Introduction to Theoretical Particle Physics, without ext. Exercises must not have been started.

Competence Goal
The students obtain basic knowledge about the topics, concepts and tools used in theoretical particle physics. They obtain an overview of the typical questions and problems.

Content
Lagrange densities, symmetries and conservation laws, Feynman rules, cross sections, elementary processes in QED, spontaneous symmetry breaking, Higgs mechanism, Standard Model of particle physics, decay rates, Higgs boson phenomenology

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Recommendation
Basic knowledge in quantum mechanics I and II

Literature
Will be provided in the first lecture.
4.105 Module: Inversion and Tomography [M-PHYS-102368]

Responsible: Prof. Dr. Thomas Bohlen
apl. Prof. Dr. Joachim Ritter

Organisation: KIT Department of Physics

Part of: Second Major in Physics: Geophysics

Credits 8 Grading scale Grade to a tenth Recurrence Each summer term Duration 1 term Language English Level 4 Version 2

Mandatory

| T-PHYS-104737 | Inversion and Tomography | 8 CR | Bohlen, Ritter |

Competence Certificate
To pass the module, an oral exam must be passed (approx. 20 min). As prerequisites the examinations of other type must be passed, based on successful participation of the exercises. Students write reports on their exercise work. These reports are rated. The necessary number of points is explained at the beginning of the individual exercises.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102658 - Inversion and Tomography (Minor) must not have been started.

Competence Goal
The students understand how to invert data to achieve a model of physical parameters. The students realize that seismic waves can be treated in different waves: full waveform, finite-frequency approximations (banana-doughnut theory) and rays. From this they understand how seismic images can be constructed and interpreted. Students are able to evaluate inversion models based on error bonds, resolution matrices and reconstruction tests. They know the complete chain of tomography: data pre-processing, parameterization, inversion, model assessment and interpretation. The students are used to read scientific papers on inversion and tomography and to discuss questions on these papers. Finally the students are able to understand basic inverse problems and read more advanced texts. Practically, the students understand how to code simple problems with Matlab or possibly Python. The students know how to analyze inverse problems using singular value decomposition and other methods.

Content
- Fundamentals of tomography
- Application of seismic tomography
- Regional to global seismic tomography
- Analysis of tomography problems
- Fundamentals in seismic inversion
- Application of linear and non-linear inversion

Module grade calculation
The grade of the module results from grade of the oral exam.

Workload
240 hours composed of attendance time (60 h), wrap-up of the lectures and solving the exercises (180 h)

Recommendation
Knowledge on fundamentals of seismology and understanding of mathematics, especially matrix calculus. Fundamental skills in Linux, Matlab and computing in general.

Literature
4.106 Module: Inversion and Tomography (Minor) [M-PHYS-102658]

Responsible: Prof. Dr. Thomas Bohlen
apl. Prof. Dr. Joachim Ritter

Organisation: KIT Department of Physics

Part of: Minor in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-105572 | Inversion and Tomography (Minor) | 8 CR Bohlen, Ritter |

Competence Certificate

To pass the module, the examinations of other type must be passed, based on successful participation of the exercises. Students write reports on their exercise work. These reports are rated. The necessary number of points is explained at the beginning of the individual exercises.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102368 - Inversion and Tomography must not have been started.

Competence Goal

The students understand how to invert data to achieve a model of physical parameters. The students realize that seismic waves can be treated in different waves: full waveform, finite-frequency approximations (banana-doughnut theory) and rays. From this they understand how seismic images can be constructed and interpreted. Students are able to evaluate inversion models based on error bonds, resolution matrices and reconstruction tests. They know the complete chain of tomography: data pre-processing, parameterization, inversion, model assessment and interpretation. The students are used to read scientific papers on inversion and tomography and to discuss questions on these papers. Finally the students are able to understand basic inverse problems and read more advanced texts. Practically, the students understand how to code simple problems with Matlab or possibly Python. The students know how to analyze inverse problems using singular value decomposition and other methods.

Content

- Fundamentals of tomography
- Application of seismic tomography
- Regional to global seismic tomography
- Analysis of tomography problems
- Fundamentals in seismic inversion
- Application of linear and non-linear inversion

Module grade calculation

The module is ungraded

Workload

240 hours composed of attendance time (60 h), wrap-up of the lectures and solving the exercises (180 h)

Recommendation

Knowledge on fundamentals of seismology and understanding of mathematics, especially matrix calculus. Fundamental skills in Linux, Matlab and computing in general.

Literature

Module: Master's Thesis [M-PHYS-106481]

Responsible: Studiendekan Physik

Organisation: KIT Department of Physics

Part of: Master's Thesis

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>Grade to a tenth</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-113096</td>
<td>Master's Thesis</td>
<td>30 CR</td>
</tr>
</tbody>
</table>

Prerequisites
The modules "Specialisation" and "Introduction to Research Methods" have been passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-101396 - Specialization Phase must have been passed.
2. The module M-PHYS-101397 - Introduction to Scientific Methods must have been passed.
Module: Mathematical Methods of Theoretical Physics (two hours per week) [M-PHYS-105834]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
 Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
 Second Major in Physics: Theoretical Particle Physics
 Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-111704 Mathematical Methods of Theoretical Physics (two hours per week) 8 CR Nierste

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105835 - Mathematical Methods of Theoretical Physics (two hours per week) (Minor) must not have been started.

Competence Goal

Students understand the concepts of functional analysis and function theory and can apply them to problems in theoretical physics. This includes solving differential equations and complex integrals.

Content

Workload

240 h consisting of attendance time (60 h), wrap-up of the lecture, working on the exercises and preparation of the exam (180 h)

Recommendation

The secure mastery of the material from HM1-HM3 is useful
4.109 Module: Mathematical Methods of Theoretical Physics (two hours per week) (Minor) [M-PHYS-105835]

Responsibility: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111705 | Mathematical Methods of Theoretical Physics (two hours per week) (Minor) | 8 CR | Nierste |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105834 - Mathematical Methods of Theoretical Physics (two hours per week) must not have been started.

Competence Goal
Students understand the concepts of functional analysis and function theory and can apply them to problems in theoretical physics. This includes solving differential equations and complex integrals.

Content

Workload
240 h consisting of attendance time (60 h), wrap-up of the lecture and working on the exercises (180 h)

Recommendation
The secure mastery of the material from HM1-HM3 is useful.
4.110 Module: Measurement Methods and Techniques in Experimental Physics, with ext. Exercises [M-PHYS-102517]

Responsible: Dr. Beate Bornschein
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

Credits
- 8

Grading scale
- Grade to a tenth

Recurrence
- Irregular

Duration
- 1 term

Language
- German

Level
- 4

Version
- 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>GR</th>
<th>REC</th>
<th>DUR</th>
<th>LAN</th>
<th>LVL</th>
<th>VERS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102376</td>
<td>Measurement Methods and Techniques in Experimental Physics, with ext. Exercises</td>
<td>8</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Drexlin, Hartmann, Valerius</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102518 - Measurement Methods and Techniques in Experimental Physics, without ext. Exercises must not have been started.
2. The module M-PHYS-102519 - Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor) must not have been started.

Competence Goal

Students will be able to select suitable measurement methods and measuring instruments, evaluate measured values and calculate measurement uncertainties. The students learn a practical example measurement task in the laboratory.

Content

The lecture is intended to facilitate the introduction to experimental work in a laboratory. The aim is for students to gain an overview of a wide range of important measurement methods and experimental techniques and to be able to apply the knowledge they have acquired to practical measurement tasks in examples. The focus here is on the one hand on the methodical procedure for selecting the optimum measurement procedure and on the other hand on the evaluation of measurements including the consideration of measurement uncertainties. Furthermore, the lecture shall contribute to a better communication between engineers, physicists and physicists (e.g. the engineer talks about the measurement uncertainty budget according to GUM and the physicist wonders what that is all about) and thus promote the integration of the young professionals into the mixed teams of technicians, engineers, physicists and physicists which are so typical for KIT.

Among others, the following topics will be covered:

Measuring instruments and their accuracy classes, calculation of measurement uncertainties according to GUM and determination of a confidence interval, methods of (low) temperature measurement, introduction to vacuum technology including leak detection technology, methods of magnetic field measurement and mass flow measurement, introduction to radiation measurement technology and dosimetry, as well as reading flow diagrams.

Lecture and exercises take place as a 5-day block course at the end of the semester (3 SWS) and can be supplemented by a block practical course (1 SWS, by arrangement).

Workload

240 h consisting of attendance time (45 h), wrap-up of the lecture incl. exam preparation and working on the exercises, additionally the internship with 24 h attendance time and 16 h post-processing.
Recommendation
Interest in experimental physics

Literature
Will be mentioned in the lecture.
Module: Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor) [M-PHYS-102519]

4.111 Module: Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor) [M-PHYS-102519]

Responsible: Dr. Beate Bornschein
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Particle Physics
Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-105106</td>
<td>Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102517 - Measurement Methods and Techniques in Experimental Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-102518 - Measurement Methods and Techniques in Experimental Physics, without ext. Exercises must not have been started.

Competence Goal
Students will be able to select suitable measurement methods and measuring instruments, evaluate measured values and calculate measurement uncertainties. The students learn a practical example measurement task in the laboratory.

Content
The lecture is intended to facilitate the introduction to experimental work in a laboratory. The aim is for students to gain an overview of a wide range of important measurement methods and experimental techniques and to be able to apply the knowledge they have acquired to practical measurement tasks in examples. The focus here is on the one hand on the methodical procedure for selecting the optimal measurement procedure and on the other hand on the evaluation of measurements including the consideration of measurement uncertainties. Furthermore, the lecture shall contribute to a better communication between engineers, physicists and physicists (e.g. the engineer talks about the measurement uncertainty budget according to GUM and the physicist wonders what that is all about) and thus promote the integration of the young professionals into the mixed teams of technicians, engineers, physicists and physicists which are so typical for KIT.

Among others, the following topics will be covered:
- Measuring instruments and their accuracy classes, calculation of measurement uncertainties according to GUM and determination of a confidence interval, methods of (low) temperature measurement, introduction to vacuum technology including leak detection technology, methods of magnetic field measurement and mass flow measurement, introduction to radiation measurement technology and dosimetry, as well as reading flow diagrams.
- Lecture and exercises take place as a 5-day block course at the end of the semester (3 SWS) and can be supplemented by a block practical course (1 SWS, by arrangement).

Workload
240 h consisting of attendance time (45 h), wrap-up of the lecture and work on the exercises, plus the internship with 24 h attendance time and 16 h wrap-up.

Recommendation
Interest in experimental physics

Literature
Will be mentioned in the lecture.
4 M 4.112 Module: Measurement Methods and Techniques in Experimental Physics, without ext. Exercises [M-PHYS-102518]

Responsible: Dr. Beate Bornschein
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of:
Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-105105 | Measurement Methods and Techniques in Experimental Physics, without ext. Exercises | 6 CR | Drexlin, Hartmann, Valerius |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102517 - Measurement Methods and Techniques in Experimental Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-102519 - Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor) must not have been started.

Competence Goal

Students will be able to select suitable measurement methods and measuring instruments, evaluate measured values and calculate measurement uncertainties. The students learn a practical example measurement task in the laboratory.

Content

The lecture is intended to facilitate the introduction to experimental work in a laboratory. The aim is for students to gain an overview of a wide range of important measurement methods and experimental techniques and to be able to apply the knowledge they have acquired to practical measurement tasks in examples. The focus here is on the one hand on the methodical procedure for selecting the optimal measurement procedure and on the other hand on the evaluation of measurements including the consideration of measurement uncertainties. Furthermore, the lecture shall contribute to a better communication between engineers, physicists and physicists (e.g. the engineer talks about the measurement uncertainty budget according to GUM and the physicist wonders what that is all about) and thus promote the integration of the young professionals into the mixed teams of technicians, engineers, physicists and physicists which are so typical for KIT.

Among others, the following topics will be covered:

- Measuring instruments and their accuracy classes, calculation of measurement uncertainties according to GUM and determination of a confidence interval, methods of (low) temperature measurement, introduction to vacuum technology including leak detection technology, methods of magnetic field measurement and mass flow measurement, introduction to radiation measurement technology and dosimetry, as well as reading flow diagrams.

Lecture and exercises take place as a 5-day block course at the end of the semester (3 SWS).

Workload

180 h consisting of attendance time (45 h), wrap-up of the lecture incl. exam preparation and working on the exercises.

Recommendation

Interest in experimental physics
Literature
Will be mentioned in the lecture.
Module: Measurement Methods and Techniques in Experimental Physics, without ext. Exercises (Minor) [M-PHYS-103194]

Responsibility: Dr. Beate Bornschein
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: Minor in Physics: Experimental Particle Physics
Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-106327 Measurement Methods and Techniques in Experimental Physics, without ext. Exercises (Minor) 6 CR Drexlin, Hartmann, Valerius

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102517 - Measurement Methods and Techniques in Experimental Physics, with ext. Exercises must not have been started.
2. The module M-PHYS-102519 - Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-102518 - Measurement Methods and Techniques in Experimental Physics, without ext. Exercises must not have been started.

Competence Goal
Students will be able to select suitable measurement methods and measuring instruments, evaluate measured values and calculate measurement uncertainties. The students learn a practical example measurement task in the laboratory.

Content
The lecture is intended to facilitate the introduction to experimental work in a laboratory. The aim is for students to gain an overview of a wide range of important measurement methods and experimental techniques and to be able to apply the knowledge they have acquired to practical measurement tasks in examples. The focus here is on the one hand on the methodical procedure for selecting the optimum measurement procedure and on the other hand on the evaluation of measurements including the consideration of measurement uncertainties. Furthermore, the lecture shall contribute to a better communication between engineers, physicists and physicists (e.g. the engineer talks about the measurement uncertainty budget according to GUM and the physicist wonders what that is all about) and thus promote the integration of the young professionals into the mixed teams of technicians, engineers, physicists and physicists which are so typical for KIT.

Among others, the following topics will be covered:
- measuring instruments and their accuracy classes, calculation of measurement uncertainties according to GUM and determination of a confidence interval, methods of (low) temperature measurement, introduction to vacuum technology including leak detection technology, methods of magnetic field measurement and mass flow measurement, introduction to radiation measurement technology and dosimetry, as well as reading flow diagrams.

Lecture and exercises take place as a 5-day block course at the end of the semester (3 SWS).

Workload
180 h consisting of attendance time (45 h), wrap-up of the lecture and work on the exercises (135 h)

Recommendation
Interest in experimental physics

Literature
Will be mentioned in the lecture.
Module: Microscale Fluid Mechanics [M-MACH-106539]

Responsible: Dr.-Ing. Philipp Marthaler
Organisation: KIT Department of Mechanical Engineering
Part of: Major in Physics: Nanophysics (Elective Nanophysics)
Second Major in Physics: Nanophysics (Elective Nanophysics)

Credits: 4
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-MACH-113144 Microscale Fluid Mechanics 4 CR Marthaler

Competence Certificate
Oral examination, duration: 30 minutes

Competence Goal
After this course, the participants can
(1) identify microfluidic and/or electrochemical problems
(2) describe those phenomena with the respective terminology and classify them as either Stokes flow, electrohydrodynamic or electrokinetic
(3) recognize and apply the appropriate modeling approaches and solution methods
(4) analyze the multiphysical and multiscale behavior and discuss the influence of different effects, such as electric forces, surface tension or electric boundary layers
(5) assess the importance of these effects in the context of biological phenomena and evaluate design choices in microfluidic devices

Content
The lecture covers microfluidic phenomena, particularly Stokes flow and electrical phenomena that occur in fluids. Understanding the mentioned effects is crucial for the development of microfluidic systems with application fields ranging from clinical diagnostics to cell research and environmental monitoring. The basic operations performed in microsystems are particle separation and mixing, chemical analyses, characterization of biological samples, and cell capturing. The sample environment is in fluid form, in the case of fluid samples multiphase phenomena occur.

The lecture gives an overview of the basic physics, i.e., Stokes flow, analysis of hydraulic circuits, surface tension effects, transport of passive scalars, electroosmosis and electrophoresis, structure of the electric double layer, electrokinetics, the Taylor-Melcher model for the description of droplets under the influence of an electric field.

Phenomena with electric boundary layers are discussed using asymptotic methods that are introduced in the lecture. A basic understanding of fluid mechanics and differential equations is required.
Module: Modern Methods of Data Analysis, with ext. Exercises [M-PHYS-102127]

Responsible: Prof. Dr. Günter Quast
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

Credits
8

Grading scale
Grade to a tenth

Recurrence
Each summer term

Duration
1 term

Language
German

Level
4

Version
1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102495</td>
<td>Modern Methods of Data Analysis, with ext. Exercises</td>
<td>8 CR</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102125 - Modern Methods of Data Analysis, without ext. Exercises must not have been started.
2. The module M-PHYS-102126 - Modern Methods of Data Analysis, without ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-102128 - Modern Methods of Data Analysis, with ext. Exercises (Minor) must not have been started.

Competence Goal

Students will be able to formulate fundamentals of statistical data analysis, apply modern methods of data analysis to physical problems, and use and further develop tools for data analysis. On this basis, students are enabled to question and evaluate the use of statistical methods in science and society. In the extended exercises, the material is deepened by treating a problem originating from research practice.

Content

Fundamentals of probability, probability distributions, Monte Carlo methods, parameter estimation, numerical optimization, convolution and deconvolution, hypothesis testing, confidence intervals, multivariate classification, time series analysis, and filtering.

Workload

240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation

Basic knowledge of statistical data analysis, such as that taught in the undergraduate course Computer Use in Physics, is desirable.

Literature

- G.Cowan: Statistical Data Analysis, Oxford University Press
- G.Bohm, G.Zech: Einführung in Statistik und Messwertanalyse für Physiker, DESYeBook
- V.Blobel, E.Lohrmann: Statistische und numerische Methoden der Datenanalyse, DESYeBook
- S.Brandt: Datennalyse, Spektrum
- T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer
4.116 Module: Modern Methods of Data Analysis, with ext. Exercises (Minor) [M-PHYS-102128]

Responsible: Prof. Dr. Günter Quast
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of:
Minor in Physics: Experimental Particle Physics
Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102496 | Modern Methods of Data Analysis, with ext. Exercises (Minor) | 8 CR | Quast, Wolf |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102125 - Modern Methods of Data Analysis, without ext. Exercises must not have been started.
2. The module M-PHYS-102126 - Modern Methods of Data Analysis, without ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-102127 - Modern Methods of Data Analysis, with ext. Exercises must not have been started.

Competence Goal
Students will be able to formulate fundamentals of statistical data analysis, apply modern methods of data analysis to physical problems, and use and further develop tools for data analysis. On this basis, students are enabled to question and evaluate the use of statistical methods in science and society. In the extended exercises, the material is deepened by treating a problem originating from research practice.

Content
Fundamentals of probability, probability distributions, Monte Carlo methods, parameter estimation, numerical optimization, convolution and deconvolution, hypothesis testing, confidence intervals, multivariate classification, time series analysis, and filtering.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and work on the exercises (180 hours).

Recommendation
Basic knowledge of statistical data analysis, such as that taught in the undergraduate course Computer Use in Physics, is desirable.

Literature

- G.Cowan: Statistical Data Analysis, Oxford University Press
- G.Bohm, G.Zech: Einführung in Statistik und Messwertanalyse für Physiker, DESYeBook
- V.Blobel, E.Lohrmann: Statistische und numerische Methoden der Datenanalyse, DESYeBook
- S.Brandt: Datenanalyse, Spektrum
- T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer
Module: Modern Methods of Data Analysis, without ext. Exercises [M-PHYS-102125]

Responsible: Prof. Dr. Günter Quast
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of:
Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102494</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102126 - Modern Methods of Data Analysis, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102127 - Modern Methods of Data Analysis, with ext. Exercises must not have been started.
3. The module M-PHYS-102128 - Modern Methods of Data Analysis, with ext. Exercises (Minor) must not have been started.

Competence Goal
Students will be able to formulate fundamentals of statistical data analysis, apply modern methods of data analysis to physical problems, and use and further develop tools for data analysis. On this basis, students are enabled to question and evaluate the use of statistical methods in science and society.

Content
Fundamentals of probability, probability distributions, Monte Carlo methods, parameter estimation, numerical optimization, convolution and deconvolution, hypothesis testing, confidence intervals, multivariate classification, time series analysis, and filtering.

Workload
180 hours consisting of attendance time (45 hours), follow-up of the lecture incl. exam preparation and working on the exercises (135 hours).

Recommendation
Basic knowledge of statistical data analysis, such as that taught in the undergraduate course Computer Use in Physics, is desirable.

Literature

- G.Cowan: Statistical Data Analysis, Oxford University Press
- G.Bohm, G.Zech: Einführung in Statistik und Messwertanalyse für Physiker, DESYeBook
- V.Blobel, E.Lohrmann: Statistische und numerische Methoden der Datenanalyse, DESYeBook
- S.Brandt: Datenanalyse, Spektrum
- T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer
Module: Modern Methods of Data Analysis, without ext. Exercises (Minor) [M-PHYS-102126]

Responsible: Prof. Dr. Günter Quast
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Experimental Particle Physics
- Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>German</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102497 | Modern Methods of Data Analysis, without ext. Exercises (Minor) | 6 CR | Quast, Wolf |

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102125 - Modern Methods of Data Analysis, without ext. Exercises must not have been started.
2. The module M-PHYS-102127 - Modern Methods of Data Analysis, with ext. Exercises must not have been started.
3. The module M-PHYS-102128 - Modern Methods of Data Analysis, with ext. Exercises (Minor) must not have been started.

Competence Goal

Students will be able to formulate fundamentals of statistical data analysis, apply modern methods of data analysis to physical problems, and use and further develop tools for data analysis. On this basis, students are enabled to question and evaluate the use of statistical methods in science and society.

Content

Fundamentals of probability, probability distributions, Monte Carlo methods, parameter estimation, numerical optimization, convolution and deconvolution, hypothesis testing, confidence intervals, multivariate classification, time series analysis, and filtering.

Workload

180 hours consisting of attendance time (45 hours), wrap-up of lecture and completion of exercises (135 hours).

Recommendation

Basic knowledge of statistical data analysis, such as that taught in the undergraduate course Computer Use in Physics, is desirable.

Literature

- G.Cowan: Statistical Data Analysis, Oxford University Press
- G.Bohm, G.Zech: Einführung in Statistik und Messwertanalyse für Physiker, DESYeBook
- V.Blobel, E.Lohrmann: Statistische und numerische Methoden der Datenanalyse, DESYeBook
- S.Brandt: Datenanalyse, Spektrum
- T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer
Module: Modern Methods of Spectroscopy: Applications in Astroparticle Physics [M-PHYS-106047]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Minor in Physics: Experimental Particle Physics
- Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112237</td>
<td>Modern Methods of Spectroscopy: Applications in Astroparticle Physics</td>
<td>2 CR</td>
<td>Drexlin, Valerius</td>
</tr>
</tbody>
</table>

Competence Certificate

Regular attendance during the block course is required. Successful participation in the course is certified by a preparatory talk introducing the basics, as well as by a final talk on the implementation and results from the subgroups.

Prerequisites

None

Competence Goal

The students are able to apply spectroscopic methods in astro-particle physics. They know how to plan and execute tasks at a large-scale research project from astro-particle physics in teamwork. Furthermore they are able to prepare and present project-specific basic principles as well as own results in a short talk.

Content

Main focus:

- Precision electron spectroscopy with a MAC-E filter spectrometer.
- Tritium process monitoring using optical spectroscopic methods: (i) sample preparation, (ii) processing, and (iii) performing spectroscopic measurements

Further topics:

- Vacuum technology
- Handling of radioactive samples
- Radiochemical properties of tritium
- Superconducting and normal conducting magnets
- Measurement of magnetic fields from mT to T
- Cryogenic fluids in the lab
- High voltage techniques
- Detector technologies & signal processing
- Signal & background

Annotation

MSc Physics: This module cannot be used concurrently with an advanced seminar in the physics major. The same regulation applies to the second major in physics.

Workload

60 h consisting of 1x day introduction with short seminar talks, 5x days in the lab and 1x day concluding presentation of results.

Recommendation

Fundamentals of classical electrodynamics, optical spectroscopy, thermodynamics, atomic, nuclear and particle physics, measurement methods and techniques in experimental physics, astroparticle physics, and cosmology.
Literature

Module: Molecular Electronics [M-PHYS-104540]

Responsible: Prof. Dr. Wulf Wulfhekel
Organisation: KIT Department of Physics
Part of: Major in Physics: Condensed Matter (Elective Condensed Matter)
 Major in Physics: Nanophysics (Elective Nanophysics)
 Second Major in Physics: Condensed Matter (Elective Condensed Matter)
 Second Major in Physics: Nanophysics (Elective Nanophysics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td></td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-109305 | Molecular Electronics | 6 CR | Wulfhekel |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-104541 - Molecular Electronics (Minor) must not have been started.

Competence Goal

Students acquire knowledge in the field of electronic transport in molecular systems, learn basic concepts of charge, spin and heat transport in nanoscopic systems, as well as their dynamics. They acquire knowledge on the state of the art of research and application of molecular electronics.

Content

Molecular bonding, molecular orbitals, localization and delocalization of charge carriers, adsorption and electronic interaction between molecules and conductors, self-energy, Landauer-Büttiker charge transport, spin transport, spin-orbit interaction, Kondo effect, Steven's operators and zero-field splitting, heat transport, Seebeck effect, memrisors.

Workload

180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (135 hours)

Recommendation

Basic knowledge of classical electromagnetism, quantum mechanics, solid state physics.

Literature

Will be mentioned in the lecture.
4.121 Module: Molecular Electronics (Minor) [M-PHYS-104541]

Responsible: Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of: Minor in Physics: Condensed Matter
Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-109306 | Molecular Electronics (Minor) | 6 CR | Wulfhekel |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104540 - Molecular Electronics must not have been started.

Competence Goal
Students acquire knowledge in the field of electronic transport in molecular systems, learn basic concepts of charge, spin and heat transport in nanoscopic systems, as well as their dynamics. They acquire knowledge on the state of the art of research and application of molecular electronics.

Content
Molecular bonding, molecular orbitals, localization and delocalization of charge carriers, adsorption and electronic interaction between molecules and conductors, self-energy, Landauer-Büttiker charge transport, spin transport, spin-orbit interaction, Kondo effect, Steven's operators and zero-field splitting, heat transport, Seebeck effect, memrisors.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture and work on the exercises (135 hours).

Recommendation
Basic knowledge of classical electromagnetism, quantum mechanics, solid state physics.

Literature
Will be mentioned in the lecture.
Module: Molecular Spectroscopy [M-PHYS-102337]

Responsible: apl. Prof. Dr. Andreas-Neil Unterreiner
Organisation: KIT Department of Physics
Part of: Major in Physics: Optics and Photonics (Elective Optics and Photonics)
Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Subject</th>
<th>Credits</th>
<th>lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-104639</td>
<td>Molecular Spectroscopy</td>
<td>6 CR</td>
<td>Unterreiner</td>
</tr>
</tbody>
</table>

Competence Certificate

Written exam. Usually 120 minutes.

Prerequisites

none

Competence Goal

The students receive an in-depth overview of spectroscopic methods as well as the corresponding theoretical foundations, e.g. time-dependent Schrödinger equation and perturbation calculus. In addition, they will be introduced to experimental realizations of spectroscopic experiments so that they can design them independently, understand the emergence of the spectra as well as the underlying principles, such as selection rules, in the context of a quantum mechanical description and use them in all areas of chemistry for the characterization of molecules.

Content

- Introduction (including electromagnetic radiation, Einstein coefficients), quantum mechanical description of light absorption (perturbation theory, coherent excitation, line shapes), magnetic resonance spectroscopy, rotational spectroscopy, rotational vibrational spectroscopy, Raman spectroscopy, electronic spectroscopy, luminescence, photoelectron spectroscopy.

Workload

180 hours consisting of attendance time (45 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Literature

For example:

- Haken, Wolf: Molekülphysik und Quantenchemie, Springer Verlag Berlin Heidelberg 2006
- Hollas: Moderne Methoden der Spektroskopie, Vieweg, 1995
Module: Monte Carlo Event Generators [M-PHYS-104860]

Responsible
PD Dr. Stefan Gieseke

Organisation
KIT Department of Physics

Part of
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics

Credits
6

Grading scale
Grade to a tenth

Recurrence
Irregular

Duration
1 term

Language
English

Level
4

Version
1

Mandatory
| T-PHYS-109892 | Monte Carlo Event Generators | 6 CR | Gieseke |

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104861 - Monte Carlo Event Generators (Minor) must not have been started.

Competence Goal
The students will acquire an overview of the physics concepts that allow the simulation of collisions of highly energetic elementary particles at colliders. The students will be able to understand approximations of perturbative Quantum Chromodynamics as they are needed to construct a parton shower. The students will be able to write their own parton shower simulation as a toy model that covers the main features of general Monte-Carlo simulation programs. The students will apply non-perturbative models of strong interactions to explain the hadronization of particles that carry colour charge. In exercise-sessions they will learn to apply the elements of the underlying Monte Carlo algorithms in terms of practical programming problems.

Content
- Monte Carlo Method
- Hard matrix elements from Feynman Diagrams
- Parton showers
- Hadronization
- Hadronic interactions in terms of multiple partonic interactions
- Higher order corrections

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (135 hours).

Recommendation
Basic knowledge of Particle Physics is recommended

Literature
- Ellis, Stirling, Webber, "QCD and Collider Physics", Cambridge UP.
- Dissertori, Knowles, Schmelling, "Quantum Chromodynamics", Oxford UP
- Field, "Applications of Perturbative Quantum Chromodynamics (Frontiers in Physics)"
4.124 Module: Monte Carlo Event Generators (Minor) [M-PHYS-104861]

Responsible: PD Dr. Stefan Gieseke
Organisation: KIT Department of Physics
Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104860 - Monte Carlo Event Generators must not have been started.

Competence Goal
The students will acquire an overview of the physics concepts that allow the simulation of collisions of highly energetic elementary particles at colliders. The students will be able to understand approximations of perturbative Quantum Chromodynamics as they are needed to construct a parton shower. The students will be able to write their own parton shower simulation as a toy model that covers the main features of general Monte-Carlo simulation programs. The students will apply non-perturbative models of strong interactions to explain the hadronization of particles that carry colour charge. In exercise-sessions they will learn to apply the elements of the underlying Monte Carlo algorithms in terms of practical programming problems.

Content
- Monte Carlo Method
- Hard matrix elements from Feynman Diagrams
- Parton showers
- Hadronization
- Hadronic interactions in terms of multiple partonic interactions
- Higher order corrections

Workload
180 hours consisting of attendance time (45 hours), wrap-up of lecture and completion of exercises (135 hours).

Recommendation
Basic knowledge of Particle Physics is recommended

Literature
- Ellis, Stirling, Webber, "QCD and Collider Physics", Cambridge UP.
- Dissertori, Knowles, Schmelling, "Quantum Chromodynamics", Oxford UP.
- Field, "Applications of Perturbative Quantum Chromodynamics (Frontiers in Physics)"
Module: Nanomaterials, with Exercises [M-PHYS-105068]

Responsible: Dr. Thomas Reisinger
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of:
Major in Physics: Condensed Matter (Elective Condensed Matter)
Major in Physics: Nanophysics (Elective Nanophysics)
Second Major in Physics: Condensed Matter (Elective Condensed Matter)
Second Major in Physics: Nanophysics (Elective Nanophysics)

Credits
8

Grading scale
Grade to a tenth

Recurrence
Each winter term

Duration
1 term

Language
English

Level
4

Version
1

| Mandatory | T-PHYS-110285 | Nanomaterials, with Exercises | 8 CR | Reisinger, Wernsdorfer |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105069 - Nanomaterials, with Exercises (Minor) must not have been started.
2. The module M-PHYS-105071 - Nanomaterials, without Exercises must not have been started.

Competence Goal

The field of nanomaterials is a very active area of research driven by the need for novel materials with enhanced functional properties. Many of these have had and continue to have profound impact in technological applications. In this class the students will acquire an understanding of the various aspects of nanomaterials that lead to enhanced properties with an emphasis on nanoparticulate systems. The students will develop a clear knowledge of methods for the fabrication of nanomaterials, their properties (optical, magnetic and electrical) as well as some of their applications. In order to gain some insights to current research problems the tutorial will be organized as a journal club, with the students presenting and discussing selected research articles.

Content

After a general introduction to nanostructured materials with an emphasis on nanoparticle based systems (Reduced dimensionality, size effects on properties) the course will cover the following topics:

1. Synthesis of clusters, nanoparticles and nanocomposites (Free-jet expansion, Physical vapor deposition, chemical vapor deposition, selection of chemical routes).
2. Optical properties (Quantum dots, luminescence, plasmons, measurement techniques, applications),
3. Magnetic properties (Superparamagnetism, measurement techniques, applications),
4. Transport properties (Superconductivity and magneto transport with an emphasis on granular systems),
5. Synthesis, properties and applications of nanowires and 2d materials

Workload

240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is required.
Literature

- R.K. Goyal, Nanomaterials and nanocomposites: synthesis, properties, characterization techniques and applications, CRC Press 2018
- A.S. Edelstein (Ed.), Nanomaterials: Synthesis, properties, applications
- D. Vollath. Nanomaterials: An Introduction to Synthesis, Properties and Applications
Module: Nanomaterials, with Exercises (Minor) [M-PHYS-105069]

Responsible: Dr. Thomas Reisinger
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Condensed Matter
- Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110286</td>
<td>Nanomaterials, with Exercises (Minor)</td>
<td>8 CR Reisinger, Wernsdorfer</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105068 - Nanomaterials, with Exercises must not have been started.
2. The module M-PHYS-105071 - Nanomaterials, without Exercises must not have been started.

Competence Goal
The field of nanomaterials is a very active area of research driven by the need for novel materials with enhanced functional properties. Many of these have had and continue to have profound impact in technological applications. In this class the students will acquire an understanding of the various aspects of nanomaterials that lead to enhanced properties with an emphasis on nanoparticulate systems. The students will develop a clear knowledge of methods for the fabrication of nanomaterials, their properties (optical, magnetic and electrical) as well as some of their applications. In order to gain some insights to current research problems the tutorial will be organized as a journal club, with the students presenting and discussing selected research articles.

Content
After a general introduction to nanostructured materials with an emphasis on nanoparticle based systems (Reduced dimensionality, size effects on properties) the course will cover the following topics:

1. Synthesis of clusters, nanoparticles and nanocomposites (Free-jet expansion, Physical vapor deposition, chemical vapor deposition, selection of chemical routes).
2. Optical properties (Quantum dots, luminescence, plasmons, measurement techniques, applications),
3. Magnetic properties (Superparamagnetism, measurement techniques, applications),
4. Transport properties (Superconductivity and magneto transport with an emphasis on granular systems),
5. Synthesis, properties and applications of nanowires and 2d materials

Workload
240 hours consisting of attendance time (60 hours), wrap-up of lecture and preparation of exercises (180 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is required.

Literature
- R.K. Goyal, Nanomaterials and nanocomposites: synthesis, properties, characterization techniques and applications, CRC Press 2018
- A.S. Edelstein (Ed.), Nanomaterials: Synthesis, properties, applications
- D. Vollath. Nanomaterials : An Introduction to Synthesis, Properties and Applications
Module: Nanomaterials, without Exercises [M-PHYS-105071]

Responsible: Dr. Thomas Reisinger
 Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: Major in Physics: Condensed Matter (Elective Condensed Matter)
 Major in Physics: Nanophysics (Elective Nanophysics)
 Second Major in Physics: Condensed Matter (Elective Condensed Matter)
 Second Major in Physics: Nanophysics (Elective Nanophysics)

Credits 4
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110288</td>
<td>Nanomaterials, without Exercises</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105068 - Nanomaterials, with Exercises must not have been started.
2. The module M-PHYS-105069 - Nanomaterials, with Exercises (Minor) must not have been started.

Competence Goal
The field of nanomaterials is a very active area of research driven by the need for novel materials with enhanced functional properties. Many of these have had and continue to have profound impact in technological applications. In this class the students will acquire an understanding of the various aspects of nanomaterials that lead to enhanced properties with an emphasis on nanoparticulate systems. The students will develop a clear knowledge of methods for the fabrication of nanomaterials, their properties (optical, magnetic and electrical) as well as some of their applications.

Content
After a general introduction to nanostructured materials with an emphasis on nanoparticle based systems (Reduced dimensionality, size effects on properties) the course will cover the following topics:

1. Synthesis of clusters, nanoparticles and nanocomposites (Free-jet expansion, Physical vapor deposition, chemical vapor deposition, selection of chemical routes).
2. Optical properties (Quantum dots, luminescence, plasmons, measurement techniques, applications),
3. Magnetic properties (Superparamagnetism, measurement techniques ,applications),
4. Transport properties (Superconductivity and magneto transport with an emphasis on granular systems),
5. Synthesis, properties and applications of nanowires and 2d materials

Workload
120 hours consisting of attendance time (30 hours), wrap-up of lecture incl. exam preparation (90 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is required.

Literature
- R.K. Goyal, Nanomaterials and nanocomposites : synthesis, properties, characterization techniques and applications, CRC Press 2018
- A.S. Edelstein (Ed.), Nanomaterials:Synthesis, properties, applications
- D. Vollath. Nanomaterials : An Introduction to Synthesis, Properties and Applications
Module: Nano-Optics [M-PHYS-102146]

Responsible: PD Dr. Andreas Naber

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Task ID</th>
<th>Module</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102282</td>
<td>Nano-Optics</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102147 - Nano-Optics (Minor) must not have been started.

Competence Goal

The students

- improve their understanding of general principles in electrodynamics and optics
- have a deeper understanding of the theoretical background in optical imaging and its relation to phenomena on a nanoscale
- are familiar with conventional techniques in optical microscopy and make use of their knowledge for the understanding of nano-optical methods
- realize the necessity of completely new experimental concepts to overcome the constraints of classical microscopy in the exploration of optical phenomena beyond the diffraction limit
- understand the basics of different experimental approaches for optical imaging on a nanoscale
- are able to discuss pros and cons of these techniques for applications in different fields of physics and biology
- are aware of the importance of nano-optical methods for the elucidation of long-standing interdisciplinary issues

Content

The lecture gives an introduction to theory and instrumentation of advanced methods in optical microscopy. Emphasis is laid on far- and near-field optical techniques with an optical resolution capability on a 10- to 100-nm-scale which is well below the principal limit of classical microscopy. Applications from different scientific disciplines are discussed (e.g., nano-antennas, single-molecule detection, plasmon-polariton propagation on metal surfaces, imaging of biological cell compartments including membranes).

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation

Basic knowledge in optics

Literature

Will be mentioned in the lecture.
Module: Nano-Optics (Minor) [M-PHYS-102147]

Responsible: PD Dr. Andreas Naber
Organisation: KIT Department of Physics
Part of:
- Minor in Physics: Nanophysics
- Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102360</td>
<td>Nano-Optics (Minor)</td>
<td>8 CR</td>
<td>Naber</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:
1. The module M-PHYS-102146 - Nano-Optics must not have been started.

Competence Goal
The students
- improve their understanding of general principles in electrodynamics and optics
- have a deeper understanding of the theoretical background in optical imaging and its relation to phenomena on a nanoscale
- are familiar with conventional techniques in optical microscopy and make use of their knowledge for the understanding of nano-optical methods
- realize the necessity of completely new experimental concepts to overcome the constraints of classical microscopy in the exploration of optical phenomena beyond the diffraction limit
- understand the basics of different experimental approaches for optical imaging on a nanoscale
- are able to discuss pros and cons of these techniques for applications in different fields of physics and biology
- are aware of the importance of nano-optical methods for the elucidation of long-standing interdisciplinary issues

Content
The lecture gives an introduction to theory and instrumentation of advanced methods in optical microscopy. Emphasis is laid on far- and near-field optical techniques with an optical resolution capability on a 10- to 100-nm-scale which is well below the principal limit of classical microscopy. Applications from different scientific disciplines are discussed (e.g., nano-antennas, single-molecule detection, plasmon-polariton propagation on metal surfaces, imaging of biological cell compartments including membranes).

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Recommendation
Basic knowledge in optics

Literature
Will be mentioned in the lecture.
Module: New Light Particles Beyond the Standard Model [M-PHYS-105534]

Responsible: Prof. Dr. Ulrich Nierste
Dr. Robert Ziegler

Organisation: KIT Department of Physics

Part of:
Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

Credits 8
Grading scale Grade to a tenth
Recurrence Irregular
Duration 1 term
Language English
Level 4
Version 3

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111115</td>
<td>New Light Particles Beyond the Standard Model</td>
<td>8</td>
<td>CR</td>
<td>Nierste, Ziegler</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105582 - New Light Particles Beyond the Standard Model (Minor) must not have been started.
2. The module M-PHYS-105833 - New Light Particles Beyond the Standard Model, without Exercises must not have been started.

Competence Goal

Students have a deeper understanding of theoretical concepts such as quantum field theory anomalies, kinetic mixing, effective theories, Goldstone theorem. They understand the strong CP problem and possible solutions, they can construct simple standard model extensions with light bosons, fermions as well as vector particles.

Content

This module provides an overview of the theoretical and phenomenological aspects of new light particles beyond the Standard Model. For this purpose, the theoretical foundations of QCD axions, axion-like particles, dark photons, and sterile neutrinos are considered, with a detailed treatment of the theoretical motivation of the QCD axion in particular. The discussion of phenomenology includes possible connections with dark matter, constraints from cosmology and astrophysics, dedicated experimental searches with helioscopes and haloscopes such as CAST or ADMX, and constraints from high-precision experiments such as Belle-II, NA62, XENON1T, and KATRIN. In the exercises accompanying the lectures, the taught contents will be further deepened.

Workload

240 h consisting of attendance time (60 h), wrap-up of the lecture, working on the exercises and preparation of the exam (180 h).

Recommendation

Familiarity with the Standard Model and Theoretical Particle Physics.

Literature

Will be stated on the lecture website and in the lecture itself.
4.131 Module: New Light Particles Beyond the Standard Model (Minor) [M-PHYS-105582]

Responsible: Prof. Dr. Ulrich Nierste
Dr. Robert Ziegler

Organisation: KIT Department of Physics
Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111196 | New Light Particles Beyond the Standard Model (Minor) | 8 CR | Nierste, Ziegler |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105534 - New Light Particles Beyond the Standard Model must not have been started.
2. The module M-PHYS-105833 - New Light Particles Beyond the Standard Model, without Exercises must not have been started.

Competence Goal
The students have a deeper understanding of theoretical concepts such as quantum field theory anomalies, kinetic mixing, effective theories, Goldstone theorem. They understand the strong CP problem and possible solutions, they can construct simple standard model extensions with light bosons, fermions as well as vector particles.

Content
This module provides an overview of the theoretical and phenomenological aspects of new light particles beyond the Standard Model. For this purpose, the theoretical foundations of QCD axions, axion-like particles, dark photons, and sterile neutrinos are considered, with a detailed treatment of the theoretical motivation of the QCD axion in particular. The discussion of phenomenology includes possible connections with dark matter, constraints from cosmology and astrophysics, dedicated experimental searches with helioscopes and haloscopes such as CAST or ADMX, and constraints from high-precision experiments such as Belle-II, NA62, XENON1T, and KATRIN. In the exercises accompanying the lectures, the taught contents will be further deepened.

Workload
240 h consisting of attendance time (60 h), wrap-up of the lecture and working on the exercises (180 h)

Recommendation
Familiarity with the Standard Model and Theoretical Particle Physics.

Literature
Will be stated on the lecture website and in the lecture itself.
4.132 Module: New Light Particles Beyond the Standard Model, without Exercises [M-PHYS-105833]

Responsible: Prof. Dr. Ulrich Nierste
Dr. Robert Ziegler

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-PHYS-111703 New Light Particles Beyond the Standard Model, without Exercises 4 CR Nierste, Ziegler

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105582 - New Light Particles Beyond the Standard Model (Minor) must not have been started.
2. The module M-PHYS-105534 - New Light Particles Beyond the Standard Model must not have been started.

Competence Goal
The students gain a deeper understanding of theoretical concepts such as quantum field theory anomalies, kinetic mixing, effective theories, Goldstone theorem. In addition, they understand the strong CP problem and know possible effective solutions. Students will be able to construct simple standard model expansions with light bosons, fermions as well as vector bosons.

Content
This module provides an overview of the theoretical and phenomenological aspects of new light particles beyond the Standard Model. For this purpose, the theoretical foundations of QCD axions, axion-like particles, dark photons, and sterile neutrinos are considered, with a detailed treatment of the theoretical motivation of the QCD axion in particular. The discussion of phenomenology includes possible connections with dark matter, constraints from cosmology and astrophysics, dedicated experimental searches with helioscopes and haloscopes such as CAST or ADMX, and constraints from high-precision experiments such as Belle-II, NA62, XENON1T, and KATRIN.

Workload
120 h consisting of attendance time (30 h) and wrap-up of the lecture including exam preparation (90 h)

Recommendation
Familiarity with the Standard Model and Theoretical Particle Physics.

Literature
Will be stated on the lecture website and in the lecture itself.
Module: Nonlinear Optics [M-ETIT-100430]

Responsible: Prof. Dr.-Ing. Christian Koos
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Major in Physics: Optics and Photonics (Elective Optics and Photonics)
Second Major in Physics: Optics and Photonics

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Each summer term
Duration: 1 term
Language: English
Level: 4
Version: 2

Mandatory
T-ETIT-101906 Nonlinear Optics 6 CR Koos

Competence Certificate
The oral exam is offered continuously upon individual appointment.

Prerequisites
none

Competence Goal
The students

• understand and can mathematically describe the effect of basic nonlinear-optical phenomena using optical susceptibility tensors,
• understand and can mathematically describe wave propagation in nonlinear anisotropic materials,
• have an overview and can quantitatively describe common second-order nonlinear effects comprising the electro-optic effect, second-harmonic generation, sum- and difference frequency generation, parametric amplification and optical rectification,
• have an overview and can quantitatively describe the Kerr effect and other common third-order nonlinear effects, comprising self- and cross-phase modulation, four-wave mixing, self-focussing, and third-harmonic generation,
• have an overview and can describe nonlinear-optical interaction in active devices such as semiconductor optical amplifiers
• conceive the basic principles of various phase-matching techniques and can apply them to practical design problems,
• conceive the basic principles electro-optic modulators, can apply them to practical design problems, and have an overview on state-of-the art devices,
• conceive the basic principles third-order nonlinear signal processing and can apply them to practical design problems.

Content

1. The nonlinear optical susceptibility: Maxwell’s equations and constitutive relations, relation between electric field and polarization, formal definition and properties of the nonlinear optical susceptibility tensor,
2. Wave propagation in nonlinear anisotropic materials
3. Second-order nonlinear effects and devices: Linear electro-optic effect / Pockels effect, second-harmonic generation, sum- and difference-frequency generation, phase matching, parametric amplification, optical rectification
4. Third-order nonlinear effects and devices: Nonlinear refractive index and Kerr effect, self- and cross-phase modulation, four-wave mixing, self-focussing, third-harmonic generation
5. Nonlinear effects in active optical devices

Module grade calculation
The module grade is the grade of the oral exam. There is a bonus system based on the problem sets that are solved during the tutorials: During the term, 3 problem sets will be collected in the tutorial and graded without prior announcement. If for each of these sets more than 70% of the problems have been solved correctly, a bonus of 0.3 grades will be granted on the final mark of the oral exam.

Workload
Approx. 180 h – 30 h lectures, 30 h exercises, 120 h homework and self-studies
Literature
4.134 Module: Non-supersymmetric Extensions of the Standard Model (Minor) [M-PHYS-105639]

Responsible: Dr. Monika Blanke
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics
Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-111277
Non-supersymmetric Extensions of the Standard Model (Minor)
4 CR
Blanke, Nierste

Competence Certificate

Study achievement, ungraded. Active participation in the flipped classroom lectures is the requirement for passing the course.

Prerequisites

basic knowledge of quantum field theory and the standard model of particle physics

Competence Goal

The students are able to study and understand concepts of modern particle physics, apply their knowledge to related problems and discuss solutions with their peers.

Content

This module introduces popular non-supersymmetric extensions of the Standard Model and discusses their phenomenology. Topics include:

- Standard Model and its limitations: electroweak hierarchy problem, flavour problem
- dynamical symmetry breaking and Goldstone bosons
- collective symmetry breaking and Little Higgs models
- composite Higgs models
- partial compositeness and flavour
- extra dimensions and branes
- Randall-Sundrum model, AdS/CFT correspondence

Annotation

The module is held in the flipped-classroom format. Materials are provided for self-study. Questions and applications are discussed during the lecture.

Workload

120 h consisting of attendance time (30 h) and preparation and wrap-up of the lecture (90 h)

Literature

will be announced in the first lecture
Module: Particle Physics I [M-PHYS-102114]

Responsible:
Prof. Dr. Torben Ferber
Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute
Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (mandatory)
- Second Major in Physics: Experimental Particle Physics (mandatory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102369 | Particle Physics I | 8 CR | Ferber, Husemann, Klute, Quast, Rabbertz |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102115 - Particle Physics I (Minor) must not have been started.

Competence Goal

Students can classify elementary particles and qualitatively analyze interactions between elementary particles using symmetries, Feynman diagrams and Lagrangian densities. Combining this knowledge with knowledge of elementary particle detection, students will be able to discuss the operation of modern particle physics detectors. Students will be able to interpret current data and figures from the scientific literature on particle physics and present the current state of research and important "open questions". Students will be able to apply techniques of statistical data analysis and Monte Carlo simulation to simple particle physics problems and perform basic characterization of silicon track detectors in the laboratory.

Content

Lecture:

- Basic concepts of particle physics
- Detectors and accelerators
- Basics of the Standard Model
- Tests of the electroweak theory
- Flavour physics
- QCD
- Physics at high transverse momenta
- Higgs physics
- Physics of massive neutrinos
- Physics beyond the Standard Model

Practical exercises:

- Current methods of Monte Carlo simulation and data analysis in particle physics.
- Measurements on modern silicon track detectors.

Annotation

For students of the KIT Faculty of Computer Science: The exams in this module have to be registered via admissions from ISS (KIT Faculty of Computer Science). For this, an e-mail with matriculation numbers and name of the desired exam to Beratung-informatik@informatik.kit.edu is sufficient.
Workload
approx. 240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (180 hours)

Recommendation
Basic knowledge of experimental particle physics from the lecture Modern Experimental Physics III in the bachelor's program in physics.

Literature
Additional references will be given in lecture.
Module: Particle Physics I (Minor) [M-PHYS-102115]

Responsible:
Prof. Dr. Torben Ferber
Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute
Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz

Organisation:
KIT Department of Physics

Part of:
Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102488</td>
<td>Particle Physics I (Minor)</td>
<td>8 CR</td>
<td>Ferber, Husemann, Klute, Quast, Rabbertz</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
one

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102114 - Particle Physics I must not have been started.

Competence Goal
Students can classify elementary particles and qualitatively analyze interactions between elementary particles using symmetries, Feynman diagrams and Lagrangian densities. Combining this knowledge with knowledge of elementary particle detection, students will be able to discuss the operation of modern particle physics detectors. Students will be able to interpret current data and figures from the scientific literature on particle physics and present the current state of research and important "open questions". Students will be able to apply techniques of statistical data analysis and Monte Carlo simulation to simple particle physics problems and perform basic characterization of silicon track detectors in the laboratory.

Content

Lecture:

- Basic concepts of particle physics
- Detectors and accelerators
- Basics of the Standard Model
- Tests of the electroweak theory
- Flavour physics
- QCD
- Physics at high transverse momenta
- Higgs physics
- Physics of massive neutrinos
- Physics beyond the Standard Model

Practical exercises:

- Current methods of Monte Carlo simulation and data analysis in particle physics.
- Measurements on modern silicon track detectors.

Workload
Approx. 240 hours consisting of attendance time (60 hours), follow-up of the lecture and preparation of the exercises (180 hours).
Recommendation
Basic knowledge of experimental particle physics from the lecture Modern Experimental Physics III in the bachelor's program in physics.

Literature

Additional references will be given in lecture.
4.137 Module: Particle Physics II - Flavour Physics, with ext. Exercises [M-PHYS-102422]

Responsible: Prof. Dr. Torben Ferber
Dr. Pablo Goldenzweig
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of:
Major in Physics: Experimental Particle Physics (Required Elective Experimental Particle Physics)
Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)

Credits 8
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>T-PHYS-104783</th>
<th>Particle Physics II - Flavour Physics, with ext. Exercises</th>
<th>8 CR</th>
<th>Ferber, Goldenzweig, Nierste</th>
</tr>
</thead>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102155 - Particle Physics II - Flavour Physics, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102154 - Particle Physics II - Flavour Physics, without ext. Exercises must not have been started.
3. The module M-PHYS-103183 - Particle Physics II - Flavour Physics, with ext. Exercises (Minor) must not have been started.

Competence Goal
Students gain a better understanding of the fundamental laws of nature on the precision front of experimental particle physics. Students will learn the underlying concepts, and gain hands-on experience that will contribute to a successful introduction to their own research. In addition, students will be able to understand scientific publications and present them independently to other participants.

Content
Particle accelerators allow the fundamental building blocks and forces of nature to be studied. In addition to the use of ever higher energies, knowledge in this field can also be extended by measurements with ever higher precision. Such precision measurements are successfully performed at CERN and at the Tevatron on multipurpose experiments, as well as in special flavor factories at SLAC or at the SuperKEKB accelerator in Japan.

During the lecture we will present experimental methods and certain key processes - meson mixing, CP violation, rare decays. In the exercise, we will additionally discuss tools for everyday life, such as angular distributions and quantum numbers and information systems on the Internet. In addition, there will be a paper seminar at the end of the semester.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation
Knowledge of experimental particle physics from the lecture Modern Experimental Physics III in the Bachelor's program is assumed.

Literature
Will be mentioned in the lecture.
4.138 Module: Particle Physics II - Flavour Physics, with ext. Exercises (Minor) [M-PHYS-103183]

Responsible: Prof. Dr. Torben Ferber
Dr. Pablo Goldenzweig
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-106316 | Particle Physics II - Flavour Physics, with ext. Exercises (Minor) | 8 CR | Ferber, Goldenzweig, Nierste |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102155 - Particle Physics II - Flavour Physics, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102154 - Particle Physics II - Flavour Physics, without ext. Exercises must not have been started.
3. The module M-PHYS-102422 - Particle Physics II - Flavour Physics, with ext. Exercises must not have been started.

Competence Goal
Students gain a better understanding of the fundamental laws of nature on the precision front of experimental particle physics. Students will learn the underlying concepts, and gain hands-on experience that will contribute to a successful introduction to their own research. In addition, students will be able to understand scientific publications and present them independently to other participants.

Content
Particle accelerators allow the fundamental building blocks and forces of nature to be studied. In addition to the use of ever higher energies, knowledge in this field can also be extended by measurements with ever higher precision. Such precision measurements are successfully performed at CERN and at the Tevatron on multipurpose experiments, as well as in special flavor factories at SLAC or at the SuperKEKB accelerator in Japan.

During the lecture we will present experimental methods and certain key processes - meson mixing, CP violation, rare decays. In the exercise, we will additionally discuss tools for everyday life, such as angular distributions and quantum numbers and information systems on the Internet. In addition, there will be a paper seminar at the end of the semester.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and work on the exercises (180 hours).

Recommendation
Knowledge of experimental particle physics from the lecture Modern Experimental Physics III in the Bachelor's program is assumed.

Literature
Will be mentioned in the lecture.
Module: Particle Physics II - Flavour Physics, without ext. Exercises [M-PHYS-102154]

Responsible: Prof. Dr. Torben Ferber
Dr. Pablo Goldenzweig
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Required Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)

Credits
6

Grading scale
Grade to a tenth

Recurrence
Each winter term

Duration
1 term

Language
English

Level
4

Version
1

| Mandatory | T-PHYS-102371 | Particle Physics II - Flavour Physics, without ext. Exercises | 6 CR | Ferber, Goldenzweig, Nierste |

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102155 - Particle Physics II - Flavour Physics, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-102422 - Particle Physics II - Flavour Physics, with ext. Exercises must not have been started.
3. The module M-PHYS-103183 - Particle Physics II - Flavour Physics, with ext. Exercises (Minor) must not have been started.

Competence Goal
Students gain a better understanding of the fundamental laws of nature on the precision front of experimental particle physics. Students learn the underlying concepts, and gain hands-on experience that contributes to a successful introduction to their own research.

Content
Particle accelerators allow the fundamental building blocks and forces of nature to be studied. In addition to the use of ever higher energies, knowledge in this field can also be extended by measurements with ever higher precision. Such precision measurements are successfully performed at CERN and at the Tevatron on multipurpose experiments, as well as in special flavor factories at SLAC or at the SuperKEKB accelerator in Japan.

During the lecture we will present experimental methods and certain key processes - meson mixing, CP violation, rare decays. In the exercise we will additionally discuss tools for everyday life, such as angular distributions and quantum numbers and information systems on the internet.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation
Knowledge of experimental particle physics from the lecture Modern Experimental Physics III in the Bachelor's program is assumed.

Literature
Will be mentioned in the lecture.
Module: Particle Physics II - Flavour Physics, without ext. Exercises (Minor) [M-PHYS-102155]

Responsible: Prof. Dr. Torben Ferber
Dr. Pablo Goldenzweig
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102424</td>
<td>Particle Physics II - Flavour Physics, without ext. Exercises (Minor)</td>
<td>6 CR</td>
<td>Ferber, Goldenzweig, Nierste</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102154 - Particle Physics II - Flavour Physics, without ext. Exercises must not have been started.
2. The module M-PHYS-103183 - Particle Physics II - Flavour Physics, with ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-102422 - Particle Physics II - Flavour Physics, with ext. Exercises must not have been started.

Competence Goal
Students gain a better understanding of the fundamental laws of nature on the precision front of experimental particle physics. Students learn the underlying concepts, and gain hands-on experience that contributes to a successful introduction to their own research.

Content
Particle accelerators allow the fundamental building blocks and forces of nature to be studied. In addition to the use of ever higher energies, knowledge in this field can also be extended by measurements with ever higher precision. Such precision measurements are successfully performed at CERN and at the Tevatron on multipurpose experiments, as well as in special flavor factories at SLAC or at the SuperKEKB accelerator in Japan.

During the lecture we will present experimental methods and certain key processes - meson mixing, CP violation, rare decays. In the exercise we will additionally discuss tools for everyday life, such as angular distributions and quantum numbers and information systems on the internet.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture and preparation of the exercises (135 hours).

Recommendation
Knowledge of experimental particle physics from the lecture Modern Experimental Physics III in the Bachelor's program is assumed.

Literature
Will be mentioned in the lecture.
4.141 Module: Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises [M-PHYS-105939]

Responsible: Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Required Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111950 | Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises | 8 CR | Klute |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Competence Goal

The students are able to present the theoretical and experimental basics of physics beyond the standard model of particle physics, together with the most important related measurements. Thus, they extend their knowledge in a specific field of experimental particle physics, and they are familiar with the current state of research. The students understand modern, computer-based techniques of data analysis and are able to apply them to simple problems in physics beyond the standard model. The students solve problems as a team and improve their presentation skills. The students are able to research and analyze scientific publications in the field of particle physics.

Content

- Review of the standard model of particle physics (SM)
- Experimental and theoretical motivation for searches beyond the SM
- Selected examples for theories of and searches for physics beyond the SM
- Experimental techniques and modern methods of statistical data analysis

Workload

240 hours consisting of attendance time (60 h), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 h)

Recommendation

Basic knowledge from the bachelor lectures “Moderne Experimentalphysik III”, “Moderne Theoretische Physik II” and “Rechnernutzung in der Physik” as well as from the master lecture “Particle Physics I” is assumed.
4.142 Module: Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises (Minor) [M-PHYS-105940]

Responsible: Prof. Dr. Markus Klute
Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111951 | Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises (Minor) | 8 CR | Klute |

Competence Certificate
The course credit is achieved through successful participation in the exercise. The details will be announced in the first lecture or at the first tutorial.

Competence Goal
The students are able to present the theoretical and experimental basics of physics beyond the standard model of particle physics, together with the most important related measurements. Thus, they extend their knowledge in a specific field of experimental particle physics, and they are familiar with the current state of research. The students understand modern, computer-based techniques of data analysis and are able to apply them to simple problems in physics beyond the standard model. The students solve problems as a team and improve their presentation skills. The students are able to research and analyze scientific publications in the field of particle physics.

Content

- Review of the standard model of particle physics (SM)
- Experimental and theoretical motivation for searches beyond the SM
- Selected examples for theories of and searches for physics beyond the SM
- Experimental techniques and modern methods of statistical data analysis

Workload
240 hours consisting of attendance time (60 h), wrap-up of the lecture and preparation of the exercises (180 h).

Recommendation
Basic knowledge from the bachelor lectures “Moderne Experimentalphysik III”, “Moderne Theoretische Physik II” and “Rechnernutzung in der Physik” as well as from the master lecture “Particle Physics I” is assumed.
Module: Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises [M-PHYS-105937]

Responsible: Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Required Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111948</td>
<td>Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Competence Goal

The students are able to present the theoretical and experimental basics of physics beyond the standard model of particle physics, together with the most important related measurements. Thus, they extend their knowledge in a specific field of experimental particle physics, and they are familiar with the current state of research. The students understand modern, computer-based techniques of data analysis and are able to apply them to simple problems in physics beyond the standard model. The students solve problems as a team. The students are able to research and analyze scientific publications in the field of particle physics.

Content

- Review of the standard model of particle physics (SM)
- Experimental and theoretical motivation for searches beyond the SM
- Selected examples for theories of and searches for physics beyond the SM
- Experimental techniques and modern methods of statistical data analysis

Workload

180 hours consisting of attendance time (45 h), wrap-up of the lecture incl. exam preparation and preparation of the exercises (135 h)

Recommendation

Basic knowledge from the bachelor lectures “Moderne Experimentalphysik III”, “Moderne Theoretische Physik II” and “Rechnernutzung in der Physik” as well as from the master lecture “Particle Physics I” is assumed.
4.144 Module: Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises (Minor) [M-PHYS-105938]

Responsible: Prof. Dr. Markus Klute
Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Particle Physics

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

| T-PHYS-111949 | Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises (Minor) | 6 CR | Klute |

Competence Certificate
The course credit is achieved through successful participation in the exercise. The details will be announced in the first lecture or at the first tutorial.

Competence Goal
The students are able to present the theoretical and experimental basics of physics beyond the standard model of particle physics, together with the most important related measurements. Thus, they extend their knowledge in a specific field of experimental particle physics, and they are familiar with the current state of research. The students understand modern, computer-based techniques of data analysis and are able to apply them to simple problems in physics beyond the standard model. The students solve problems as a team. The students are able to research and analyze scientific publications in the field of particle physics.

Content
- Review of the standard model of particle physics (SM)
- Experimental and theoretical motivation for searches beyond the SM
- Selected examples for theories of and searches for physics beyond the SM
- Experimental techniques and modern methods of statistical data analysis

Workload
180 hours consisting of attendance time (45 h), wrap-up of the lecture and preparation of the exercises (135 h).

Recommendation
Basic knowledge from the bachelor lectures “Moderne Experimentalphysik III”, “Moderne Theoretische Physik II” and “Rechnernutzung in der Physik” as well as from the master lecture “Particle Physics I” is assumed.
Module: Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises [M-PHYS-104088]

M 4.145 Module: Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises [M-PHYS-104088]

- **Responsible:** Prof. Dr. Thomas Müller
 PD Dr. Klaus Rabbertz
- **Organisation:** KIT Department of Physics
- **Part of:** Major in Physics: Experimental Particle Physics (Required Elective Experimental Particle Physics)
 Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
| T-PHYS-108474 | Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises | 8 CR | Müller, Rabbertz |

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104086 - Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises must not have been started.
2. The module M-PHYS-104087 - Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-104089 - Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor) must not have been started.

Competence Goal
The students have in-depth knowledge in a special field of particle physics and gain insights into the current state of research. They know current theoretical concepts and experimental techniques. The participants can solve simple and complex problems in written form or in practical exercises on the computer. They know typical computer-based methods for the simulation of particle-physical processes and for data analysis and have gained experience in more in-depth work with primary literature.

Content
Quantum chromodynamics, modern simulation programs and analysis techniques, jet algorithms, jet energy calibration, calculation and measurement of jet effective cross sections, experimental and theoretical corrections and uncertainties, determination of strong interaction constants, recent measurements at hadron colliders, production and decay of top pairs and single top quarks, top properties in the Standard Model, reconstruction of top events, boosted top, connection between top and Higgs physics, search for New Physics with top quarks.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (180)

Recommendation
Basic knowledge from the courses Modern Experimental Physics III, Modern Theoretical Physics II and Computer Use in Physics from the Bachelor's program and Particle Physics I from the Master's program is assumed.
Literature

- Several habilitation theses: W. Wagner (Karlsruhe 2005), A. Quadt (Bonn 2006), F. Fiedler (Munich 2007), M.-A. Pleier (Bonn 2008), D. Wicke (Wuppertal 2009), and recent scientific publications and reviews.
Module: Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor) [M-PHYS-104089]

Responsible: Prof. Dr. Thomas Müller
PD Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of: Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Credit Plan</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108475</td>
<td>Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor)</td>
<td>8</td>
<td>8 CR</td>
<td>Müller, Rabbertz</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104086 - Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises must not have been started.
2. The module M-PHYS-104087 - Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-104088 - Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises must not have been started.

Competence Goal
The students have in-depth knowledge in a special field of particle physics and gain insights into the current state of research. They know current theoretical concepts and experimental techniques. The participants can solve simple and complex problems in written form or in practical exercises on the computer. They know typical computer-based methods for the simulation of particle-physical processes and for data analysis and have gained experience in more in-depth work with primary literature.

Content
Quantum chromodynamics, modern simulation programs and analysis techniques, jet algorithms, jet energy calibration, calculation and measurement of jet effective cross sections, experimental and theoretical corrections and uncertainties, determination of strong interaction constants, recent measurements at hadron colliders, production and decay of top pairs and single top quarks, top properties in the Standard Model, reconstruction of top events, boosted top, connection between top and Higgs physics, search for New Physics with top quarks.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and work on the exercises (180).

** Recommendation**
Basic knowledge from the courses Modern Experimental Physics III, Modern Theoretical Physics II and Computer Use in Physics from the Bachelor's program and Particle Physics I from the Master's program is assumed.
Literature

- Several habilitation theses: W. Wagner (Karlsruhe 2005), A. Quadt (Bonn 2006), F.Fiedler (Munich 2007), M.-A. Pleier (Bonn 2008), D. Wicke (Wuppertal 2009) and recent scientific publications and reviews.
4.147 Module: Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises [M-PHYS-104086]

Responsible: Prof. Dr. Thomas Müller
PD Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Required Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

- T-PHYS-108472 Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises

Grading scale
Grade to a tenth

Recurrence
Each summer term

Duration
1 term

Language
German

Level
4

Version
1

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104087 - Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-104088 - Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises must not have started.
3. The module M-PHYS-104089 - Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor) must not have been started.

Competence Goal
The students have in-depth knowledge in a special field of particle physics and gain insights into the current state of research. They know current theoretical concepts and experimental techniques. The participants can solve simple problems in written form or in practical exercises on the computer. They know typical computer-based methods for simulating particle-physical processes and for data analysis and have gained experience in working with primary literature.

Content
Quantum chromodynamics, modern simulation programs and analysis techniques, jet algorithms, jet energy calibration, calculation and measurement of jet effective cross sections, experimental and theoretical corrections and uncertainties, determination of strong interaction constants, recent measurements at hadron colliders, production and decay of top pairs and single top quarks, top properties in the Standard Model, reconstruction of top events, boosted top, connection between top and Higgs physics, search for New Physics with top quarks.

Workload
180 hours consisting of attendance time (45 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation
Basic knowledge from the courses Modern Experimental Physics III, Modern Theoretical Physics II and Computer Use in Physics from the Bachelor's program and Particle Physics I from the Master's program is assumed.
Literature

- Several habilitation theses: W. Wagner (Karlsruhe 2005), A. Quadt (Bonn 2006), F. Fiedler (Munich 2007), M.-A. Pleier (Bonn 2008), D. Wicke (Wuppertal 2009). and recent scientific publications and reviews.
4 MODULES Module: Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) [M-PHYS-104087]

M 4.148 Module: Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) [M-PHYS-104087]

Responsible: Prof. Dr. Thomas Müller
 PD Dr. Klaus Rabbertz
Organisation: KIT Department of Physics
Part of: Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-108473 | Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) | 6 CR | Müller, Rabbertz |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:
1. The module M-PHYS-104086 - Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises must not have been started.
2. The module M-PHYS-104088 - Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises must not have been started.
3. The module M-PHYS-104089 - Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor) must not have been started.

Competence Goal
The students have in-depth knowledge in a special field of particle physics and gain insights into the current state of research. They know current theoretical concepts and experimental techniques. The participants can solve simple problems in written form or in practical exercises on the computer. They know typical computer-based methods for simulating particle-physical processes and for data analysis and have gained experience in working with primary literature.

Content
Quantum chromodynamics, modern simulation programs and analysis techniques, jet algorithms, jet energy calibration, calculation and measurement of jet effective cross sections, experimental and theoretical corrections and uncertainties, determination of strong interaction constants, recent measurements at hadron colliders, production and decay of top pairs and single top quarks, top properties in the Standard Model, reconstruction of top events, boosted top, connection between top and Higgs physics, search for New Physics with top quarks.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture and preparation of the exercises (135 hours).

Recommendation
Basic knowledge from the courses Modern Experimental Physics III, Modern Theoretical Physics II and Computer Use in Physics from the Bachelor's program and Particle Physics I from the Master's program is assumed.
Literature

- Several habilitation theses: W. Wagner (Karlsruhe 2005), A. Quadt (Bonn 2006), F.Fiedler (Munich 2007), M.-A. Pleier (Bonn 2008), D. Wicke (Wuppertal 2009).and recent scientific publications and reviews.
3.149 Module: Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises [M-PHYS-104084]

Module: Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises [M-PHYS-104084]

Responsible: Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Experimental Particle Physics (Required Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108470</td>
<td>Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises</td>
<td>8 CR</td>
<td>Quast, Rabbertz, Wolf</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-104081 - Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises must not have been started.
2. The module M-PHYS-104082 - Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-104085 - Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor) must not have been started.

Competence Goal

The students are able to present the theoretical and experimental basics of the physics of massive bosons in the Standard Model, together with the most important related measurements at colliders. Thus, they extend their knowledge in a specific field of experimental particle physics, and they are familiar with the current state of research. The students understand modern, computer-based techniques of data analysis and are able to apply them to simple problems in W/Z/H physics. The students solve problems as a team and improve their presentation skills. ONLY 8 ECTS: The students are able to research and analyse scientific publications in the field of particle physics.

Content

Workload

240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation

Basic knowledge from the bachelor lectures "Moderne Experimentalphysik III", "Moderne Theoretische Physik II" and "Rechnernutzung in der Physik" as well as from the master lecture "Particle Physics I" is assumed.

Literature

- M. Mozer: Electroweak Physics at the LHC, Springer (2016)
- R. Wolf: The Higgs Boson Discovery at the Large Hadron Collider, Springer 2015
Module: Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor) [M-PHYS-104085]

Responsible: Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: Minor in Physics: Experimental Particle Physics

Credits
8

Grading scale
Pass/fail

Recurrence
Each summer term

Duration
1 term

Language
English

Level
4

Version
1

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108471</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
one

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104081 - Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises must not have been started.
2. The module M-PHYS-104082 - Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor) must not have been started.
3. The module M-PHYS-104084 - Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises must not have been started.

Competence Goal
The students are able to present the theoretical and experimental basics of the physics of massive bosons in the Standard Model, together with the most important related measurements at colliders. Thus, they extend their knowledge in a specific field of experimental particle physics, and they are familiar with the current state of research. The students understand modern, computer-based techniques of data analysis and are able to apply them to simple problems in W/Z/H physics. The students solve problems as a team and improve their presentation skills. The students are able to research and analyse scientific publications in the field of particle physics.

Content

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and work on the exercises (180 hours).

Recommendation
Basic knowledge from the bachelor lectures "Moderne Experimentalphysik III", "Moderne Theoretische Physik II" and "Rechnernutzung in der Physik" as well as from the master lecture "Particle Physics I" is assumed.

Literature

- M. Mozer: Electroweak Physics at the LHC, Springer (2016)
- R. Wolf: The Higgs Boson Discovery at the Large Hadron Collider, Springer 2015
Module: Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises [M-PHYS-104081]

Responsible: Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of:
Major in Physics: Experimental Particle Physics (Required Elective Experimental Particle Physics)
Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-108468 | Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises | 6 CR | Quast, Rabbertz, Wolf |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-104082 - Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor) must not have been started.
2. The module M-PHYS-104084 - Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises must not have been started.
3. The module M-PHYS-104085 - Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor) must not have been started.

Competence Goal

The students are able to present the theoretical and experimental basics of the physics of massive bosons in the Standard Model, together with the most important related measurements at colliders. Thus, they extend their knowledge in a specific field of experimental particle physics, and they are familiar with the current state of research. The students understand modern, computer-based techniques of data analysis and are able to apply them to simple problems in W/Z/H physics. The students solve problems as a team and improve their presentation skills.

Content

Workload

180 hours consisting of attendance time (45 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation

Basic knowledge from the bachelor lectures "Moderne Experimentalphysik III", "Moderne Theoretische Physik II" and "Rechnernutzung in der Physik" as well as from the master lecture "Particle Physics I" is assumed.

Literature

- M. Mozer: Electroweak Physics at the LHC, Springer (2016)
- R. Wolf: The Higgs Boson Discovery at the Large Hadron Collider, Springer 2015
4.152 Module: Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor) [M-PHYS-104082]

Responsible: Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: Minor in Physics: Experimental Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108469</td>
<td>Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor)</td>
<td>6 CR</td>
<td>Quast, Rabbertz, Wolf</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-104081 - Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises must not have been started.
2. The module M-PHYS-104084 - Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises must not have been started.
3. The module M-PHYS-104085 - Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor) must not have been started.

Competence Goal
The students are able to present the theoretical and experimental basics of the physics of massive bosons in the Standard Model, together with the most important related measurements at colliders. Thus, they extend their knowledge in a specific field of experimental particle physics, and they are familiar with the current state of research. The students understand modern, computer-based techniques of data analysis and are able to apply them to simple problems in W/Z/H physics. The students solve problems as a team and improve their presentation skills.

Content

Workload
180 hours consisting of attendance time (45 hours), wrap-up of lecture and preparation of exercises (135 hours).

Recommendation
Basic knowledge from the bachelor lectures "Moderne Experimentalphysik III" , "Moderne Theoretische Physik II" and "Rechnernutzung in der Physik" as well as from the master lecture "Teilchenphysik I" is assumed.

Literature
- M. Mozer: Electroweak Physics at the LHC, Springer (2016)
- R. Wolf: The Higgs Boson Discovery at the Large Hadron Collider, Springer 2015
4.153 Module: Particle Physics with Extra Dimensions [M-PHYS-106055]

Responsible: Dr. Monika Blanke
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics
Part of:
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics

Credits	**Grading scale**	**Recurrence**	**Duration**	**Language**	**Level**	**Version**
4 | Grade to a tenth | Irregular | 1 term | English | 4 | 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112244</td>
<td>Particle Physics with Extra Dimensions</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
Knowledge of quantum field theory and the standard model of particle physics is required.

Competence Goal
The students are able to study and understand concepts of modern particle physics, in particular related to extensions of the Standard Model with extra space-time dimensions.

Content
This module introduces theoretical concepts of particle physics with extra space-time dimensions and discusses their phenomenology. Topics include:

- compactification, orbifolds and boundary conditions
- 5D fields and Kaluza-Klein decomposition
- gauge-Higgs unification
- warped geometry and the Randall-Sundrum model
- gauge and flavour hierarchies in RS
- AdS/CFT correspondence

Workload
120 hours consisting of attendance time (30 hours), wrap-up of lecture incl. exam preparation (90 hours).

Literature
Will be announced in the first lecture.
4.154 Module: Photovoltaics [M-ETIT-100513]

Responsible: Prof. Dr.-Ing. Michael Powalla
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: Major in Physics: Optics and Photonics (Elective Optics and Photonics)
Part of: Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-ETIT-101939 | Photovoltaics | 6 CR | Powalla |

Prerequisites

Module "M-ETIT-100524 - Solar Energy" must not have started.
Module: Physics of Seismic Instruments [M-PHYS-102358]

4.155 Module: Physics of Seismic Instruments [M-PHYS-102358]

Responsible: Dr. Thomas Forbriger
Organisation: KIT Department of Physics
Part of: Second Major in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104727</td>
<td>Physics of Seismic Instruments</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

To pass the module, an oral exam must be passed (approx. 20 minutes). As prerequisite a student must successfully participate in the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102653 - Physics of Seismic Instruments (Minor) must not have been started.

Competence Goal

The students understand the causes and consequences of different physical excitation mechanisms for inertial seismometers. They can explain essential considerations for installation and shielding. The students understand the concept of frequency response and are able to express a transfer function in terms of poles and zeroes. They can apply these concepts to sensors with electrodynamic transducers. The students can explain the significance of linearity. They are able to quantitatively infer the physical input signal from the recording of a seismic instrument. The students are able to use the concepts of bandwidth and dynamic range when expressing properties of signals and instruments. The students know means to express noise levels and to estimate instrumental self-noise. They can explain measures to increase the sensitivity and can explain the essential principles of modern force-balance feedback seismometers.

Content

- The mechanical sensor and the driven harmonic oscillator
- Various driving forces and wanted and unwanted sensitivity
- Installation and shielding
- The seismometer with electrodynamic transducer, effective gain, and damping due to passive electrodynamic feedback
- The frequency response, transfer function, poles and zeroes, non-linearity
- Seismic signals, bandwidth, dynamic range, and noise floor
- The force-balance feedback seismometer, displacement transducer, phase sensitive rectifier, controller, and the role of open-loop gain
- Effective transfer function of the velocity broad-band seismometer

Workload

180 hours composed of attendance time (45 h), wrap-up of the lectures and solving the exercises (135 h)

Recommendation

A sound knowledge of the theory of ordinary differential equations and integral transformations (Fourier transformation) is expected. Basic skills in practical signal processing using elementary computer programming techniques are needed in the exercises. A basic understanding of seismic waves in the Earth is helpful.
Literature

Further recommendations will be given during the course.
4.156 Module: Physics of Seismic Instruments (Minor) [M-PHYS-102653]

Responsible: Dr. Thomas Forbriger
Organisation: KIT Department of Physics
Part of: Minor in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-105567 Physics of Seismic Instruments (Minor) 6 CR Forbriger

Competence Certificate
To pass the module, a student must successfully participate the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102358 - Physics of Seismic Instruments must not have been started.

Competence Goal
The students understand the causes and consequences of different physical excitation mechanisms for inertial seismometers. They can explain essential considerations for installation and shielding. The students understand the concept of frequency response and are able to express a transfer function in terms of poles and zeroes. They can apply these concepts to sensors with electrodynamic transducers. The students can explain the significance of linearity. They are able to quantitatively infer the physical input signal from the recording of a seismic instrument. The students are able to use the concepts of bandwidth and dynamic range when expressing properties of signals and instruments. The students know means to express noise levels and to estimate instrumental self-noise. They can explain measures to increase the sensitivity and can explain the essential principles of modern force–balance feedback seismometers.

Content

• The mechanical sensor and the driven harmonic oscillator
• Various driving forces and wanted and unwanted sensitivity
• Installation and shielding
• The seismometer with electrodynamic transducer, effective gain, and damping due to passive electrodynamic feedback
• The frequency response, transfer function, poles and zeroes, non-linearity
• Seismic signals, bandwidth, dynamic range, and noise floor
• The force–balance feedback seismometer, displacement transducer, phase sensitive rectifier, controller, and the role of open-loop gain
• Effective transfer function of the velocity broad-band seismometer

Workload
180 hours composed of attendance time (45 h), wrap-up of the lectures and solving the exercises (135 h)

Recommendation
A sound knowledge of the theory of ordinary differential equations and integral transformations (Fourier transformation) is expected. Basic skills in practical signal processing using elementary computer programming techniques are needed in the exercises. A basic understanding of seismic waves in the Earth is helpful.
Literature

Further recommendations will be given during the course.
Module: Physics of Semiconductors, with Exercises [M-PHYS-102131]

Responsible: Prof. Dr. Heinz Kalt

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Required Condensed Matter)
- Major in Physics: Nanophysics (Required Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Required Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

Credits: 10

Grading scale: Grade to a tenth

Recurrence: Each summer term

Duration: 1 term

Language: German

Level: 4

Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102343</td>
<td>Physics of Semiconductors, with Exercises</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102130 - Physics of Semiconductors, with Exercises (Minor) must not have been started.
2. The module M-PHYS-102301 - Physics of Semiconductors, without Exercises must not have been started.

Competence Goal

The students

- know characteristic details of the semiconductor band structure and can justify them theoretically
- know the description of equilibrium and non-equilibrium processes and are able to calculate typical phenomena in semiconductors
- can explain and calculate transport phenomena and dynamic problems with the help of differential equations of internal electronics
- understand the importance of temporal or spatial inhomogeneity as a driving force for these processes
- understand the band characteristics and physical properties of semiconductor transitions
- can describe and theoretically justify the phenomenological behavior and typical applications of semiconductor devices on the basis of the fundamentals they have learned
- can calculate the behavior of devices themselves using selected examples

Content

1. Basic properties of semiconductors (material classes, band structure, k*p theory, statistics, Boltzmann equilibrium).
2. Non-equilibrium processes in semiconductors (Boltzmann equation, generation and recombination, transport phenomena)
3. Semiconductor junctions in thermodynamic equilibrium (pn junction, heterojunctions, low-dimensional semiconductors, Schottky contact, ohmic contact, insulator-semiconductor transition)
4. Semiconductor junctions in non-equilibrium / devices (diode, photodiode, solar cell, LED, diode laser, microwave devices, bipolar transistor, field effect transistor, CCD, memory devices, ...)
5. Semiconductor technology (epitaxy, doping, structuring, integration)

Workload

300 hours consisting of attendance time (75 hrs.), wrap-up of the lecture, processing of the exercises as well as exam preparation (225 hrs.)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.
Literature
R. Enderlein, N. Horing: *Fundamentals of Semiconductor Physics and Devices*
M. Grundmann: *The Physics of Semiconductors*
S.M. Sze, K.K. Ng: *Physics of Semiconductor Devices*
4.158 Module: Physics of Semiconductors, with Exercises (Minor) [M-PHYS-102130]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Prof. Dr. Heinz Kalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Physics</td>
</tr>
</tbody>
</table>
| Part of | Minor in Physics: Condensed Matter
 | Minor in Physics: Nanophysics |

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102301</td>
<td>Physics of Semiconductors, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Proof of this module as a minor subject in physics requires successful participation in the exercises. This is certified as an ungraded course achievement.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102131 - Physics of Semiconductors, with Exercises must not have been started.
2. The module M-PHYS-102301 - Physics of Semiconductors, without Exercises must not have been started.

Competence Goal

The students

- know characteristic details of the semiconductor band structure and can justify them theoretically
- know the description of equilibrium and non-equilibrium processes and are able to calculate typical phenomena in semiconductors
- can explain and calculate transport phenomena and dynamic problems with the help of differential equations of internal electronics
- understand the importance of temporal or spatial inhomogeneity as a driving force for these processes
- understand the band characteristics and physical properties of semiconductor transitions
- can describe and theoretically justify the phenomenological behavior and typical applications of semiconductor devices on the basis of the fundamentals they have learned
- can calculate the behavior of devices themselves using selected examples

Content

1. Basic properties of semiconductors (material classes, band structure, k*p theory, statistics, Boltzmann equilibrium).
2. Non-equilibrium processes in semiconductors (Boltzmann equation, generation and recombination, transport phenomena)
3. Semiconductor junctions in thermodynamic equilibrium (pn junction, heterojunctions, low-dimensional semiconductors, Schottky contact, ohmic contact, insulator-semiconductor transition)
4. Semiconductor junctions in non-equilibrium/ devices (diode, photodiode, solar cell, LED, diode laser, microwave devices, bipolar transistor, field effect transistor, CCD, memory devices, ...)
5. Semiconductor technology (epitaxy, doping, structuring, integration)

Workload

300 hours consisting of attendance time (75 hrs.), wrap-up of lecture, completion of exercises (225 hrs.)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

R. Enderlein, N. Horing: *Fundamentals of Semiconductor Physics and Devices*

M. Grundmann: *The Physics of Semiconductors*

S.M. Sze, K.K. Ng: *Physics of Semiconductor Devices*
Module: Physics of Semiconductors, without Exercises [M-PHYS-102301]

4.159 Module: Physics of Semiconductors, without Exercises [M-PHYS-102301]

Responsible: Prof. Dr. Heinz Kalt
Organisation: KIT Department of Physics
Part of:
- **Major in Physics: Condensed Matter (Required Condensed Matter)**
- **Major in Physics: Nanophysics (Required Elective Nanophysics)**
- **Second Major in Physics: Condensed Matter (Required Elective Condensed Matter)**
- **Second Major in Physics: Nanophysics (Elective Nanophysics)**

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104590</td>
<td>Physics of Semiconductors, without Exercises</td>
<td>8</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate

In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102130 - Physics of Semiconductors, with Exercises (Minor) must not have been started.
2. The module M-PHYS-102131 - Physics of Semiconductors, with Exercises must not have been started.

Competence Goal

The students

- know characteristic details of the semiconductor band structure and can justify them theoretically
- know the description of equilibrium and non-equilibrium processes
- can explain transport phenomena and dynamic problems with the help of the differential equations of internal electronics
- understand the importance of temporal or spatial inhomogeneity as a driving force for these processes
- understand the band characteristics and physical properties of semiconductor transitions
- can describe and theoretically justify the phenomenological behavior and typical applications of semiconductor devices on the basis of the fundamentals learned

Content

1. Basic properties of semiconductors (material classes, band structure, k*p theory, statistics, Boltzmann equilibrium).
2. Non-equilibrium processes in semiconductors (Boltzmann equation, generation and recombination, transport phenomena)
3. Semiconductor junctions in thermodynamic equilibrium (pn junction, heterojunctions, low-dimensional semiconductors, Schottky contact, ohmic contact, insulator-semiconductor transition)
4. Semiconductor junctions in non-equilibrium/ devices (diode, photodiode, solar cell, LED, diode laser, microwave devices, bipolar transistor, field effect transistor, CCD, memory devices, ...)
5. Semiconductor technology (epitaxy, doping, structuring, integration)

Workload

240 hours consisting of attendance time (60 hrs.), wrap-up of the lecture as well as exam preparation (180 hrs.)

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

- R. Enderlein, N. Horing: *Fundamentals of Semiconductor Physics and Devices*
- M. Grundmann: *The Physics of Semiconductors*
- S.M. Sze, K.K. Ng: *Physics of Semiconductor Devices*
4.160 Module: Precision Phenomenology at Colliders and Computational Methods, with Exercises [M-PHYS-105640]

Responsible: Prof. Dr. Gudrun Heinrich
Organisation: KIT Department of Physics
Part of:
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111279 | Precision Phenomenology at Colliders and Computational Methods, with Exercises | 8 CR | Heinrich |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105641 - Precision Phenomenology at Colliders and Computational Methods, without Exercises must not have been started.
2. The module M-PHYS-105642 - Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor) must not have been started.

Competence Goal

The course provides knowledge about perturbative Quantum Chromodynamics (QCD) and its infrared structure, as well as on current topics in particle physics phenomenology, i.e. the comparison of measurements at colliders like the CERN Large Hadron Collider to theoretical predictions. Concepts and tools to calculate simple processes at at next-to-leading order in perturbation theory are acquired and computer programs that are used in the field of precision calculations are presented. The knowledge is deepened by the accompanying exercises.

Content

This Module gives an overview on current techniques and topics in collider physics from a theoretical physics point of view. Topics are QCD, colour algebra, factorisation, jets and event shapes, top-quark and Higgs physics. The treatment of infrared divergences in QCD is discussed, as well as parton evolution and parton densities. Methods and tools to perform calculations beyond the leading order in perturbation theory are introduced.

Workload

240 hours consisting of attendance time (60 h), follow-up of the lecture incl. exam preparation and preparation and follow-up of the exercises (180 h).

Recommendation

Knowledge on the level of TTP0 or TTP>0 is an advantage

Literature

- Dissertori, Knowles, Schmelling, "Quantum Chromodynamics: High energy experiments and theory", Oxford University Press;
4.161 Module: Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor) [M-PHYS-105642]

Responsible: Prof. Dr. Gudrun Heinrich

Organisation: KIT Department of Physics

Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111281 | Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor) | 8 CR | Heinrich |

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105640 - Precision Phenomenology at Colliders and Computational Methods, with Exercises must not have been started.
2. The module M-PHYS-105641 - Precision Phenomenology at Colliders and Computational Methods, without Exercises must not have been started.

Competence Goal

The course provides knowledge about perturbative Quantum Chromodynamics (QCD) and its infrared structure, as well as on current topics in particle physics phenomenology, i.e. the comparison of measurements at colliders like the CERN Large Hadron Collider to theoretical predictions. Concepts and tools to calculate simple processes at at next-to-leading order in perturbation theory are acquired and computer programs that are used in the field of precision calculations are presented. The knowledge is deepened by the accompanying exercises.

Content

This Module gives an overview on current techniques and topics in collider physics from a theoretical physics point of view. Topics are QCD, colour algebra, factorisation, jets and event shapes, top-quark and Higgs physics. The treatment of infrared divergences in QCD is discussed, as well as parton evolution and parton densities. Methods and tools to perform calculations beyond the leading order in perturbation theory are introduced.

Workload

240 hours consisting of attendance time (60 h), follow-up of the lecture and preparation and follow-up of the exercises (180 h).

Recommendation

Knowledge on the level of TTP0 or TTP>0 is an advantage

Literature

- Dissertori, Knowles, Schmelling, "Quantum Chromodynamics: High energy experiments and theory", Oxford University Press;
4.162 Module: Precision Phenomenology at Colliders and Computational Methods, without Exercises [M-PHYS-105641]

Responsible: Prof. Dr. Gudrun Heinrich
Organisation: KIT Department of Physics
Part of: Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111280 | Precision Phenomenology at Colliders and Computational Methods, without Exercises | 4 CR | Heinrich |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105640 - Precision Phenomenology at Colliders and Computational Methods, with Exercises must not have been started.
2. The module M-PHYS-105642 - Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor) must not have been started.

Competence Goal

The course provides knowledge about perturbative Quantum Chromodynamics (QCD) and its infrared structure, as well as on current topics in particle physics phenomenology, i.e. the comparison of measurements at colliders like the CERN Large Hadron Collider to theoretical predictions. Concepts and tools to calculate simple processes at next-to-leading order in perturbation theory are acquired and computer programs that are used in the field of precision calculations are presented.

Content

This Module gives an overview on current techniques and topics in collider physics from a theoretical physics point of view. Topics are QCD, colour algebra, factorisation, jets and event shapes, top-quark and Higgs physics. The treatment of infrared divergences in QCD is discussed, as well as parton evolution and parton densities. Methods and tools to perform calculations beyond the leading order in perturbation theory are introduced. For this variant without the exercises there will be less details on the computational aspects.

Workload

120 hours consisting of attendance time (30 h), wrap-up of lecture incl. exam preparation (90 h).

Recommendation

Knowledge on the level of TTP0 or TTP>0 is an advantage

Literature

- Dissertori, Knowles, Schmelling, "Quantum Chromodynamics: High energy experiments and theory", Oxford University Press;
4.163 Module: Quantum Detectors and Sensors [M-PHYS-106193]

Responsible: Prof. Dr. Sebastian Kempf

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of:
- Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)
- Second Major in Physics: Experimental Particle Physics (Elective Experimental Particle Physics)
- Second Major in Physics: Experimental Astroparticle Physics (Elective Experimental Astroparticle Physics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Language</th>
<th>Level</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112582</td>
<td>Quantum Detectors and Sensors</td>
<td>8 CR</td>
<td>Kempf</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

Students know the basics and fundamentals of quantum detectors and sensors and understand how quantum technology can be used to design and realize devices that performance reaches far beyond the limits of any classical sensor or detector. They know the basic components of quantum sensors and detectors, in particular in the field of superconducting quantum technology, and are able to analyze the operation of such detectors and sensors on the basis of circuit diagrams. Students are able to develop quantum sensors and detectors for given applications and know how to consider special requirements in a concrete component.

Content

This module provides a comprehensive overview of the basics and physical principles of quantum detectors and sensors and discusses in detail how quantum technology can be used to design and realize detectors and sensors with performance that reaches far beyond the limits of any classical sensor or detector. The discussion includes particularly an introduction to the basic components of quantum sensors and detectors, especially in the field of superconducting quantum technology, and their fabrication. Using simplified circuit diagrams, the functionality and operation of quantum detectors and sensors such as superconducting quantum interference devices, low-temperature detectors, noise thermometers or superconducting radiation detectors is analyzed. Furthermore, methods and simple models are developed allowing to realize quantum sensors and detectors that are matched to given applications. Within this context, typical applications of quantum detectors and sensors are also discussed.

The tutorial is closely related to the lecture and deals with special aspects concerning the development of quantum detectors and sensors. In particular, the development and system integration of quantum detectors and sensors for applications in precision metrology, particle detection or applied sciences is discussed by means of exercises.

Annotation

The lecture and exercise will be offered in English. However, questions and discussions can of course also be held in German.

Workload

240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation and working on the exercises (180 hours)

Literature

Will be announced in the lecture.
4.164 Module: Quantum Detectors and Sensors (Minor) [M-PHYS-106194]

Responsible: Prof. Dr. Sebastian Kempf

Organisation:
- KIT Department of Electrical Engineering and Information Technology
- KIT Department of Physics

Part of:
- Minor in Physics: Experimental Particle Physics
- Minor in Physics: Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
<th>Level</th>
<th>Language</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112583</td>
<td>Quantum Detectors and Sensors (Minor)</td>
<td>8 CR</td>
<td></td>
<td>Kempf</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

The course credit is achieved through successful participation in the written exam by reaching at least 50% of the total points.

Prerequisites

none

Competence Goal

Students know the basics and fundamentals of quantum detectors and sensors and understand how quantum technology can be used to design and realize devices those performance reaches far beyond the limits of any classical sensor or detector. They know the basic components of quantum sensors and detectors, in particular in the field of superconducting quantum technology, and are able to analyze the operation of such detectors and sensors on the basis of circuit diagrams. Students are able to develop quantum sensors and detectors for given applications and know how to consider special requirements in a concrete component.

Content

This module provides a comprehensive overview of the basics and physical principles of quantum detectors and sensors and discusses in detail how quantum technology can be used to design and realize detectors and sensors with performance that reaches far beyond the limits of any classical sensor or detector. The discussion includes particularly an introduction to the basic components of quantum sensors and detectors, especially in the field of superconducting quantum technology, and their fabrication. Using simplified circuit diagrams, the functionality and operation of quantum detectors and sensors such as superconducting quantum interference devices, low-temperature detectors, noise thermometers or superconducting radiation detectors is analyzed. Furthermore, methods and simple models are developed allowing to realize quantum sensors and detectors that are matched to given applications. Within this context, typical applications of quantum detectors and sensors are also discussed.

The tutorial is closely related to the lecture and deals with special aspects concerning the development of quantum detectors and sensors. In particular, the development and system integration of quantum detectors and sensors for applications in precision metrology, particle detection or applied sciences is discussed by means of exercises.

Annotation

The lecture and exercise will be offered in English. However, questions and discussions can of course also be held in German.

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises incl. exam preparation (180 hours).

Literature

Will be announced in the lecture.
Module: Quantum Optics at the Nano Scale, with Exercises [M-PHYS-106508]

Responsible: Prof. Dr. David Hunger

Organisation: KIT Department of Physics

Part of: Major in Physics: Nanophysics (Elective Nanophysics)
Major in Physics: Optics and Photonics (Elective Optics and Photonics)
Second Major in Physics: Nanophysics (Elective Nanophysics)
Second Major in Physics: Optics and Photonics

Credits 8
Grading scale Grade to a tenth
Recurrence Irregular
Duration 1 term
Language English
Level 4
Version 1

Mandatory
T-PHYS-113126 Quantum Optics at the Nano Scale, with Exercises 8 CR Hunger

Competence Certificate
Oral. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-106509 - Quantum Optics at the Nano Scale, with Exercises (Minor) must not have been started.
2. The module M-PHYS-106510 - Quantum Optics at the Nano Scale, without Exercises must not have been started.

Competence Goal
Students gain knowledge about the fundamentals in the field of quantum- and nano optics and learn about basic concepts and examples of optical quantum systems. This is intended to enable participants to follow current research in the field. The Tutorial is designed as a journal club, where selected publications will be presented by students. Students learn how to become familiar with current research topics, how to interpret research results based on the concepts presented in the lecture, and how to present scientific results.

Content

- Fundamentals of quantized light fields and light-matter interactions
- Micro- and nanooptical devices
- Dipole emission in structured environments
- Solid state quantum emitters
- Optical readout of single spins
- Quantum communication
- Quantum networks
- Quantum sensing
- Quantum computing

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation
Basic knowledge in classical electromagnetism and optics, quantum mechanics, atomic physics; quantum optics is beneficial but not mandatory

Literature
- Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
- Fundamentals of Photonics, Saleh,Teich
- research articles (will be sent around)
Module: Quantum Optics at the Nano Scale, with Exercises (Minor) [M-PHYS-106509]

Responsibility: Prof. Dr. David Hunger

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Nanophysics
- Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-113127 | Quantum Optics at the Nano Scale, with Exercises (Minor) | 8 CR | Hunger |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-106508 - Quantum Optics at the Nano Scale, with Exercises must not have been started.
2. The module M-PHYS-106510 - Quantum Optics at the Nano Scale, without Exercises must not have been started.

Competence Goal
Students gain knowledge about the fundamentals in the field of quantum- and nano optics and learn about basic concepts and examples of optical quantum systems. This is intended to enable participants to follow current research in the field. The Tutorial is designed as a journal club, where selected publications will be presented by students. Students learn how to become familiar with current research topics, how to interpret research results based on the concepts presented in the lecture, and how to present scientific results.

Content
- Fundamentals of quantized light fields and light-matter interactions
- Micro- and nanooptical devices
- Dipole emission in structured environments
- Solid state quantum emitters
- Optical readout of single spins
- Quantum communication
- Quantum networks
- Quantum sensing
- Quantum computing

Workload
240 hours consisting of attendance time (60 hours), wrap-up of lecture and preparation of exercises (180 hours).

Recommendation
Basic knowledge in classical electromagnetism and optics, quantum mechanics, atomic physics; quantum optics is beneficial but not mandatory

Literature
- Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
- Fundamentals of Photonics, Saleh,Teich
- research articles (will be sent around)
Module: Quantum Optics at the Nano Scale, without Exercises [M-PHYS-106510]

Responsibility: Prof. Dr. David Hunger

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: Major in Physics: Nanophysics (Elective Nanophysics)
Major in Physics: Optics and Photonics (Elective Optics and Photonics)
Second Major in Physics: Nanophysics (Elective Nanophysics)
Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-113128 Quantum Optics at the Nano Scale, without Exercises 6 CR Hunger

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-106508 - Quantum Optics at the Nano Scale, with Exercises must not have been started.
2. The module M-PHYS-106509 - Quantum Optics at the Nano Scale, with Exercises (Minor) must not have been started.

Competence Goal

Students gain knowledge about the fundamentals in the field of quantum- and nano optics and learn about basic concepts and examples of optical quantum systems. This is intended to enable participants to follow current research in the field.

Content

- Fundamentals of quantized light fields and light-matter interactions
- Micro- and nanooptical devices
- Dipole emission in structured environments
- Solid state quantum emitters
- Optical readout of single spins
- Quantum communication
- Quantum networks
- Quantum sensing
- Quantum computing

Workload

180 hours consisting of attendance time (45 hours), wrap-up of lecture incl. exam preparation (135 hours).

Recommendation

Basic knowledge in classical electromagnetism and optics, quantum mechanics, atomic physics; quantum optics is beneficial but not mandatory

Literature

- Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
- Fundamentals of Photonics, Saleh,Teich
- research articles (will be sent around)
4.168 Module: Seismic Data Processing with Final Report (Graded) [M-PHYS-104186]

Responsible: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Organisation: KIT Department of Physics

Part of: Second Major in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-108656 | Seismic Data Processing, Final Report (Graded) | 4 CR Bohlen, Hertweck |
| T-PHYS-108686 | Seismic Data Processing, Coursework | 2 CR Bohlen, Hertweck |

Competence Certificate

Students have to participate the lecture/exercise on a regular basis and give a final presentation about their processing results (2 ECTS points). Students who would like to get the full 6 ECTS points also need to prepare and hand in a seismic data processing report. The report will determine the final grade (if applicable).

Prerequisites

None

Competence Goal

The students have hands-on experience applying typical seismic processing and imaging techniques to reflection seismic field data. In this way, they understand the reflection seismic method and have practical skills in data analysis and problem solving which are beneficial in their professional life later on, not only in exploration. Students can set up a basic processing and imaging flow, understand the individual processing steps and their purpose, and describe the influence of important parameters on processing results. They are able to identify data shortcomings and imaging challenges and develop basic solutions, analyze the success of individual processing/imaging steps, and critically assess the overall quality of their work. Finally, students are able to present their processing results in oral and written form.

Content

- Field data loading, quality control, trace edits and geometry setup
- Spectral analysis, filter application, geometrical spreading correction
- Deconvolution, zero-phasing
- Denoising using various approaches
- Multiple identification and removal (SRME, Radon)
- CMP sort, velocity analysis, NMO correction, mute and stack
- Time migration (prestack and poststack)
- Post-migration processing
- Basic interpretation (in cooperation with KIT-AGW)
- Optional: depth velocity model building and depth migration

Module grade calculation

The report will determine the final grade.

Annotation

A commercial data processing software is used during this course.

Workload

180 h hours composed of contact time (45 h), wrap-up of the lectures and solving the exercises (135 h)

Recommendation

No explicit requirements. However, basic knowledge of the reflection seismic method and general computer skills are essential. This course does not require any programming skills.

Learning type

4060321 Th.Bohlen, Th. Hertweck (V1)
4060322 Th.Bohlen, Th. Hertweck (Ü2)
Literature

4.169 Module: Seismic Modeling [M-PHYS-105227]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: Second Major in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110605</td>
<td>Seismic Modeling</td>
<td>4 CR Bohlen</td>
</tr>
</tbody>
</table>

Competence Certificate

To pass the module, the oral exam (approx. 20 minutes) must be passed. As prerequisites the examinations of other type must be passed, based on successful participation of the exercises. Each exercise deals with a specific topic (e.g., 1D finite-difference implementation) and is based on hands-on work, usually involving the use of computers.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105228 - Seismic Modeling (Minor) must not have been started.

Competence Goal

The students know the fundamental concepts of seismic wavefield simulations, including the mathematical descriptions and their basic numeric implementations. They understand the complexity of wave propagation and the advantages and disadvantages of the individual methods. They are able to apply the methods using synthetic Earth models to calculate amplitudes and traveltimes of propagating elastic and/or acoustic waves.

Content

- Factors influencing traveltimes and amplitudes of seismic wavefields
- Analytical solutions
- Fast traveltime calculation using the eikonal equation
- Raytracing
- Reflectivity method for acoustic 1D media
- Time-domain finite-difference solutions of the acoustic/elastic wave equations
- Fourier methods
- Introduction to the finite-element method

Module grade calculation

The grade of the module results from grade of the oral exam.

Recommendation

Knowledge of differential and vector calculus is essential. Familiarity with Matlab (alternatively Python or Mathematica) is beneficial for certain exercises.

Learning type

V1 Ü1, 2 SWS, 4 ECTS

Literature

4.170 Module: Seismic Modeling (Minor) [M-PHYS-105228]

Responsible: Prof. Dr. Thomas Bohlen

Organisation: KIT Department of Physics

Part of: Minor in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-110607 | Seismic Modeling (Minor) | 4 CR | Bohlen |

Competence Certificate

To pass the module, the examinations of other type must be passed, based on successful participation of the exercises. Each exercise deals with a specific topic (e.g., 1D finite-difference implementation) and is based on hands-on work, usually involving the use of computers.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105227 - Seismic Modeling must not have been started.

Competence Goal

The students know the fundamental concepts of seismic wavefield simulations, including the mathematical descriptions and their basic numeric implementations. They understand the complexity of wave propagation and the advantages and disadvantages of the individual methods. They are able to apply the methods using synthetic Earth models to calculate amplitudes and traveltimes of propagating elastic and/or acoustic waves.

Content

- Factors influencing traveltimes and amplitudes of seismic wavefields
- Analytical solutions
- Fast traveltime calculation using the eikonal equation
- Raytracing
- Reflectivity method for acoustic 1D media
- Time-domain finite-difference solutions of the acoustic/elastic wave equations
- Fourier methods
- Introduction to the finite-element method

Recommendation

Knowledge of differential and vector calculus is essential. Familiarity with Matlab (alternatively Python or Mathematica) is beneficial for certain exercises.

Learning type

V1 Ü1, 2 SWS, 4 ECTS

Literature

4.171 Module: Seismics [M-PHYS-106326]

Responsible: Prof. Dr. Thomas Bohlen

Organisation: KIT Department of Physics

Part of: Second Major in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-112843 | Seismics | 8 CR | Bohlen |

Competence Certificate

To pass the module, an oral exam must be passed (approx. 20 min). As prerequisite a student must successfully participate the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module [M-PHYS-106325 - Seismics (Minor)] must not have been started.

Competence Goal

The students know the fundamental concepts of seismic acquisition, processing and imaging in reflection seismics. They can correctly name equipment, tools and processes and effectively communicate with specialists in the field of seismics. Students understand the various steps involved in seismic processing/imaging, their underlying theory and how they affect the data. They are able to apply the concepts and equations to simple exemplary seismic data.

Content

- Overview of seismic methods and wave propagation basics
- Essential signal processing concepts and tools
- Seismic acquisition, sources and receivers, marine and land
- Geometries and traveltimes, NMO and DMO
- Processing steps: from data loading to denoise and demultiple
- Velocity analysis, NMO correction, stacking, SNR
- Imaging: basic concepts, time and depth migration, migration methods
- Seismic resolution
- Optional: advanced acquisition, processing and imaging technologies

Workload

240 hours composed of attendance time (60 h), wrap-up of the lectures and solving the exercises (180 h)

Recommendation

Experience with Matlab, the Linux commandline, and shell scripts is beneficial. Knowledge of fundamental signal processing theory is essential.

Literature

4.172 Module: Seismics (Minor) [M-PHYS-106325]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: Minor in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112833 - Seismics (Minor)</td>
<td>8 CR</td>
<td>Bohlen</td>
</tr>
</tbody>
</table>

Competence Certificate

To pass the module, a student must successfully participate in the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-106326 - Seismics must not have been started.

Competence Goal

The students know the fundamental concepts of seismic acquisition, processing and imaging in reflection seismics. They can correctly name equipment, tools and processes and effectively communicate with specialists in the field of seismics. Students understand the various steps involved in seismic processing/imaging, their underlying theory and how they affect the data. They are able to apply the concepts and equations to simple exemplary seismic data.

Content

- Overview of seismic methods and wave propagation basics
- Essential signal processing concepts and tools
- Seismic acquisition, sources and receivers, marine and land
- Geometries and traveltimes, NMO and DMO
- Processing steps: from data loading to denoise and demultiple
- Velocity analysis, NMO correction, stacking, SNR
- Imaging: basic concepts, time and depth migration, migration methods
- Seismic resolution
- Optional: advanced acquisition, processing and imaging technologies

Workload

240 hours composed of attendance time (60 h), wrap-up of the lectures and solving the exercises (180 h)

Recommendation

Experience with Python/Matlab, the Linux commandline, and shell scripts is beneficial. Knowledge of fundamental signal processing theory is essential.

Literature

Module: Seismology [M-PHYS-105225]

Responsible: Prof. Dr. Andreas Rietbrock
Organisation: KIT Department of Physics
Part of: Second Major in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Level</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110603</td>
<td>Seismology</td>
<td>8 CR</td>
<td>4</td>
<td>none</td>
</tr>
</tbody>
</table>

Competence Certificate

To pass the module, an oral exam must be passed (approx. 20 min). As prerequisites the examinations of other type must be passed, based on successful participation of the exercises. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and presentations based on research papers held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105226 - Seismology (Minor) must not have been started.

Competence Goal

The students understand the fundamental concepts of seismology and the earthquake rupture process. They have a knowledge of seismogram interpretation, fundamentals of seismic wave propagation and the representations of the earthquake source. Students are able to apply their knowledge to observed data to gain an insight into the Earth structure and the earthquake source.

Content

- History of seismology
- Elasticity and seismic waves
- Body waves and surface waves
- Seismogram interpretation
- Earthquake location
- Determination of Earth structure
- Seismic sources
- Seismic moment tensor
- Earthquake kinematics and dynamics
- Seismotectonics

Module grade calculation

The grade of the module results from grade of the oral exam.

Workload

240 hours composed of attendance time (60 h), wrap-up of the lectures and solving the exercises (180 h)

Recommendation

A sound knowledge of the fundamentals in Geophysics. Basic skills in programming and Python to solve exercises.

Literature

- Peter M. Shearer, "Introduction to Seismology", Cambridge University Press.
4.174 Module: Seismology (Minor) [M-PHYS-105226]

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grad Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Competence Certificate

In order to pass the course Seismology, a student must successfully participate in the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and presentations based on research papers held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105225 - Seismology must not have been started.

Competence Goal

The students understand the fundamental concepts of seismology and the earthquake rupture process. They have a knowledge of seismogram interpretation, fundamentals of seismic wave propagation and the representations of the earthquake source. Students are able to apply their knowledge to observed data to gain an insight into the Earth structure and the earthquake source.

Content

- History of seismology
- Elasticity and seismic waves
- Body waves and surface waves
- Seismogram interpretation
- Earthquake location
- Determination of Earth structure
- Seismic sources
- Seismic moment tensor
- Earthquake kinematics and dynamics
- Seismotectonics

Workload

240 hours composed of attendance time (60 h), wrap-up of the lectures and solving the exercises (180 h)

Recommendation

A sound knowledge of the fundamentals in Geophysics. Basic skills in programming and Python to solve exercises.

Literature

- Peter M. Shearer, “Introduction to Seismology”, Cambridge University Press.
- Seth Stein and Michael Wysession, ”An Introduction to Seismology, Earthquakes, and Earth Structure”, Blackwell Publishing.
Module: Selected Topics in Meteorology (Minor, ungraded) [M-PHYS-104578]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: Minor in Physics: Meteorology

#### Credits	Grading scale	Recurrence	Duration	Language	Level	Version
8 | pass/fail | Each term | 2 terms | English | 4 | 4

Elective Subjects (Election: at least 8 credits)

<table>
<thead>
<tr>
<th>Subject Code</th>
<th>Subject Name</th>
<th>Credits</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111410</td>
<td>Seminar on IPCC Assessment Report</td>
<td>2</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-111411</td>
<td>Tropical Meteorology</td>
<td>4</td>
<td>Knippertz</td>
</tr>
<tr>
<td>T-PHYS-111412</td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>4</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-111413</td>
<td>Middle Atmosphere in the Climate System</td>
<td>2</td>
<td>Höpfner, Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-111414</td>
<td>Ocean-Atmosphere Interactions</td>
<td>2</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-111416</td>
<td>Cloud Physics</td>
<td>4</td>
<td>Hoose</td>
</tr>
<tr>
<td>T-PHYS-111417</td>
<td>Energetics</td>
<td>2</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-111418</td>
<td>Atmospheric Aerosols</td>
<td>4</td>
<td>Möhler</td>
</tr>
<tr>
<td>T-PHYS-111419</td>
<td>Atmospheric Radiation</td>
<td>2</td>
<td>Höpfner</td>
</tr>
<tr>
<td>T-PHYS-111424</td>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td>4</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-111426</td>
<td>Methods of Data Analysis</td>
<td>4</td>
<td>Ginete Werner Pinto, Knippertz</td>
</tr>
<tr>
<td>T-PHYS-111427</td>
<td>Turbulent Diffusion</td>
<td>4</td>
<td>Hoose, Hoshyaripour</td>
</tr>
<tr>
<td>T-PHYS-111428</td>
<td>Energy Meteorology</td>
<td>2</td>
<td>Emeis, Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-111429</td>
<td>Advanced Numerical Weather Prediction</td>
<td>4</td>
<td>Knippertz</td>
</tr>
<tr>
<td>T-PHYS-109177</td>
<td>Physics of Planetary Atmospheres</td>
<td>6</td>
<td>Leisner</td>
</tr>
<tr>
<td>T-PHYS-111273</td>
<td>Arctic Climate System</td>
<td>2</td>
<td>Sinnhuber</td>
</tr>
</tbody>
</table>

Competence Certificate
Coursework can be computer and modelling classes, exercise sheets or preparation of a presentation. Credits will be awarded after passing all courseworks/exercises.

Prerequisites
None
Competence Goal
Depending on their choice students can

- explain essential aspects of application aspects of meteorology and assign them to specific application areas. They are capable to describe the functionality of a modern weather forecasting system in detail and can predict the potential for extreme events and their impact on the population and the insurance industry depending on the region and the season. The students are capable of using weather information to derive levels of air pollution and of yields of renewable energy. They can analyse meteorological data using statistical and computer-based methods.

- explain the functionality of modern meteorological measuring methods and measuring principles and name their possible uses. This is especially true for remote sensing, advanced in-situ, trace gas and aerosol measurements. The students can build and execute experiments in the lab or in the field according to instructions, to record and scientifically evaluate data and then interpret and present the results.

- explain essential components of the climate system and their physical properties as well as causes of climate change. Students can know systems for climate monitoring and understand how climate models work. The students can designate essential processes in the atmosphere and ocean, and explain them using physical and chemical laws. They can analyze and interpret climate and weather data based on diagnostic methods. In addition, they can expertly present and discuss learned or self-developed scientific findings.

- name essential processes in the atmosphere and explain these using physical and chemical laws. In particular, students are capable of explaining the structure and dynamics of different cloud systems and of estimating the microphysical processes in clouds or calculating them directly for idealized conditions. In addition, the students are capable of mathematically evaluating the radiation transport in the atmosphere and of describing the importance of radiation processes for the structure of the atmosphere, for climate change and for the measurement of different atmospheric variables. They can also explain the chemical structure and the composition of the aerosols in the troposphere and the stratosphere based on atmospheric physico-chemical processes and transformations. The students can explain the chemical and physical causes of the stratospheric ozone hole and its future development, can describe and classify the main aerosol-cloud processes and are capable of reproducing the main points of the Köhler theory and the classical nucleation theory.

Content
This module aims to give students of other master programs an insight into various areas of meteorology:

- Applications of meteorology such as weather forecasting (T-PHYS-109139) and warning (T-PHYS-109140), insurance and energy industry (T-PHYS-109141), data analysis (T-PHYS-109142) and air quality (T-PHYS-108610).

- Experimental modern measurement methods in meteorology such as satellite remote sensing (T-PHYS-109133).

- Components of the climate system such as the tropics (T-PHYS-107693), the ocean (T-PHYS-108932) and the middle atmosphere (T-PHYS-8931) and their physical and chemical backgrounds as well as modelling their temporal and spatial changes with ICON (T-PHYS-108928) and analysing general climate dynamics and changes (T-PHYS-107692).

- Physical and chemical processes in the atmosphere such as cloud physics (T-PHYS-107694), radiation (T-PHYS-107696), aerosols (T-PHYS-8938) and atmospheric energetics (T-PHYS-107695).

- Formation and properties of planets and their atmospheres in our solar system applying fundamental principles of physics.

Workload
240 hours composed of active time (45h), wrap-up of the lectures and solving the exercises (195h)

Recommendation
Basic knowledge in Physics, Physical Chemistry and Fluid Dynamics at BSc level
Module: Selected Topics in Meteorology (Second Major, graded) [M-PHYS-104577]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: Second Major in Physics: Meteorology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>2 terms</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109380</td>
<td>Exam on Selected Topics in Meteorology (Second Major)</td>
<td>4 CR</td>
<td>Hoose</td>
</tr>
</tbody>
</table>

Elective Subjects (Election: at least 3 items as well as at least 10 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111410</td>
<td>Seminar on IPCC Assessment Report</td>
<td>2 CR</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-111411</td>
<td>Tropical Meteorology</td>
<td>4 CR</td>
<td>Knippertz</td>
</tr>
<tr>
<td>T-PHYS-111412</td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>4 CR</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-111413</td>
<td>Middle Atmosphere in the Climate System</td>
<td>2 CR</td>
<td>Höpfner, Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-111414</td>
<td>Ocean-Atmosphere Interactions</td>
<td>2 CR</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-111416</td>
<td>Cloud Physics</td>
<td>4 CR</td>
<td>Hoose</td>
</tr>
<tr>
<td>T-PHYS-111417</td>
<td>Energetics</td>
<td>2 CR</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-111418</td>
<td>Atmospheric Aerosols</td>
<td>4 CR</td>
<td>Möhler</td>
</tr>
<tr>
<td>T-PHYS-111419</td>
<td>Atmospheric Radiation</td>
<td>2 CR</td>
<td>Höpfner</td>
</tr>
<tr>
<td>T-PHYS-111424</td>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td>4 CR</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-111426</td>
<td>Methods of Data Analysis</td>
<td>4 CR</td>
<td>Ginete Werner Pinto, Knippertz</td>
</tr>
<tr>
<td>T-PHYS-111427</td>
<td>Turbulent Diffusion</td>
<td>4 CR</td>
<td>Hoose, Hoshyaripour</td>
</tr>
<tr>
<td>T-PHYS-111428</td>
<td>Energy Meteorology</td>
<td>4 CR</td>
<td>Emeis, Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-111429</td>
<td>Advanced Numerical Weather Prediction</td>
<td>4 CR</td>
<td>Knippertz</td>
</tr>
<tr>
<td>T-PHYS-109177</td>
<td>Physics of Planetary Atmospheres</td>
<td>6 CR</td>
<td>Leisner</td>
</tr>
<tr>
<td>T-PHYS-111273</td>
<td>Arctic Climate System</td>
<td>2 CR</td>
<td>Sinnhuber</td>
</tr>
</tbody>
</table>

Competence Certificate
Coursework can be computer and modelling classes, exercise sheets or preparation of a presentation.

→ successful completion of the prerequisites entitles to exam

(T-PHYS-109380) Exam on Selected Topics in Meteorology (Second Major):
Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Physik Master

Prerequisites
None
Competence Goal
Depending on their choice students can

- explain essential aspects of application aspects of meteorology and assign them to specific application areas. They are capable to describe the functionality of a modern weather forecasting system in detail and can predict the potential for extreme events and their impact on the population and the insurance industry depending on the region and the season. The students are capable of using weather information to derive levels of air pollution and of yields of renewable energy. They can analyse meteorological data using statistical and computer-based methods.
- explain the functionality of modern meteorological measuring methods and measuring principles and name their possible uses. This is especially true for remote sensing, advanced in-situ, trace gas and aerosol measurements. The students can build and execute experiments in the lab or in the field according to instructions, to record and scientifically evaluate data and then interpret and present the results.
- explain essential components of the climate system and their physical properties as well as causes of climate change. Students can know systems for climate monitoring and understand how climate models work. The students can designate essential processes in the atmosphere and ocean, and explain them using physical and chemical laws. They can analyze and interpret climate and weather data based on diagnostic methods. In addition, they can expertly present and discuss learned or self-developed scientific findings.
- name essential processes in the atmosphere and explain these using physical and chemical laws. In particular, students are capable of explaining the structure and dynamics of different cloud systems and of estimating the microphysical processes in clouds or calculating them directly for idealized conditions. In addition, the students are capable of mathematically evaluating the radiation transport in the atmosphere and of describing the importance of radiation processes for the structure of the atmosphere, for climate change and for the measurement of different atmospheric variables. They can also explain the chemical structure and the composition of the aerosols in the troposphere and the stratosphere based on atmospheric physico-chemical processes and transformations. The students can explain the chemical and physical causes of the stratospheric ozone hole and its future development, can describe and classify the main aerosol-cloud processes and are capable of reproducing the main points of the Köhler theory and the classical nucleation theory.

Content
This module aims to give students of other master programs an insight into various areas of meteorology:

- **Applications of meteorology** such as weather forecasting (T-PHYS-109139) and warning (T-PHYS-109140), insurance and energy industry (T-PHYS-109141), data analysis (T-PHYS-109142) and air quality (T-PHYS-108610).
- **Experimental modern measurement methods** in meteorology such as satellite remote sensing (T-PHYS-109133).
- **Components of the climate system** such as the tropics (T-PHYS-107693), the ocean (T-PHYS-108932), the arctic (T-PHYS-111273) and the middle atmosphere (T-PHYS-8931) and their physical and chemical backgrounds as well as modelling their temporal and spatial changes with ICON (T-PHYS-108928) and analysing general climate dynamics and changes (T-PHYS-107692).
- **Physical and chemical processes in the atmosphere** such as cloud physics (T-PHYS-107694), radiation (T-PHYS-107696), aerosols (T-PHYS-8938) and atmospheric energetics (T-PHYS-107695).
- **Formation and properties of planets and their atmospheres** in our solar system applying fundamental principles of physics.

Module grade calculation
Grade of the Oral Exam.

Workload
420 hours composed of

- active time (79 h),
- wrap-up of the lectures incl. preparation of the oral exam (170 h) and
- solving the exercises (171 h)

Recommendation
Basic knowledge in Physics, Physical Chemistry and Fluid Dynamics at BSc level

Responsible: Prof. Dr. Alexey Ustinov
Organisation: KIT Department of Physics
Part of: Major in Physics: Condensed Matter (Elective Condensed Matter)
Second Major in Physics: Condensed Matter (Elective Condensed Matter)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Module Duration</th>
<th>Level</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111118</td>
<td>Solid State Quantum Computing</td>
<td>4</td>
<td>4 CR</td>
<td>1</td>
<td>Ustinov</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

Quantum mechanics 1, Solid state physics (Modern Physics II)

Competence Goal

The students will become familiar with the physical foundations of solid-state quantum computing technologies. They will learn about types of quantum circuits based on qubits and resonators, their control, manipulation and measurement techniques. This course is intended to be an introduction into the new interdisciplinary field called quantum engineering.

Content

This course has the primary focus on experimental physics and covers the physical foundations of solid-state quantum computing technologies. Solid state quantum computing is a rapidly developing interdisciplinary field involving ideas from quantum mechanics, condensed matter physics, quantum optics, and quantum information processing. In the past few years, quantum computers turned from a dream into reality and offer fascinating opportunities for the future. While classical computers encode the information in bits, quantum computers are built using quantum bits, or qubits. The lecture course will review various types of qubits - quantum hardware that can be or is already used to build quantum computers based on solid-state technologies. We will start from a brief introduction in superconductivity to discuss then the most advanced modern technology based on superconducting quantum circuits. Such circuits with multiple qubits are currently being used in existing quantum computers implemented by Google, IBM, and other IT-companies. Besides superconductors, we will also talk about emerging solid-state quantum platforms such as semiconductor quantum dots, vacancy centers in diamond, solid-state impurity spins and other quantum two-level systems. These emerging versatile approaches are also capable of building primitive single- or two-qubit level circuits. Finally, we will briefly discuss interesting theoretical proposals of condensed matter systems leading to yet unexplored types of qubits, using e.g. electrons on the surface of superfluid helium, impurity spins in fullerenes, and Majorana type qubits.

Workload

120 h consisting of attendance time (30 h), wrap-up of lecture incl. exam preparation (90 h)

Literature

- A. M. Zagoskin, Quantum Engineering, 2011
- Quantum Computing: Progress and Prospects, 2019

Responsible: Prof. Dr. Alexey Ustinov

Organisation: KIT Department of Physics

Part of: Major in Physics: Condensed Matter (Elective Condensed Matter)
Second Major in Physics: Condensed Matter (Elective Condensed Matter)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111804 | Solid State Quantum Computing, with Exercises | 8 CR | Ustinov |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

Quantum mechanics 1, Solid state physics (Modern Physics II)

Competence Goal

The students become familiar with the physical foundations of solid-state quantum computing technologies. They learn about types of quantum circuits based on qubits and resonators, their control, manipulation and measurement techniques. Active participation in the exercise class provides the ability to understand and mathematically analyze basic experiments in quantum information processing. This course is intended to be an introduction into the new interdisciplinary field called quantum engineering.

Content

This course has the primary focus on experimental physics and covers the physical foundations of solid-state quantum computing technologies. Solid state quantum computing is a rapidly developing interdisciplinary field involving ideas from quantum mechanics, condensed matter physics, quantum optics, and quantum information processing. In the past few years, quantum computers turned from a dream into reality and offer fascinating opportunities for the future. While classical computers encode the information in bits, quantum computers are built using quantum bits, or qubits. The lecture course will review various types of qubits - quantum hardware that can be or is already used to build quantum computers based on solid-state technologies. We will start from a brief introduction in superconductivity to discuss then the most advanced modern technology based on superconducting quantum circuits. Such circuits with multiple qubits are currently being used in existing quantum computers implemented by Google, IBM, and other IT-companies. Besides superconductors, we will also talk about emerging solid-state quantum platforms such as semiconductor quantum dots, vacancy centers in diamond, solid-state impurity spins and other quantum two-level systems. These emerging versatile approaches are also capable of building primitive single- or two-qubit level circuits. Finally, we will briefly discuss interesting theoretical proposals of condensed matter systems leading to yet unexplored types of qubits, using e.g. electrons on the surface of superfluid helium, impurity spins in fullerenes, and Majorana type qubits. The accompanying exercise class will deepen the understanding of the lecture topics and provides a forum to discuss open questions.

Workload

240 h consisting of attendance time (60 h), wrap-up of the lecture, working on the exercises and preparation of the exam (180 h).

Literature

- A. M. Zagoskin, Quantum Engineering, 2011
- Quantum Computing: Progress and Prospects, 2019
Module: Solid State Quantum Computing, with Exercises (Minor) [M-PHYS-105872]

Responsible: Prof. Dr. Alexey Ustinov
Organisation: KIT Department of Physics
Part of: Minor in Physics: Condensed Matter

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Level</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111805</td>
<td>Solid State Quantum Computing, with Exercises (Minor)</td>
<td>8 CR</td>
<td>4</td>
<td>Ustinov</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
Quantum mechanics 1, Solid state physics (Modern Physics II)

Competence Goal
The students become familiar with the physical foundations of solid-state quantum computing technologies. They learn about types of quantum circuits based on qubits and resonators, their control, manipulation and measurement techniques. Active participation in the exercise class provides the ability to understand and mathematically analyze basic experiments in quantum information processing. This course is intended to be an introduction into the new interdisciplinary field called quantum engineering.

Content
This course has the primary focus on experimental physics and covers the physical foundations of solid-state quantum computing technologies. Solid state quantum computing is a rapidly developing interdisciplinary field involving ideas from quantum mechanics, condensed matter physics, quantum optics, and quantum information processing. In the past few years, quantum computers turned from a dream into reality and offer fascinating opportunities for the future. While classical computers encode the information in bits, quantum computers are built using quantum bits, or qubits. The lecture course will review various types of qubits - quantum hardware that can be or is already used to build quantum computers based on solid-state technologies. We will start from a brief introduction in superconductivity to discuss then the most advanced modern technology based on superconducting quantum circuits. Such circuits with multiple qubits are currently being used in existing quantum computers implemented by Google, IBM, and other IT-companies. Besides superconductors, we will also talk about emerging solid-state quantum platforms such as semiconductor quantum dots, vacancy centers in diamond, solid-state impurity spins and other quantum two-level systems. These emerging versatile approaches are also capable of building primitive single- or two-qubit level circuits. Finally, we will briefly discuss interesting theoretical proposals of condensed matter systems leading to yet unexplored types of qubits, using e.g. electrons on the surface of superfluid helium, impurity spins in fullerenes, and Majorana type qubits. The accompanying exercise class will deepen the understanding of the lecture topics and provides a forum to discuss open questions.

Workload
240 h consisting of attendance time (60 h) and wrap-up of the lecture and working on the exercises (180 h)

Literature
- A. M. Zagoskin, Quantum Engineering, 2011
- Quantum Computing: Progress and Prospects, 2019
Module: Solid State Quantum Technologies [M-PHYS-104857]

Responsible: Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-109889 | Solid State Quantum Technologies | 8 CR | Wernsdorfer |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-104858 - Solid State Quantum Technologies (Minor) must not have been started.

Competence Goal

The development and comprehensive use of Quantum Technology is one of the most ambitious technological goals of today's science, with expected dramatic impact on the whole society and economy. The field of quantum information processing using solid state quantum bits (qubits) has witnessed an exponential growth during the last years. The current performances suggest that within a horizon of a few years, solid state quantum machines could outperform even the best classical machines for a few types of particularly hard tasks. During this class, the students will acquire a basic understanding of the principles of quantum information processing and the functioning of computers based on qubits, with an emphasis on experimental implementations using superconducting circuits and cavities and spin based solid state qubits. The supporting problems will cover in detail a broad set of calculations, from derivations of basic results, to solving practical problems one could encounter in a research laboratory.

Content

After a general introduction to the concepts of quantum information processing, we will present an overview of different experimental implementations. We will then focus on spin qubits and superconducting circuit qubits. We will discuss sources of loss and dephasing, and we will mention several strategies to increase the coherence of qubits. During the last few lectures, we will focus on advanced topics such as circuit quantum electrodynamics (cQED) and quantum optics in the microwave domain.

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (180 hours).

Recommendation

Basic knowledge of quantum mechanics

Literature

Will be announced in the lecture
4.181 Module: Solid State Quantum Technologies (Minor) [M-PHYS-104858]

Responsible: Prof. Dr. Wolfgang Wernsdorfer
Organisation: KIT Department of Physics
Part of:
- Minor in Physics: Condensed Matter
- Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109890</td>
<td>Solid State Quantum Technologies</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-PHYS-104857 - Solid State Quantum Technologies** must not have been started.

Competence Goal
The development and comprehensive use of Quantum Technology is one of the most ambitious technological goals of today's science, with expected dramatic impact on the whole society and economy. The field of quantum information processing using solid state quantum bits (qubits) has witnessed an exponential growth during the last years. The current performances suggest that within a horizon of a few years, solid state quantum machines could outperform even the best classical machines for a few types of particularly hard tasks. During this class, the students will acquire a basic understanding of the principles of quantum information processing and the functioning of computers based on qubits, with an emphasis on experimental implementations using superconducting circuits and cavities and spin based solid state qubits. The supporting problems will cover in detail a broad set of calculations, from derivations of basic results, to solving practical problems one could encounter in a research laboratory.

Content
After a general introduction to the concepts of quantum information processing, we will present an overview of different experimental implementations. We will then focus on spin qubits and superconducting circuit qubits. We will discuss sources of loss and dephasing, and we will mention several strategies to increase the coherence of qubits. During the last few lectures, we will focus on advanced topics such as circuit quantum electrodynamics (cQED) and quantum optics in the microwave domain.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and work on the exercises (180 hours).

Recommendation
Basic knowledge of quantum mechanics

Literature
Will be announced in the lecture
Module: Solid-State Optics [M-PHYS-102408]

M 4.182

Responsible: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Organisation: KIT Department of Physics

Part of:
Major in Physics: Condensed Matter (Elective Condensed Matter)
Major in Physics: Optics and Photonics (mandatory)
Second Major in Physics: Condensed Matter (Required Elective Condensed Matter)
Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104773</td>
<td>Solid-State Optics, without Exercises</td>
<td>8</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102409 - Solid-State Optics (Minor) must not have been started.

Competence Goal

The students

- know the basic interaction processes between light and matter and are familiar with the polariton concept
- can explain the optical properties of insulators, semiconductors (including quantum structures) and metals
- comprehend the concept of the dielectric function and can utilize it to calculate relevant optical quantities
- are familiar with the classical Drude-Lorentz model and its implications for the optical properties of solids
- understand the relation between classical and quantum mechanical models for the dielectric function as well as the importance of the Kramers Kronig relations
- can explain near-band-edge optical spectra of semiconductors and insulators based on the concepts of joint density of states, oscillator strength, as well as excitonic effects
- are familiar with common experimental techniques of optical spectroscopy
- understand the origin of different optical nonlinearities and high-excitation effects as well as their mathematical description, their experimental realization and their applications
- comprehend the basics of group theory and can apply it to solid state optics

Content

Maxwell's equations, refractive index, dispersion, dielectric function, extinction, absorption, reflection, continuity conditions at interfaces, anisotropic media and layered systems, Drude–Lorentz model, reststrahlen bands, Bloch states and band structure, perturbation theory of light–matter interaction, band to band transitions, joint density of states, van Hove singularities, phonon and exciton polaritons, plasmons, metals, semiconductor heterostructures, low-dimensional systems, group theory and selection rules, nonlinear optics, high-excitation effects in semiconductors, measurement of optical functions: Fourier spectroscopy, ellipsometry, modulation spectroscopy, photoluminescence, reflectometry, absorptivity.

Workload

240 hours, consisting of attendance time (60 hours) and follow-up work incl. preparation of the exam (180 hours)

Recommendation

Basic knowledge of solid-state physics and quantum mechanics is expected.
Literature

- H. Kalt, C. Klingshirn: Semiconductor Optics
- F. Wooten: Optical Properties of Solids
- P.K. Basu: Theory of optical processes in semiconductors
- H. Ibach and H. Lüth: Solid-State Physics
Module: Solid-State Optics (Minor) [M-PHYS-102409]

Responsible: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Condensed Matter
- Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credit Points</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104774</td>
<td>Solid-State Optics, without Exercises (Minor)</td>
<td>8 CR</td>
<td>Hetterich, Kalt</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit for the physics minor will be an ungraded oral examination of the stated qualification objectives.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-PHYS-102408 - Solid-State Optics** must not have been started.

Competence Goal
The students

- know the basic interaction processes between light and matter and are familiar with the polariton concept
- can explain the optical properties of insulators, semiconductors (including quantum structures) and metals
- comprehend the concept of the dielectric function and can utilize it to calculate relevant optical quantities
- are familiar with the classical Drude-Lorentz model and its implications for the optical properties of solids
- understand the relation between classical and quantum mechanical models for the dielectric function as well as the importance of the Kramers Kronig relations
- can explain near-band-edge optical spectra of semiconductors and insulators based on the concepts of joint density of states, oscillator strength, as well as excitonic effects
- are familiar with common experimental techniques of optical spectroscopy
- understand the origin of different optical nonlinearities and high-excitation effects as well as their mathematical description, their experimental realization and their applications
- comprehend the basics of group theory and can apply it to solid state optics

Content
Maxwell’s equations, refractive index, dispersion, dielectric function, extinction, absorption, reflection, continuity conditions at interfaces, anisotropic media and layered systems, Drude–Lorentz model, reststrahlen bands, Bloch states and band structure, perturbation theory of light–matter interaction, band to band transitions, joint density of states, van Hove singularities, phonon and exciton polaritons, plasmons, metals, semiconductor heterostructures, low-dimensional systems, group theory and selection rules, nonlinear optics, high-excitation effects in semiconductors, measurement of optical functions: Fourier spectroscopy, ellipsometry, modulation spectroscopy, photoluminescence, reflectometry, absorptivity.

Workload
240 hours, consisting of attendance time (60 hours) and follow-up work incl. preparation of the exam (180 hours)

Recommendation
Basic knowledge of solid-state physics and quantum mechanics is expected.

Literature
- H. Kalt, C. Klingshirn: Semiconductor Optics
- F. Wooten: Optical Properties of Solids
- P.K. Basu: Theory of optical processes in semiconductors
- H. Ibach and H. Lüth: Solid-State Physics
4.184 Module: Specialization Phase [M-PHYS-101396]

Responsible: Studiendekan Physik

Organisation: KIT Department of Physics

Part of: Specialization Phase

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102481 | Specialization Phase | 15 CR | Studiendekan Physik |

Competence Certificate

Study achievement, ungraded.

Prerequisites

The following subjects of the course of study have to be passed:

- Major in Physics
- Second Major in Physics
- Minor in Physics
- Non-Physics Elective
- Advanced Physics Laboratory Course

Competence Goal

Students acquire essential working techniques for the completion of their master's thesis; the working techniques are specific to the area of specialization.

Workload

approx. 450 hours
4.185 Module: Spin Transport in Nanostructures [M-PHYS-102293]

Responsible: apl. Prof. Dr. Detlef Beckmann

Organisation: KIT Department of Physics

Part of: Major in Physics: Condensed Matter (Elective Condensed Matter)
Major in Physics: Nanophysics (Elective Nanophysics)
Second Major in Physics: Condensed Matter (Elective Condensed Matter)
Second Major in Physics: Nanophysics (Elective Nanophysics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-PHYS-104586 Spin Transport in Nanostructures 6 CR Beckmann

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105375 - Spin Transport in Nanostructures (Minor) must not have been started.

Competence Goal
The students know the basic concepts of spin-polarized transport and their application to transport properties in nanostructures. They are able to solve concrete problems from this subject area using the factual knowledge acquired in the lecture.

Content
The lecture will first introduce the basics of electronic transport and magnetism. Based on this, magnetoresistive effects in nanoscale structures important for spin electronics are discussed (giant magnetoresistance, spin accumulation, tunnel magnetoresistance). Further topics are magnetization dynamics (micromagnetics, spin torque, domain walls, spin waves) and the coupling of spin and thermal transport (spin caloritronics).

Workload
180 hours consisting of attendance time (45 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature
Will be mentioned in the lecture.
Module: Spin Transport in Nanostructures (Minor) [M-PHYS-105375]

Responsible: apl. Prof. Dr. Detlef Beckmann

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Condensed Matter
- Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110858</td>
<td>Spin Transport in Nanostructures (Minor)</td>
<td>6 CR</td>
<td>Beckmann</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102293 - Spin Transport in Nanostructures must not have been started.

Competence Goal
The students know the basic concepts of spin-polarized transport and their application to transport properties in nanostructures. They are able to solve concrete problems from this subject area using the factual knowledge acquired in the lecture.

Content
The lecture will first introduce the basics of electronic transport and magnetism. Based on this, magnetoresistive effects in nanoscale structures important for spin electronics are discussed (giant magnetoresistance, spin accumulation, tunnel magnetoresistance). Further topics are magnetization dynamics (micromagnetics, spin torque, domain walls, spin waves) and the coupling of spin and thermal transport (spin caloritronics).

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture and preparation of the exercises (135 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature
Will be mentioned in the lecture.
Module: Superconducting Nanostructures [M-PHYS-102191]

Responsible: apl. Prof. Dr. Detlef Beckmann
Organisation: KIT Department of Physics
Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-PHYS-104513
Superconducting Nanostructures
6 CR
Beckmann

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-104723 - Superconducting Nanostructures (Minor) must not have been started.

Competence Goal

The students are introduced to the basic concepts of superconductivity and understand their application to transport properties in nanostructures. In the exercise, the students solve concrete problems from this subject area using the factual knowledge imparted in the lecture.

Content

In the lecture, the fundamentals of superconductivity are first discussed (BCS theory). These are applied to electronic transport properties of nanostructures whose dimensions are comparable to the coherence length of superconductivity. The main transport processes (tunneling, Andreev reflection, Josephson effect) are treated, the competition of superconductivity with other ground states (normal metal, ferromagnet) is discussed (proximity effect), and their interplay in complex nanostructures is highlighted. The fundamentals are illustrated by numerous examples from current research.

Workload

180 hours consisting of attendance time (45 hours), follow-up of the lecture incl. exam preparation and preparation of the exercises (135 hours).

Recommendation

Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

Literature will be mentioned in the lecture.
Module: Superconducting Nanostructures (Minor) [M-PHYS-104723]

Responsible: apl. Prof. Dr. Detlef Beckmann
Organisation: KIT Department of Physics
Part of: Minor in Physics: Condensed Matter
Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-109621 Superconducting Nanostructures (Minor) 6 CR Beckmann

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102191 - Superconducting Nanostructures must not have been started.

Competence Goal
The students are introduced to the basic concepts of superconductivity and understand their application to transport properties in nanostructures. In the exercise, the students solve concrete problems from this subject area using the factual knowledge imparted in the lecture.

Content
In the lecture, the fundamentals of superconductivity are first discussed (BCS theory). These are applied to electronic transport properties of nanostructures whose dimensions are comparable to the coherence length of superconductivity. The main transport processes (tunneling, Andreev reflection, Josephson effect) are treated, the competition of superconductivity with other ground states (normal metal, ferromagnet) is discussed (proximity effect), and their interplay in complex nanostructures is highlighted. The fundamentals are illustrated by numerous examples from current research.

Workload
180 hours consisting of attendance time (45 hours), wrap-up of lecture and preparation of exercises (135 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature
Literature will be mentioned in the lecture.
Module: Superconductivity, Josephson Effect and Applications, with Exercises [M-PHYS-105655]

Responsible: Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grading scale</td>
<td>Grade to a tenth</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Irregular</td>
</tr>
<tr>
<td>Duration</td>
<td>1 term</td>
</tr>
<tr>
<td>Language</td>
<td>English</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111293 | Superconductivity, Josephson Effect and Applications, with Exercises | 8 CR | Shnirman |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105656 - Superconductivity, Josephson Effect and Applications, with Exercises (Minor) must not have been started.
2. The module M-PHYS-106584 - Superconductivity, Josephson Effect and Applications, without Exercises must not have been started.

Competence Goal

The students master the basic concepts of theory of superconductivity. The students are able to analyze and structure problems in the field of superconductivity. The students acquire deep understanding of the Josephson effect. The students are able to solve problems related to coherent quantum dynamics is superconducting circuits with Josephson elements.

Content

This Module covers the theoretical description of the phenomenon of superconductivity along with the introduction into various applications of superconducting systems. In particular the following subjects will be covered:

- Phenomenology, Meissner effect and London equation
- Ginzburg-Landau theory
- BCS theory
- Electrodynamics of superconductors, Anderson-Higgs mechanism
- Josephson effect in tunnel junctions
- Andreev states and Josephson effect
- Macroscopic quantum coherence
- Josephson qubits
- Microwave optics in Josephson circuits
- Arrays of Josephson junctions

Workload

240 hours consisting of attendance time (60 h), wrap-up of the lecture incl. exam preparation and preparation and follow-up of the exercises (180 h).
4.190 Module: Superconductivity, Josephson Effect and Applications, with Exercises (Minor) [M-PHYS-105656]

Responsible: Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of: Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111294</td>
<td>Superconductivity, Josephson Effect and Applications, with Exercises (Minor)</td>
<td>8 CR</td>
<td>Shnirman</td>
</tr>
</tbody>
</table>

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105655 - Superconductivity, Josephson Effect and Applications, with Exercises must not have been started.
2. The module M-PHYS-106584 - Superconductivity, Josephson Effect and Applications, without Exercises must not have been started.

Competence Goal

The students master the basic concepts of theory of superconductivity.

The students are able to analyze and structure problems in the field of superconductivity.

The students acquire deep understanding of the Josephson effect.

The students are able to solve problems related to coherent quantum dynamics in superconducting circuits with Josephson elements.

Content

This Module covers the theoretical description of the phenomenon of superconductivity along with the introduction into various applications of superconducting systems. In particular the following subjects will be covered:

- Phenomenology, Meissner effect and London equation
- Ginzburg-Landau theory
- BCS theory
- Electrodynamics of superconductors, Anderson-Higgs mechanism
- Josephson effect in tunnel junctions
- Andreev states and Josephson effect
- Macroscopic quantum coherence
- Josephson qubits
- Microwave optics in Josephson circuits
- Arrays of Josephson junctions

Workload

240 hours consisting of attendance time (60 h), follow-up of the lecture and preparation and follow-up of the exercises (180 h).
4.191 Module: Superconductivity, Josephson Effect and Applications, without Exercises [M-PHYS-106584]

Responsible: Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-113257</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105656 - Superconductivity, Josephson Effect and Applications, with Exercises (Minor) must not have been started.
2. The module M-PHYS-105655 - Superconductivity, Josephson Effect and Applications, with Exercises must not have been started.

Competence Goal

The students master the basic concepts of theory of superconductivity.
The students are able to analyze and structure problems in the field of superconductivity.
The students acquire deep understanding of the Josephson effect.

Content

This Module covers the theoretical description of the phenomenon of superconductivity along with the introduction into various applications of superconducting systems. In particular the following subjects will be covered:

- Phenomenology, Meissner effect and London equation
- Ginzburg-Landau theory
- BCS theory
- Electrodynamics of superconductors, Anderson-Higgs mechanism
- Josephson effect in tunnel junctions
- Andreev states and Josephson effect
- Macroscopic quantum coherence
- Josephson qubits
- Microwave optics in Josephson circuits
- Arrays of Josephson junctions

Workload

180 hours consisting of attendance time (45 h), wrap-up of the lecture incl. exam preparation and preparation and follow-up of the exercises (135 h).
4.192 Module: Supplementary Studies on Culture and Society [M-ZAK-106235]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: Additional Examinations

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>22</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>3 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Election notes

With the exception of the final oral exam and the practice module, students have to self-record the achievements obtained in the Supplementary Studies on Culture and Society in their study plan. ZAK records the achievements as "non-assigned" under "UQ/SQ-Leistungen". Further instructions on self-recording of achievements can be found in the FAQ at https://campus.studium.kit.edu/ and on the ZAK homepage at https://www.zak.kit.edu/begleitstudium-bak.php. The title of the examination and the amount of credits override the modules placeholders.

If you want to use ZAK achievements both for your interdisciplinary qualifications and for the supplementary studies, please record them in the interdisciplinary qualifications first. You can then get in contact with the ZAK study services (stg@zak.kit.edu) to also record them in your supplementary studies.

In the in-depth module, achievements have to be obtained in three different areas. The areas are as follows:

- Technology & Responsibility
- Doing Culture
- Media & Aesthetics
- Spheres of Life
- Global Cultures

You have to obtain two achievements with 3 credits each and one achievement with 5 credits. To self-record achievements in the in-depth module, you first have to elect the matching partial achievement.

Note: If you registered for the Supplementary Studies on Sustainable Development before April 1st, 2023, self-recording an achievement in this module counts as a request in the sense of §20 (2) of the regulations for the Supplementary Studies on Culture and Society. Your overall grade for the supplementary studies will thus be calculated as the average of the examination grades, not as the average of the module grades.

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112653</td>
<td>Basics Module - Self Assignment BAK</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112654</td>
<td>In-depth Module - Technology & Responsibility - Self Assignment BAK</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112655</td>
<td>In-depth Module - Doing Culture - Self Assignment BAK</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112656</td>
<td>In-depth Module - Media & Aesthetics - Self Assignment BAK</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112657</td>
<td>In-depth Module - Spheres of Life - Self Assignment BAK</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112658</td>
<td>In-depth Module - Global Cultures - Self Assignment BAK</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

In-depth Module (Elective: 3 items)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112660</td>
<td>Practice Module</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-ZAK-112659</td>
<td>Oral Exam - Supplementary Studies on Culture and Society</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

The monitoring is explained in the respective partial achievement.

They are composed of:

- minutes
- presentations
- a seminar paper
- an internship report
- an oral examination

After successful completion of the supplementary studies, the graduates receive a graded certificate and a KIT certificate.
Prerequisites
The offer is study-accompanying and does not have to be completed within a defined period of time. Enrolment or acceptance for graduation must be present when registering for the final examination.

KIT students register for the supplementary studies by selecting this module in the student portal and self-checking a performance. In addition, registration for the individual courses is necessary, which is possible shortly before the beginning of each semester.

The course catalogue, statutes (study regulations), registration form for the oral exam, and guides for preparing the various written performance requirements can be found as downloads on the ZAK homepage at www.zak.kit.edu/begleitstudium-bak.

Competence Goal
Graduates of the Supplementary Studies on Culture and Society demonstrate a sound basic knowledge of conditions, procedures and concepts for analysing and shaping fundamental social development tasks in connection with cultural topics. They have gained a well-founded theoretical and practical insight into various cultural studies and interdisciplinary topics in the field of tension between culture, technology and society in the sense of an expanded concept of culture.

They are able to place the contents selected from the specialization module in the basic context as well as to analyse and evaluate the contents of the selected courses independently and exemplarily and to communicate about them scientifically in written and oral form. Graduates are able to analyse social topics and problem areas and critically reflect on them in a socially responsible and sustainable perspective.

Content
The Supplementary Studies on Culture and Society can be started from the 1st semester and is not limited in time. It comprises at least 3 semesters. The supplementary studies are divided into 3 modules (basics, in-depth studies, practice). A total of 22 credit points (ECTS) are earned.

The thematic elective areas of the supplementary studies are divided into the following 5 modules and their sub-topics:

Block 1 Technology & Responsibility
Value change / ethics of responsibility, technology development / history of technology, general ecology, sustainability

Block 2 Doing Culture
Cultural studies, cultural management, creative industries, cultural institutions, cultural policy

Block 3 Media & Aesthetics
Media communication, cultural aesthetics

Block 4 Spheres of Life
Cultural sociology, cultural heritage, architecture and urban planning, industrial science

Block 5 Global Cultures
Multiculturalism / interculturalism / transculturalism, science and culture

Module grade calculation
The overall grade of the supplementary studies is calculated as an average of the grades of the examination performances weighted with credit points.

In-depth Module
- presentation 1 (3 ECTS)
- presentation 2 (3 ECTS)
- seminar paper incl. presentation (5 ECTS)
- oral examination (4 ECTS)
Annotation
With the Supplementary Studies on Culture and Society, KIT provides a multidisciplinary study offer as an additional qualification, with which the respective specialized study program is supplemented by interdisciplinary basic knowledge and interdisciplinary orientation knowledge in the field of cultural studies, which is becoming increasingly important for all professions.

Within the framework of the supplementary studies, students acquire in-depth knowledge of various cultural studies and interdisciplinary subject areas in the field of tension between culture, technology and society. In addition to high culture in the classical sense, other cultural practices, common values and norms as well as historical perspectives of cultural developments and influences are considered.

In the courses, conditions, procedures and concepts for the analysis and design of fundamental social development tasks are acquired on the basis of an expanded concept of culture. This includes everything created by humans - also opinions, ideas, religious or other beliefs. The aim is to develop a modern concept of cultural diversity. This includes the cultural dimension of education, science and communication as well as the preservation of cultural heritage. (UNESCO, 1982)

According to § 16 of the statutes, a reference and a certificate are issued by the ZAK for the supplementary studies. The achievements are also shown in the transcript of records of the degree program and, upon request, in the certificate. They can also be recognized in the interdisciplinary qualifications (see elective information).

Workload
The workload is made up of the recommended number of hours for the individual modules:

- basic module approx. 90 h
- in-depth module approx. 340 h
- practical module approx. 120 h

total: approx. 550 h

Learning type
- lectures
- seminars
- workshops
- practical course

Literature
Recommended reading of primary and specialized literature will be determined individually by each instructor.
Module: Supplementary Studies on Sustainable Development [M-ZAK-106099]

Responsible: Dr. Christine Mielke

Christine Myglas

Organisation: Additional Examinations

Credits

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>19</td>
<td></td>
<td>Each term</td>
<td>3 terms</td>
<td>German</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Recurrence

Each term

Duration

3 terms

Language

German

Level

3

Version

1

Election notes

With the exception of the final oral exam, students have to self-record the achievements obtained in the Supplementary Studies on Sustainable Development in their study plan. ZAK records the achievements as "non-assigned" under "ÜQ/SQ-Leistungen". Further instructions on self-recording of achievements can be found in the FAQ at https://campus.studium.kit.edu/ and on the ZAK homepage at https://www.zak.kit.edu/begleitstudium-bene. The title of the examination and the amount of credits override the modules placeholders.

If you want to use ZAK achievements **both for your interdisciplinary qualifications and for the supplementary studies**, please record them in the interdisciplinary qualifications first. You can then get in contact with the ZAK study services (stg@zak.kit.edu) to also record them in your supplementary studies.

In the elective module, you need to obtain 6 credits worth of achievements in two of the four areas:

- Sustainable Cities & Neighbourhoods
- Sustainable Assessment of Technology
- Subject, Body, Individual: The Other Side of Sustainability
- Sustainability in Culture, Economy & Society

Usually, two achievements with 3 credits each have to be obtained. To self-record achievements in the elective module, you first have to elect the matching partial achievement.

Note: If you registered for the Supplementary Studies on Sustainable Development before April 1st, 2023, self-recording an achievement in this module counts as a request in the sense of §19 (2) of the regulations for the Supplementary Studies on Sustainable Development. Your overall grade for the supplementary studies will thus be calculated as the average of the examination grades, not as the average of the module grades.

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112345</td>
<td>Basics Module - Self Assignment BeNe</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Elective Module (Elective: at least 6 credits)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112347</td>
<td>Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112348</td>
<td>Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112349</td>
<td>Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-ZAK-112350</td>
<td>Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe</td>
<td>3 CR</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-ZAK-112346</td>
<td>Specialisation Module - Self Assignment BeNe</td>
<td>6 CR</td>
</tr>
<tr>
<td>T-ZAK-112351</td>
<td>Oral Exam - Supplementary Studies on Sustainable Development</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
Competence Certificate
The monitoring is explained in the respective partial achievement.

They are composed of:

- protocols
- a reflection report
- presentations
- presentations
- the elaboration of a project work
- an individual term paper

Upon successful completion of the supplementary studies, graduates receive a graded report and a certificate issued by ZAK.

Prerequisites
The course is offered during the course of study and does not have to be completed within a defined period of time. Enrolment is required for all performance assessments of the modules of the supplementary studies. Participation in the supplementary studies is regulated by § 3 of the statutes.

KIT students register for the supplementary studies by selecting this module in the student portal and self-booking a performance. Registration for courses, performance assessments and examinations is regulated by § 6 of the Statutes and is usually possible shortly before the beginning of the semester.

The course catalogue, statutes (study regulations), registration form for the oral exam and guidelines for preparing the various written performance requirements can be found as downloads on the ZAK homepage at http://www.zak.kit.edu/begleitstudium-bene.

Competence Goal
Graduates of the supplementary studies in sustainable development acquire additional practical and professional competencies. Thus, the supplementary study program enables the acquisition of basics and initial experience in project management, trains teamwork skills, presentation skills and self-reflection, and also creates a fundamental understanding of sustainability that is relevant for all professional fields.

Graduates are able to analyse social topics and problem areas and critically reflect on them in a socially responsible and sustainable perspective. They are able to place the contents selected from the modules "Elective" and "Advanced" in the basic context as well as to independently and exemplarily analyse and evaluate the contents of the selected courses and to scientifically communicate about them in written and oral form.

Content
The supplementary study program Sustainable Development can be started from the 1st semester and is not limited in time. The wide range of courses offered by ZAK makes it possible to complete the program usually within three semesters. The supplementary studies comprise 19 credit points (LP). It consists of three modules: Basic Module, Elective Module and Advanced Module.

The thematic elective areas of the supplementary studies are divided into the following 4 modules and their subtopics in Module 2 (elective module):

Block 1 **Sustainable Cities and Neighbourhoods**
The courses provide an overview of the interaction of social, ecological, and economic dynamics in the microcosm of the city.

Block 2 **Sustainability Assessment of Technology**
Mostly based on ongoing research activities, methods and approaches of technology assessment are elaborated.

Block 3 **Subject, Body, Individual: The other Side of Sustainability**
Different approaches are presented to the individual perception, experience, shaping and responsibility of relationships to the environment and to oneself.

Block 4 **Sustainability in Culture, Economy & Society**
Courses usually have an interdisciplinary approach, but may also focus on one of the areas of culture, economics or society, both in application and in theory.

The core of the supplementary studies is a case study in the specialization area. In this project seminar, students conduct sustainability research with practical relevance themselves. The case study is supplemented by an oral examination with two topics from module 2 (elective module) and module 3 (in-depth module).
Module grade calculation
The overall grade of the supplementary studies is calculated as an average of the grades of the examination performances weighted with credit points.

Elective module
- Presentation 1 (3 ECTS)
- Presentation 2 (3 ECTS)

Advanced module
- individual term paper (6 ECTS)
- oral examination (4 ECTS)

Annotation
The Supplementary Studies on Sustainable Development at KIT is based on the conviction that a long-term socially and ecologically compatible coexistence in the global world is only possible if knowledge about necessary changes in science, economy and society is acquired and applied.

The interdisciplinary and transdisciplinary Studies on Sustainable Development enables diverse access to transformation knowledge as well as basic principles and application areas of sustainable development. According to the statutes § 16, a certificate is issued by the ZAK for the complementary studies. The achievements are also shown in the transcript of records of the degree program and, upon request, in the certificate. They can also be recognized in the interdisciplinary qualifications (see elective information). In the specialised studies, modules and partial achievements can be recognised within the framework of the additional achievements or e.g. the interdisciplinary qualifications. This must be regulated via the respective subject study programme. The focus is on experience- and application-oriented knowledge and competences, but theories and methods are also learned. The aim is to be able to represent one's own actions as a student, researcher and later decision-maker as well as an individual and part of society under the aspect of sustainability.

Sustainability is understood as a guiding principle to which economic, scientific, social and individual actions should be oriented. According to this, the long-term and socially just use of natural resources and the material environment for a positive development of global society can only be addressed by means of integrative concepts. Therefore, "education for sustainable development" in the sense of the United Nations programme plays just as central a role as the goal of promoting "cultures of sustainability". For this purpose, practice-centred and research-based learning of sustainability is made possible and the broad concept of culture established at ZAK is used, which understands culture as habitual behaviour, lifestyle and changing context for social actions.

The supplementary study programme conveys the basics of project management, trains teamwork skills, presentation skills and self-reflection. Complementary to the specialised studies at KIT, it creates a fundamental understanding of sustainability, which is important for all professional fields. Integrative concepts and methods are essential: in order to use natural resources in the long term and to shape the global future in a socially just way, not only different disciplines, but also citizens, practitioners and institutions must work together.

Workload
The workload is made up of the number of hours of the individual modules:
- Basic module approx. 180 h
- Elective module approx. 150 h
- Consolidation module approx. 180 h

Total: approx. 510 h

Learning type
- lectures
- seminars
- workshops

Literature
Recommended reading of primary and specialist literature is determined individually by the respective lecturer.
Module: Surface Science, with Exercises [M-PHYS-106482]

Responsible:
TT-Prof. Dr. Philip Willke
Prof. Dr. Wulf Wulfhekel
PD Dr. Khalil Zakeri-Lori

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Required Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Required Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-113098</td>
<td>Surface Science, with Exercises</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Willke, Wulfhekel, Zakeri-Lori

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-106483 - Surface Science, without Exercises must not have been started.
2. The module M-PHYS-106484 - Surface Science, with Exercises (Minor) must not have been started.

Competence Goal
Students are introduced to the basic concepts of surface science, they master the relevant theoretical concepts and understand the concepts and measurement methods of surface science as well as their application. In groups they solve concrete problems of surface science using the factual knowledge acquired in the lecture.

Content
In the lecture, physics at surfaces and interfaces as well as the physical chemistry at surfaces are discussed. Starting with the two-dimensional space group, the structure of surfaces is discussed as well as effects arising from symmetry breaking at surfaces and interfaces. Furthermore, layer growth and modification of layer growth using various techniques will be discussed. The main part of the lecture deals with the electronic structure of two-dimensional systems and nanostructures as well as the experimental techniques of surface science.

Workload
300 hours consisting of attendance time (75 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (225 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature
- K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama, Surface Science: An Introduction, Springer
- H. Ibach, Physics of Surfaces and Interfaces, Springer
4.195 Module: Surface Science, with Exercises (Minor) [M-PHYS-106484]

Responsible: TT-Prof. Dr. Philip Willke
Prof. Dr. Wulf Wulfhekel
PD Dr. Khalil Zakeri-Lori

Organisation: KIT Department of Physics

Part of:
Minor in Physics: Condensed Matter
Minor in Physics: Nanophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-113100</td>
<td>Surface Science, with Exercises (Minor)</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-106482 - Surface Science, with Exercises must not have been started.
2. The module M-PHYS-106483 - Surface Science, without Exercises must not have been started.

Competence Goal
Students are introduced to the basic concepts of surface science, they master the relevant theoretical concepts and understand the concepts and measurement methods of surface science as well as their application. In groups they solve concrete problems of surface science using the factual knowledge acquired in the lecture.

Content
In the lecture, physics at surfaces and interfaces as well as the physical chemistry at surfaces are discussed. Starting with the two-dimensional space group, the structure of surfaces is discussed as well as effects arising from symmetry breaking at surfaces and interfaces. Furthermore, layer growth and modification of layer growth using various techniques will be discussed. The main part of the lecture deals with the electronic structure of two-dimensional systems and nanostructures as well as the experimental techniques of surface science.

Workload
300 hours consisting of attendance time (75 hours), wrap-up of lecture and preparation of exercises (225 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

- K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama, Surface Science: An Introduction, Springer
- H. Ibach, Physics of Surfaces and Interfaces, Springer
M.196 Module: Surface Science, without Exercises [M-PHYS-106483]

Responsible:
TT-Prof. Dr. Philip Willke
Prof. Dr. Wulf Wulfhekel
PD Dr. Khalil Zakeri-Lori

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Required Elective Nanophysics)
- Second Major in Physics: Condensed Matter (Required Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 CR</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-106482 - Surface Science, with Exercises must not have been started.
2. The module M-PHYS-106484 - Surface Science, with Exercises (Minor) must not have been started.

Competence Goal
Students are introduced to the basic concepts of surface science, master the relevant theoretical concepts, and understand the concepts and measurement methods of surface science and their applications.

Content
In the lecture, physics at surfaces and interfaces as well as the physical chemistry at surfaces are discussed. Starting with the two-dimensional space group, the structure of surfaces is discussed as well as effects arising from symmetry breaking at surfaces and interfaces. Furthermore, layer growth and modification of layer growth using various techniques will be discussed. The main part of the lecture deals with the electronic structure of two-dimensional systems and nanostructures as well as the experimental techniques of surface science.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of lecture incl. exam preparation (180 hours).

Recommendation
Basic knowledge of solid state physics, quantum mechanics, and thermodynamics is assumed.

Literature

- K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama, Surface Science: An Introduction, Springer
- H. Ibach, Physics of Surfaces and Interfaces, Springer
Module: Symmetries and Groups [M-PHYS-102317]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-PHYS-104596 Symmetries and Groups 8 CR Nierste

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102315 - Symmetries, Groups and Extended Gauge Theories must not have been started.
2. The module M-PHYS-102316 - Symmetries, Groups and Extended Gauge Theories (Minor) must not have been started.
3. The module M-PHYS-102318 - Symmetries and Groups (Minor) must not have been started.

Competence Goal
Learning the methodology of group theory Ability to solve complex mathematical problems such as the classification of Lie groups.

Content
Lie groups and their representations, Lie algebras, Poincaré group, discrete groups, left-right symmetry, grand unified theories.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation
Good knowledge of quantum mechanics I. For the last third, "extended gauge theories", previous knowledge of theoretical particle physics is required.

Literature
To be stated in the lecture.
Module: Symmetries and Groups (Minor) [M-PHYS-102318]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104597</td>
<td>Symmetries and Groups (Minor)</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102315 - Symmetries, Groups and Extended Gauge Theories must not have been started.
2. The module M-PHYS-102316 - Symmetries, Groups and Extended Gauge Theories (Minor) must not have been started.
3. The module M-PHYS-102317 - Symmetries and Groups must not have been started.

Competence Goal
Learning the methodology of group theory
Ability to solve complex mathematical problems such as the classification of Lie groups.

Content
Lie groups and their representations, Lie algebras, Poincaré group, discrete groups, left-right symmetry, grand unified theories.

Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Recommendation
Good knowledge of quantum mechanics I. For the last third, "extended gauge theories", previous knowledge of theoretical particle physics is required.

Literature
To be stated in the lecture.
M.499 Module: Symmetries, Groups and Extended Gauge Theories [M-PHYS-102315]

Responsibility: Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102393 | Symmetries, Groups and Extended Gauge Theories | 12 CR | Nierste |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102316 - Symmetries, Groups and Extended Gauge Theories (Minor) must not have been started.
2. The module M-PHYS-102317 - Symmetries and Groups must not have been started.
3. The module M-PHYS-102318 - Symmetries and Groups (Minor) must not have been started.

Competence Goal

Learning the methodology of group theory Ability to solve complex mathematical problems such as classification of Lie groups, understanding the concepts of extended gauge theories.

Content

Lie groups and their representations, Lie algebras, Poincaré group, discrete groups, left-right symmetry, grand unified theories.

Workload

360 hours consisting of attendance time (90 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (270 hours)

Recommendation

Good knowledge of quantum mechanics I. For the last third, "extended gauge theories", previous knowledge of theoretical particle physics is required.

Literature

To be stated in the lecture.
Module: Symmetries, Groups and Extended Gauge Theories (Minor) [M-PHYS-102316]

Responsible: Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Title</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102444</td>
<td>Symmetries, Groups and Extended Gauge Theories (Minor)</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102315 - Symmetries, Groups and Extended Gauge Theories must not have been started.
2. The module M-PHYS-102317 - Symmetries and Groups must not have been started.
3. The module M-PHYS-102318 - Symmetries and Groups (Minor) must not have been started.

Competence Goal
Learning the methodology of group theory Ability to solve complex mathematical problems such as classification of Lie groups, understanding the concepts of extended gauge theories.

Content
Lie groups and their representations, Lie algebras, Poincaré group, discrete groups, left-right symmetry, grand unified theories.

Workload
360 hours consisting of attendance time (90 hours), wrap-up of the lecture and preparation of the exercises (270 hours).

Recommendation
Good knowledge of quantum mechanics I. For the last third, "extended gauge theories", previous knowledge of theoretical particle physics is required.

Literature
To be stated in the lecture.
4.201 Module: The ABC of DFT [M-PHYS-102984]

Responsible: Prof. Dr. Carsten Rockstuhl
Prof. Dr. Wolfgang Wenzel

Organisation: KIT Department of Physics

Part of: Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-105960</td>
<td>The ABC of DFT</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

Understanding of basic numerical methods in density functional theory and the ability to apply them to solve physical problems in solid state physics such as the description of charge transport or magnetism. Emphasis is placed on acquiring the skills for independent simulation execution, subsequent data analysis, physical interpretation and, if possible, linkage with experimental investigations.

Content

With ever advancing computational power, it becomes possible to determine the electronic structure of increasingly complex systems relevant to solid state physics and materials science. Here we introduce Density Functional Theory (DFT) by explaining the basic underlying concepts, present examples of its application and its shortcomings and outline the most promising improvement paths. DFT will be applied to charge transport and magnetism related problems. As DFT makes it possible to treat fairly large systems (up to a few thousand of electrons) it enables direct comparison to experiment for many important applications. Both periodic, crystalline systems and localized single molecule in vacuum will be addressed with a special focus on systems with reduced dimensionality, such as surfaces and interfaces. Where applicable, comparisons to experiment and possible deployments will be presented. Some of the topics that will be addressed are:

- Basic concepts underpinning the DFT
- Calculations of band structure and density of states (DOS) of (hybrid) graphene materials.
- Treatment of magnetism within DFT, with examples of both bulk and molecular magnetism.
- Charge transport, with examples of both ballistic and disordered hopping transport.
- Beyond ground state DFT: Time Dependent DFT, GW, ...

Workload

180 h consisting of attendance time (60 h), wrap-up of the lecture incl. exam preparation and working on the exercises (120 h)

Recommendation

Basic knowledge of solid state theory, quantum mechanics, and thermodynamics is assumed.

Literature

Will be mentioned in the lecture.
4.202 Module: Theoretical Molecular Biophysics, with Seminar [M-PHYS-102169]

Responsibility: Prof. Dr. Wolfgang Wenzel

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Description</th>
<th>CR</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102365</td>
<td>Theoretical Molecular Biophysics, with Seminar</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102170 - Theoretical Molecular Biophysics, with Seminar (Minor) must not have been started.
2. The module M-PHYS-102171 - Theoretical Molecular Biophysics, without Seminar must not have been started.
3. The module M-PHYS-102172 - Theoretical Molecular Biophysics, without Seminar (Minor) must not have been started.

Competence Goal

The students:

- can describe the structure of biopolymers based on their components
- understand the physical interactions that determine the structure and function of biopolymers
- know models for structure formation and function of biopolymers, especially proteins and DNA.
- know methods for the simulation of structure formation and function of biopolymers, especially molecular dynamics and their technical implementation
- can apply these methods to simple problems of the teaching content
- know methods for computer-aided drug development
- know basic bioinformatics methods for protein and DNA structure prediction
- are able to critically evaluate the procedures in the context of their application
- can understand a special topic within the teaching content on the basis of scientific literature and present it in a lecture or a paper
- can critically evaluate the scientific results of this special topic

Content

The students are introduced to current issues in molecular biophysics in the border area between biology, chemistry and physics. After an introduction to the composition and structure of biopolymers, especially proteins and DNA, the physical principles of structure formation and function are presented. Afterwards biophysical basics and biochemical models for the modelling of proteins and DNA in their physiological environment are introduced. A central teaching content is the introduction to simulation methods for biopolymers (molecular dynamics, Monte Carlo method) and the biophysical models used for this (force fields) and their application in the exercises. In addition to the basic methods, modern extensions (Free-Energy-Perturbation Theory, Umbrella-Sampling, Metadynamics) are discussed. Students will be introduced to the application of these methods to important questions in molecular biophysics, including protein folding, protein structure prediction, DNA structure prediction and computer-aided drug development.

Workload

240 hours composed of attendance time (60), wrap-up of the lectures incl. preparation of the oral exam and solving the exercises (120), preparation of the seminar or writing a report (60)

Recommendation

Knowledge of thermodynamics
Literature

- Daune: Molecular Biophysics
- Branden, Tooze: Introduction to Protein Structure

Further literature will be given in the lecture
Module: Theoretical Molecular Biophysics, with Seminar (Minor) [M-PHYS-102170]

Responsibility: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics

Part of: Minor in Physics: Nanophysics
Minor in Physics: Condensed Matter Theory

Credits: 8
Grading scale: pass/fail
Recurrence: Irregular
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory
T-PHYS-102420 Theoretical Molecular Biophysics, with Seminar (Minor) 8 CR Wenzel

Competence Certificate
50% of the points attainable in the exercise sheets, presentation and short lectures within the framework of the lecture/exercise.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102169 - Theoretical Molecular Biophysics, with Seminar must not have been started.
2. The module M-PHYS-102171 - Theoretical Molecular Biophysics, without Seminar must not have been started.
3. The module M-PHYS-102172 - Theoretical Molecular Biophysics, without Seminar (Minor) must not have been started.

Competence Goal
The students:

- can describe the structure of biopolymers based on their components
- understand the physical interactions that determine the structure and function of biopolymers
- know models for structure formation and function of biopolymers, especially proteins and DNA.
- know methods for the simulation of structure formation and function of biopolymers, especially molecular dynamics and their technical implementation
- can apply these methods to simple problems of the teaching content
- know methods for computer-aided drug development
- know basic bioinformatics methods for protein and DNA structure prediction
- are able to critically evaluate the procedures in the context of their application
- can understand a special topic within the teaching content on the basis of scientific literature and present it in a lecture or a paper
- can critically evaluate the scientific results of this special topic

Content
The students are introduced to current issues in molecular biophysics in the border area between biology, chemistry and physics. After an introduction to the composition and structure of biopolymers, especially proteins and DNA, the physical principles of structure formation and function are presented. Afterwards biophysical basics and biochemical models for the modelling of proteins and DNA in their physiological environment are introduced. A central teaching content is the introduction to simulation methods for biopolymers (molecular dynamics, Monte Carlo method) and the biophysical models used for this (force fields) and their application in the exercises. In addition to the basic methods, modern extensions (Free-Energy-Perturbation Theory, Umbrella-Sampling, Metadynamics) are discussed. Students will be introduced to the application of these methods to important questions in molecular biophysics, including protein folding, protein structure prediction, DNA structure prediction and computer-aided drug development.

Workload
240 hours composed of attendance time (60 hours), wrap-up of the lectures and solving the exercises (120 hours), preparation of the seminar or writing a report (60 hours)

Recommendation
Knowledge of thermodynamics
Literature

- Daune: Molecular Biophysics
- Branden, Tooze: Introduction to Protein Structure

Further literature will be given in the lecture
Module: Theoretical Molecular Biophysics, without Seminar [M-PHYS-102171]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Condensed Matter Theory

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Irregular
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104473</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Theoretical Molecular Biophysics, without Seminar
6 CR
Wenzel

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102169 - Theoretical Molecular Biophysics, with Seminar must not have been started.
2. The module M-PHYS-102170 - Theoretical Molecular Biophysics, with Seminar (Minor) must not have been started.
3. The module M-PHYS-102172 - Theoretical Molecular Biophysics, without Seminar (Minor) must not have been started.

Competence Goal

The students:

- can describe the structure of biopolymers based on their components
- understand the physical interactions that determine the structure and function of biopolymers
- know models for structure formation and function of biopolymers, especially proteins and DNA.
- know methods for the simulation of structure formation and function of biopolymers, especially molecular dynamics and their technical implementation
- can apply these methods to simple problems of the teaching content
- know methods for computer-aided drug development
- know basic bioinformatics methods for protein and DNA structure prediction
- are able to critically evaluate the procedures in the context of their application

Content

The students are introduced to current issues in molecular biophysics in the border area between biology, chemistry and physics. After an introduction to the composition and structure of biopolymers, especially proteins and DNA, the physical principles of structure formation and function are presented. Afterwards biophysical basics and biochemical models for the modelling of proteins and DNA in their physiological environment are introduced. A central teaching content is the introduction to simulation methods for biopolymers (molecular dynamics, Monte Carlo method) and the biophysical models used for this (force fields) and their application in the exercises. In addition to the basic methods, modern extensions (Free-Energy-Perturbation Theory, Umbrella-Sampling, Metadynamics) are discussed. Students will be introduced to the application of these methods to important questions in molecular biophysics, including protein folding, protein structure prediction, DNA structure prediction and computer-aided drug development.

Workload

180 hours composed of attendance time (60), wrap-up of the lectures incl. preparation of the oral exam and solving the exercises (120)

Recommendation

Knowledge of thermodynamics
Literature

- Daune: Molecular Biophysics
- Branden, Tooze: Introduction to Protein Structure

Further literature will be given in the lecture
Module: Theoretical Molecular Biophysics, without Seminar (Minor) [M-PHYS-102172]

Responsible: Prof. Dr. Wolfgang Wenzel

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Nanophysics
- Minor in Physics: Condensed Matter Theory

Credits: 6

Grading scale: pass/fail

Recurrence: Irregular

Duration: 1 term

Language: English

Level: 4

Version: 1

Mandatory

| T-PHYS-104474 | Theoretical Molecular Biophysics, without Seminar (Minor) | 6 CR | Wenzel |

Competence Certificate

50% of the points achievable in the exercise sheets

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102169 - Theoretical Molecular Biophysics, with Seminar must not have been started.
2. The module M-PHYS-102170 - Theoretical Molecular Biophysics, with Seminar (Minor) must not have been started.
3. The module M-PHYS-102171 - Theoretical Molecular Biophysics, without Seminar must not have been started.

Competence Goal

The students:

- can describe the structure of biopolymers based on their components
- understand the physical interactions that determine the structure and function of biopolymers
- know models for structure formation and function of biopolymers, especially proteins and DNA.
- know methods for the simulation of structure formation and function of biopolymers, especially molecular dynamics and their technical implementation
- can apply these methods to simple problems of the teaching content
- know methods for computer-aided drug development
- know basic bioinformatics methods for protein and DNA structure prediction
- are able to critically evaluate the procedures in the context of their application

Content

The students are introduced to current issues in molecular biophysics in the border area between biology, chemistry and physics. After an introduction to the composition and structure of biopolymers, especially proteins and DNA, the physical principles of structure formation and function are presented. Afterwards biophysical basics and biochemical models for the modelling of proteins and DNA in their physiological environment are introduced. A central teaching content is the introduction to simulation methods for biopolymers (molecular dynamics, Monte Carlo method) and the biophysical models used for this (force fields) and their application in the exercises. In addition to the basic methods, modern extensions (Free-Energy-Perturbation Theory, Umbrella-Sampling, Metadynamics) are discussed. Students will be introduced to the application of these methods to important questions in molecular biophysics, including protein folding, protein structure prediction, DNA structure prediction and computer-aided drug development.

Workload

180 hours composed of attendance time (60), wrap-up of the lectures and solving the exercises (120)

Recommendation

Knowledge of thermodynamics

Literature

- Daune: Molecular Biophysics
- Branden, Tooze: Introduction to Protein Structure

Further literature will be given in the lecture
Module: Theoretical Nanooptics [M-PHYS-102295]

Responsibility: Prof. Dr. Markus Garst
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
Major in Physics: Nanophysics (Elective Nanophysics)
Major in Physics: Optics and Photonics (Elective Optics and Photonics)
Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
Second Major in Physics: Nanophysics (Elective Nanophysics)
Second Major in Physics: Optics and Photonics
Second Major in Physics: Condensed Matter Theory

Credits: 6
Grading scale: Grade to a tenth
Recurrence: Irregular
Duration: 1 term
Language: English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Theoretical Nanooptics</th>
</tr>
</thead>
<tbody>
<tr>
<td>CR</td>
<td>Garst, Rockstuhl</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-103177 - Theoretical Nanooptics (Minor) must not have been started.

Competence Goal
The properties of light at the nanoscale can be controlled by various means. The aim of this lecture is to familiarize the students with the different possibilities that rely on nanostructured dielectric or metallic materials and to outline on solid mathematical grounds the analytical description of observable effects. The lecture is meant as a complementary source of education to experimental lecture. It shall provide the students with the necessary skills to work themselves in the field of theoretical nanooptics.

Content
- Dispersion relation to describe light in extended systems such as free space, interfaces, planar waveguides and waveguides with complicated geometrical cross sections.
- Description of the interaction of light with isolated objects such as spheres, cylinders, ellipsoids and prolates and oblates.
- Properties of plasmonic nanoparticles and the ability to tune their properties
- Notion of optical antennas and the discussion of their basic characteristics
- Description of the dynamics of wave propagation by perturbed eigenstates, i.e. coupled mode theory. Application to optical waveguide arrays.
- Discussion of metamaterials (unit cells, homogenization, light propagation, applications)
- Transformation optics
- Analytical modeling and phenomenological tools to describe nanooptical systems

Workload
180 hours composed of active time (45), wrap-up of the lecture incl. preparation of the examination and the exercises (135)

Recommendation
Solid mathematical background, good knowledge of classical electromagnetism and theoretical optics.
Literature

- L. Novotny and B. Hecht, Principle of Nano-Optics, Cambridge
- S. A. Maier, Plasmonics, Springer
Module: Theoretical Nanooptics (Minor) [M-PHYS-103177]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Nanophysics
- Minor in Physics: Optics and Photonics
- Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102295 - Theoretical Nanooptics must not have been started.

Competence Goal
The properties of light at the nanoscale can be controlled by various means. The aim of this lecture is to familiarize the students with the different possibilities that rely on nanostructured dielectric or metallic materials and to outline on solid mathematical grounds the analytical description of observable effects. The lecture is meant as a complementary source of education to experimental lecture. It shall provide the students with the necessary skills to work themselves in the field of theoretical nanooptics.

Content

- Dispersion relation to describe light in extended systems such as free space, interfaces, planar waveguides and waveguides with complicated geometrical cross sections.
- Description of the interaction of light with isolated objects such as spheres, cylinders, ellipsoids and prolates and oblates.
- Properties of plasmonic nanoparticles and the ability to tune their properties
- Notion of optical antennas and the discussion of their basic characteristics
- Description of the dynamics of wave propagation by perturbed eigenstates, i.e. coupled mode theory. Application to optical waveguide arrays.
- Discussion of metamaterials (unit cells, homogenization, light propagation, applications)
- Transformation optics
- Analytical modeling and phenomenological tools to describe nanooptical systems

Workload
180 hours composed of active time (45), wrap-up of the lecture and the exercises (135)

Recommendation
Solid mathematical background, good knowledge of classical electromagnetism and theoretical optics.

Literature

- L. Novotny and B. Hecht, Principle of Nano-Optics, Cambridge
- S. A. Maier, Plasmonics, Springer
Module: Theoretical Optics [M-PHYS-102277]

Responsible: PD Dr. Boris Narozhnyy
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Optics and Photonics (mandatory)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

- T-PHYS-104578 Theoretical Optics 6 CR Narozhnyy, Rockstuhl

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102279 - Theoretical Optics (Minor) must not have been started.

Competence Goal

The students deepen their knowledge about the theory and the mathematical tools in optics and photonics. They learn how to apply these tools to describe fundamental phenomena and how to predict observable quantities that reflect the actual physics from the theory by way of a corresponding purposeful mathematical analyses. They learn how to solve problems of both, interpretative and predictive nature with regards to model systems and real life situations.

Content

- Review of Electromagnetism (Maxwell’s Equations, Stress Tensor, Material Properties, Kramers-Kronig Relation, Wave Propagation, Poynting's Theorem)
- Crystal Optics (Polarization, Anisotropic Media, Fresnel Equation, Applications)
- Classical Coherence Theory (Elementary Coherence Phenomena, Theory of Stochastic Processes, Correlation Functions)
- Quantum Optics and Quantum Optical Coherence Theory (Review of Quantum Mechanics, Quantization of the EM Field, Quantum Coherence Functions)

Annotation

For students of the KIT Faculty of Computer Science: The exams in this module have to be registered via admissions from ISS (KIT Faculty of Computer Science). For this, an e-mail with matriculation numbers and name of the desired exam to Beratung-informatik@informatik.kit.edu is sufficient.

Workload

180 hours composed of active time (45 hours), wrap-up of the lecture incl. preparation of the examination (135 hours)

Recommendation

Solid mathematical background, good knowledge of classical electromagnetism and basic knowledge of quantum mechanics.
Literature

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Introduction to Fourier Optics" Joseph W. Goodman
- "Introduction to the Theory of Coherence and Polarization of Light" Emil Wolf
- "The Quantum Theory of Light" Rodney Loudon
Module: Theoretical Optics (Minor) [M-PHYS-102279]

4.209

Responsible: PD Dr. Boris Narozhnyy
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Nanophysics
- Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102305 | Theoretical Optics - Unit | 6 CR | Narozhnyy, Rockstuhl |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102277 - Theoretical Optics must not have been started.

Competence Goal
The students deepen their knowledge about the theory and the mathematical tools in optics and photonics. They learn how to apply these tools to describe fundamental phenomena and how to predict observable quantities that reflect the actual physics from the theory by way of a corresponding purposeful mathematical analyses. They learn how to solve problems of both, interpretative and predictive nature with regards to model systems and real life situations.

Content

- Review of Electromagnetism (Maxwell’s Equations, Stress Tensor, Material Properties, Kramers-Kronig Relation, Wave Propagation, Poynting’s Theorem)
- Crystal Optics (Polarization, Anisotropic Media, Fresnel Equation, Applications)
- Classical Coherence Theory (Elementary Coherence Phenomena, Theory of Stochastic Processes, Correlation Functions)
- Quantum Optics and Quantum Optical Coherence Theory (Review of Quantum Mechanics, Quantization of the EM Field, Quantum Coherence Functions)

Workload
180 hours composed of active time (45 hours), wrap-up of the lecture and the examination (135 hours)

Recommendation
Solid mathematical background, good knowledge of classical electromagnetism and basic knowledge of quantum mechanics.

Literature

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Introduction to Fourier Optics" Joseph W. Goodman
- "Introduction to the Theory of Coherence and Polarization of Light" Emil Wolf
- "The Quantum Theory of Light " Rodney Loudon
Module: Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises [M-PHYS-102033]

M.210 Module: Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises [M-PHYS-102033]

Responsible:
Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Ulrich Nierste
Prof. Dr. Matthias Steinhauser

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Theoretical Particle Physics (Required Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Reference</th>
<th>Module Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102544</td>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102034 - Theoretical Particle Physics I, Fundamentals, with Exercises must not have been started.
2. The module M-PHYS-102035 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises must not have been started.
3. The module M-PHYS-102036 - Theoretical Particle Physics I, Fundamentals, without Exercises must not have been started.
4. The module M-PHYS-102037 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor) must not have been started.
5. The module M-PHYS-102038 - Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) must not have been started.

Competence Goal

The student is introduced to the basic concepts of Relativistic Quantum Field Theory, masters the relevant theoretical concepts and can apply the computational methods. The student applies his/her knowledge to physical problems and can calculate simple processes of QED. The students deepen their knowledge in the exercises coordinated with the lecture.

Content

Classical field theory; Canonical quantization of boson, fermion and vector fields; Perturbation theory, Green's functions and Feynman diagrams; Calculation of effective cross sections; Quantum electrodynamics as gauge theory; Spontaneous symmetry breaking.

Workload

360 h consisting of attendance time (90 h), wrap-up of the lecture incl. exam preparation and working on the exercises (270 h)

Recommendation

Basic knowledge of electrodynamics, quantum mechanics and relativity (to the extent of Theory E)

Literature

- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory
Module: Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor) [M-PHYS-102037]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Ulrich Nierste
Prof. Dr. Matthias Steinhauser

Organisation: KIT Department of Physics
Part of: Minor in Physics: Theoretical Particle Physics

Credits 12
Grading scale pass/fail
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102540</td>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor)</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102033 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises must not have been started.
2. The module M-PHYS-102034 - Theoretical Particle Physics I, Fundamentals, with Exercises must not have been started.
3. The module M-PHYS-102035 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises must not have been started.
4. The module M-PHYS-102036 - Theoretical Particle Physics I, Fundamentals, without Exercises must not have been started.
5. The module M-PHYS-102038 - Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) must not have been started.

Competence Goal
The student is introduced to the basic concepts of Relativistic Quantum Field Theory, masters the relevant theoretical concepts and can apply the computational methods. The student applies his/her knowledge to physical problems and can calculate simple processes of QED. The students deepen their knowledge in the exercises coordinated with the lecture.

Content
Classical field theory; Canonical quantization of boson, fermion and vector fields; Perturbation theory, Green's functions and Feynman diagrams; Calculation of effective cross sections; Quantum electrodynamics as gauge theory; Spontaneous symmetry breaking.

Workload
360 h consisting of attendance time (90 h), wrap-up of the lecture and working on the exercises (270 h)

Recommendation
Basic knowledge of electrodynamics, quantum mechanics and relativity (to the extent of Theory E).

Literature
- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory.
- L. Ryder, Quantum Field Theory
Module: Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises [M-PHYS-102035]

Responsible:
- Prof. Dr. Gudrun Heinrich
- Prof. Dr. Kirill Melnikov
- Prof. Dr. Milada Margarete Mühlleitner
- Prof. Dr. Ulrich Nierste
- Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:*
- Major in Physics: Theoretical Particle Physics (Required Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Crs</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102546</td>
<td>Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102033 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises must not have been started.
2. The module M-PHYS-102034 - Theoretical Particle Physics I, Fundamentals, with Exercises must not have been started.
3. The module M-PHYS-102036 - Theoretical Particle Physics I, Fundamentals, without Exercises must not have been started.
4. The module M-PHYS-102037 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor) must not have been started.
5. The module M-PHYS-102038 - Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) must not have been started.

Competence Goal

The student is introduced to the basic concepts of Relativistic Quantum Field Theory, masters the relevant theoretical concepts and can apply the computational methods. The student applies his/her knowledge to physical problems and can calculate simple processes of QED.

Content

Classical field theory; Canonical quantization of boson, fermion and vector fields; Perturbation theory, Green's functions and Feynman diagrams; Calculation of effective cross sections; Quantum electrodynamics as gauge theory; Spontaneous symmetry breaking.

Workload

240 h consisting of attendance time (60 h), wrap-up of lecture incl. exam preparation (180 h)

Recommendation

Basic knowledge of electrodynamics, quantum mechanics and relativity (to the extent of Theory E).

Literature

- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory.
- L. Ryder, Quantum Field Theory
Module: Theoretical Particle Physics I, Fundamentals, with Exercises [M-PHYS-102034]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühleitner
Prof. Dr. Ulrich Nierste
Prof. Dr. Matthias Steinhauser

Organisation: KIT Department of Physics

Part of: Major in Physics: Theoretical Particle Physics (Required Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

Credits 8
Grading scale Grade to a tenth
Recurrence Each winter term
Duration 1 term
Language English
Level 4
Version 1

Mandatory

<table>
<thead>
<tr>
<th>T-PHYS-102545</th>
<th>Theoretical Particle Physics I, Fundamentals, with Exercises</th>
<th>8 CR</th>
</tr>
</thead>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102033 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises must not have been started.
2. The module M-PHYS-102035 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises must not have been started.
3. The module M-PHYS-102036 - Theoretical Particle Physics I, Fundamentals, without Exercises must not have been started.
4. The module M-PHYS-102037 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor) must not have been started.
5. The module M-PHYS-102038 - Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) must not have been started.

Competence Goal
The student is introduced to the basic concepts of Relativistic Quantum Field Theory, masters the relevant theoretical concepts and can apply the computational methods. The students deepen their knowledge in the exercises coordinated with the lecture.

Content
Classical field theory; Canonical quantization of boson, fermion and vector fields; Perturbation theory, Green's functions and Feynman diagrams; Calculation of effective cross sections; Quantum electrodynamics as gauge theory; Spontaneous symmetry breaking.

Workload
240 h consisting of attendance time (60 h), wrap-up of the lecture incl. exam preparation and working on the exercises (180 h)

Recommendation
Basic knowledge of electrodynamics, quantum mechanics and relativity (to the extent of Theory E).

Literature
- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory

Physics Master (Master of Science)
Module Handbook as of 20/10/2023
Module: Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) [M-PHYS-102038]

Responsible:
- Prof. Dr. Gudrun Heinrich
- Prof. Dr. Kirill Melnikov
- Prof. Dr. Milada Margarete Mühlleitner
- Prof. Dr. Ulrich Nierste
- Prof. Dr. Matthias Steinhauser

Organisation:
- KIT Department of Physics

Part of: Minor in Physics: Theoretical Particle Physics

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

| T-PHYS-102541 | Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) | 8 CR | Heinrich, Melnikov, Mühlleitner, Nierste, Steinhauser |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-PHYS-102033 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises** must not have been started.
2. The module **M-PHYS-102034 - Theoretical Particle Physics I, Fundamentals, with Exercises** must not have been started.
3. The module **M-PHYS-102035 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises** must not have been started.
4. The module **M-PHYS-102036 - Theoretical Particle Physics I, Fundamentals, without Exercises** must not have been started.
5. The module **M-PHYS-102037 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor)** must not have been started.

Competence Goal
The student is introduced to the basic concepts of Relativistic Quantum Field Theory, masters the relevant theoretical concepts and can apply the computational methods. The students deepen their knowledge in the exercises coordinated with the lecture.

Content
Classical field theory; Canonical quantization of boson, fermion and vector fields; Perturbation theory, Green's functions and Feynman diagrams; Calculation of effective cross sections; Quantum electrodynamics as gauge theory; Spontaneous symmetry breaking.

Workload
240 h consisting of attendance time (60 h), wrap-up of the lecture and working on the exercises (180 h)

Recommendation
Basic knowledge of electrodynamics, quantum mechanics and relativity (to the extent of Theory E).

Literature
- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory

Physics Master (Master of Science)
Module Handbook as of 20/10/2023
Module: Theoretical Particle Physics I, Fundamentals, without Exercises [M-PHYS-102036]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Ulrich Nierste
Prof. Dr. Matthias Steinhauser

Organisation: KIT Department of Physics

Part of: Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory
T-PHYS-102547
Theoretical Particle Physics I, Fundamentals, without Exercises
6 CR
Heinrich, Melnikov, Mühlleitner, Nierste, Steinhauser

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102033 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises must not have been started.
2. The module M-PHYS-102034 - Theoretical Particle Physics I, Fundamentals, with Exercises must not have been started.
3. The module M-PHYS-102035 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises must not have been started.
4. The module M-PHYS-102037 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor) must not have been started.
5. The module M-PHYS-102038 - Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) must not have been started.

Competence Goal
The student will be introduced to the basic concepts of Relativistic Quantum Field Theory, master the relevant theoretical concepts, and be able to apply the computational methods.

Content
Classical field theory; Canonical quantization of boson, fermion and vector fields; Perturbation theory, Green's functions and Feynman diagrams; Calculation of effective cross sections; Quantum electrodynamics as gauge theory; Spontaneous symmetry breaking.

Workload
180 h consisting of attendance time (45 h), wrap-up of lecture incl. exam preparation (135 h)

Recommendation
Basic knowledge of electrodynamics, quantum mechanics and relativity (to the extent of Theory E).

Literature
- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory
Module: Theoretical Particle Physics II, with Exercises [M-PHYS-102046]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner

Organisation: KIT Department of Physics

Part of:
Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102552 | Theoretical Particle Physics II, with Exercises | 12 CR | Heinrich, Melnikov, Mühlleitner |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102044 - Theoretical Particle Physics II, with Exercises (Minor) must not have been started.
2. The module M-PHYS-102048 - Theoretical Particle Physics II, without Exercises must not have been started.

Competence Goal

Students know the basic concepts of non-Abelian gauge theories and their application in particle physics. They understand the underlying theoretical concepts and their interrelationships. The students know the standard model of particle physics and can handle the relevant computational methods. The students solve concrete problems of theoretical particle physics using the factual knowledge conveyed in the lecture.

Content

In the main part of the lecture, non-Abelian gauge theories and their application in elementary particle physics are discussed. The subject area includes the Lagrangian densities of QCD and the electroweak Standard Model as well as the Higgs mechanism. The Feynman rules that follow from the Lagrangian densities are introduced and applied in perturbation-theoretic calculations of rates for processes involving quarks and gluons. Regularization and renormalization of ultraviolet divergences are also treated, as well as applications of the renormalization group, the QCD beta function, and asymptotic freedom. Infrared divergences, parton distribution functions, and splitting functions are introduced.

Workload

360 hours consisting of attendance time (90 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (270 hours)

Recommendation

Theoretical Particle Physics I
4.217 Module: Theoretical Particle Physics II, with Exercises (Minor) [M-PHYS-102044]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner

Organisation: KIT Department of Physics

Part of: Minor in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-102046 - Theoretical Particle Physics II, with Exercises must not have been started.
2. The module M-PHYS-102048 - Theoretical Particle Physics II, without Exercises must not have been started.

Competence Goal
The students know the basic concepts of non-Abelian gauge theories and their application in particle physics. They understand the underlying theoretical concepts and their interrelationships. The students know the standard model of particle physics and can handle the relevant computational methods. The students solve concrete problems of theoretical particle physics using the factual knowledge conveyed in the lecture.

Content
In the main part of the lecture, non-Abelian gauge theories and their application in elementary particle physics are discussed. The subject area includes the Lagrangian densities of QCD and the electroweak Standard Model as well as the Higgs mechanism. The Feynman rules that follow from the Lagrangian densities are introduced and applied in perturbation-theoretic calculations of rates for processes involving quarks and gluons. Regularization and renormalization of ultraviolet divergences are also treated, as well as applications of the renormalization group, the QCD beta function, and asymptotic freedom. Infrared divergences, parton distribution functions, and splitting functions are introduced.

Workload
360 hours consisting of attendance time (90 hours), wrap-up of the lecture and preparation of the exercises (270 hours).

Recommendation
Theoretical Particle Physics I
Module: Theoretical Particle Physics II, without Exercises [M-PHYS-102048]

4.218 Module: Theoretical Particle Physics II, without Exercises [M-PHYS-102048]

Responsible:
- Prof. Dr. Gudrun Heinrich
- Prof. Dr. Kirill Melnikov
- Prof. Dr. Milada Margarete Mühlleitner

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Theoretical Particle Physics (Elective Theoretical Particle Physics)
- Second Major in Physics: Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-102554 | Theoretical Particle Physics II, without Exercises | 8 CR | Heinrich, Melnikov, Mühlleitner |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102044 - Theoretical Particle Physics II, with Exercises (Minor) must not have been started.
2. The module M-PHYS-102046 - Theoretical Particle Physics II, with Exercises must not have been started.

Competence Goal

The students know the basic concepts of non-Abelian gauge theories and their application in particle physics. They understand the underlying theoretical concepts and their interrelationships. The students know the standard model of particle physics and can handle the relevant calculation methods.

Content

In the main part of the lecture, non-Abelian gauge theories and their application in elementary particle physics are discussed. The subject area includes the Lagrangian densities of QCD and the electroweak Standard Model as well as the Higgs mechanism. The Feynman rules that follow from the Lagrangian densities are introduced and applied in perturbation-theoretic calculations of rates for processes involving quarks and gluons. Regularization and renormalization of ultraviolet divergences are also treated, as well as applications of the renormalization group, the QCD beta function, and asymptotic freedom. Infrared divergences, parton distribution functions, and splitting functions are introduced.

Workload

240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation (180 hours)

Recommendation

Theoretical Particle Physics I
Module: Theoretical Quantum Optics [M-PHYS-105094]

Responsible: Prof. Dr. Anja Metelmann
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Optics and Photonics
- Second Major in Physics: Condensed Matter Theory

Credits 6

Grading scale Grade to a tenth

Recurrence Irregular

Duration 1 term

Language English

Level 4

Version 1

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credits</th>
<th>Title</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110303</td>
<td>6</td>
<td>Theoretical Quantum Optics</td>
<td>CR</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
one

Competence Goal
The students of quantum optics comprehend the physics of quantum optical phenomena, the necessary theoretical means for their description, and the application of quantum optical resources in different applications and technologies. They learn how to express quantum optical phenomena in a mathematical language and can apply routinely different techniques to study quantum optical phenomena in specific situations. They are trained to solve basic problems in quantum optics.

The students
- learn about the quantisation of electromagnetic fields,
- understands the details of different quantum states of light,
- get an overview over experiments that were important in the development of quantum optics,
- develop an understanding for the quantum optical description of the first and second order coherence functions, and
- understand and can routinely apply different means to describe the interaction of quantum states of light with quantum emitters.

Content
- Quantization of the electromagnetic field
- Various quantum states of light fields: optical photon-number, coherent, squeezed, Schrödinger's cat states
- Classical and quantum coherence theory: photon bunching and antibunching
- Quantum description of optical interferometry: Mach-Zehnder interferometer with photons
- General description of open quantum system: master equation, Heisenberg-Langevin, and stochastic approaches
- Optical test of quantum mechanics: Hong-Ou-Mandel, quantum eraser, and Bell’s theorem experiments
- Interaction of a single atom with a classical field and quantum field
- From Rabi model to Jaynes-Cummings model: the most simplest model to describe the light-matter interaction
- Quantum master equation approach: description of finite life time of atoms
- Weak and strong couplings (spontaneous emission, Purcell effect, resonance fluorescence, lasers, and Rabi oscillation)
- Interaction of an ensemble of atoms with a quantum field (Dicke and Tavis-Cummings models, and superradiance)
- Quantum optical applications (quantum cryptography, quantum teleportation, quantum metrology, etc.)

Workload
180 hours consisting of attendance time (45 hours), wrap-up of the lecture incl. exam preparation and working on the exercises (135 hours).
Recommendation
Interest in theoretical physics, good knowledge in quantum mechanics and electrodynamics/optics

Literature

- C. Gerry and P. Knight, *Introductory Quantum Optics*.
- M. O. Scully and M. S. Zubairy, *Quantum Optics*.
- M. Fox, *Quantum Optics: An Introduction*.
- D.F. Walls and G. J. Milburn, *Quantum Optics*.
- W. Schleich, *Quantum Optics in Phase Space*.
4.220 Module: Theoretical Quantum Optics (Minor) [M-PHYS-105395]

Responsible: Prof. Dr. Anja Metelmann
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of:
- Minor in Physics: Nanophysics
- Minor in Physics: Optics and Photonics
- Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module</th>
<th>Credit Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110884</td>
<td>Theoretical Quantum Optics (Minor)</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-105094 - Theoretical Quantum Optics must not have been started.

Competence Goal
The students of quantum optics comprehend the physics of quantum optical phenomena, the necessary theoretical means for their description, and the application of quantum optical resources in different applications and technologies. They learn how to express quantum optical phenomena in a mathematical language and can apply routinely different techniques to study quantum optical phenomena in specific situations. They are trained to solve basic problems in quantum optics.

The students

- learn about the quantisation of electromagnetic fields,
- understand the details of different quantum states of light,
- get an overview over experiments that were important in the development of quantum optics,
- develop an understanding for the quantum optical description of the first and second order coherence functions, and
- understand and can routinely apply different means to describe the interaction of quantum states of light with quantum emitters.

Content

- Quantization of the electromagnetic field
- Various quantum states of light fields: optical photon-number, coherent, squeezed, Schrödinger’s cat states
- Classical and quantum coherence theory: photon bunching and antibunching
- Quantum description of optical interferometry: Mach-Zehnder interferometer with photons
- General description of open quantum system: master equation, Heisenberg-Langevin, and stochastic approaches
- Optical test of quantum mechanics: Hong-Ou-Mandel, quantum eraser, and Bell’s theorem experiments
- Interaction of a single atom with a classical field and quantum field
- From Rabi model to Jaynes-Cummings model: the most simplest model to describe the light-matter interaction
- Quantum master equation approach: description of finite life time of atoms
- Weak and strong couplings (spontaneous emission, Purcell effect, resonance fluorescence, lasers, and Rabi oscillation)
- Interaction of an ensemble of atoms with a quantum field (Dicke and Tavis-Cummings models, and superradiance)
- Quantum optical applications (quantum cryptography, quantum teleportation, quantum metrology, etc.)

Workload
180 hours consisting of attendance time (45 hours), wrap-up of lecture and completion of exercises (135 hours).
Recommendation
Interest in theoretical physics, good knowledge in quantum mechanics and electrodynamics/optics

Literature
- C. Gerry and P. Knight, *Introductory Quantum Optics*.
- M. O. Scully and M. S. Zubairy, *Quantum Optics*.
- M. Fox, *Quantum Optics: An Introduction*.
- D.F. Walls and G. J. Milburn, *Quantum Optics*.
- W. Schleich, *Quantum Optics in Phase Space*.
Module: Theory and Applications of Quantum Machines [M-PHYS-105942]

4.221 Module: Theory and Applications of Quantum Machines [M-PHYS-105942]

Responsible: Prof. Dr. Anja Metelmann
Organisation: KIT Department of Physics
Part of: Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Module</th>
<th>Title</th>
<th>Level</th>
<th>Module Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>T-PHYS-112018</td>
<td>Theory and Applications of Quantum Machines</td>
<td>4</td>
<td>Metelmann</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Competence Goal

The students know the possible applications of quantum technologies and understand the operation of key core architectures such as superconducting circuits. Students understand the detrimental effect of dissipation on the operation and performance of quantum technologies, and they learn possible protocols to avoid dissipation. Students learn about various readout elements and protocols and understand the fundamental quantum mechanical limitations of measurements. Students understand the relevant basic concepts in the field of superconducting circuits, such as cavity, qubit, dispersive readout, fidelity, etc., as well as the basic concepts of optomechanical architectures, such as sidebands, dynamic feedback, fundamental limits on measurement accuracy, etc. Students are able to analyze, structure, and formally describe simple problems in the area of open quantum systems. Simple problems here include a two-level system or a mechanical mode coupled to the light field of a cavity. Students are able to apply the methodology of the Heisenberg-Langevin equations as well as that of the master equation. Students are able to perform the calculation of noise spectra of these example systems. Students will learn the modern methodologies of modeling open quantum systems, e.g. the formalism of quantum trajectories, feedback protocols and quasi-distributions.

Content

This module aims to provide students with the theoretical and practical aspects of modern quantum technologies. Different technological architectures will be covered, e.g. superconducting circuits as a basis for future efficient computers, optomechanical systems as a basis for increasing the sensitivity of force sensors, or spin-based quantum communication systems. The module will cover the basic concepts of theoretical modeling of open quantum systems, with a focus on quantum mechanical measurement and readout. The influence of dissipation as well as the fundamental limits of measurement accuracy will be addressed. The module will provide an overview of future applications of quantum technologies, and at the same time highlight the challenges that these technologies face.

Workload

240 hours consisting of attendance time (60 h), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 h)

Literature

1. Quantum Measurement and Control, Howard M. Wiseman und Gerard J. Milburn, Cambridge University Press,
2. Statistical Methods in Quantum Optics 1&2, Howard J. Carmichael, Springer,
4.222 Module: Theory and Applications of Quantum Machines (Minor) [M-PHYS-105943]

Responsibility: Prof. Dr. Anja Metelmann

Organisation: KIT Department of Physics

Part of: Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-112019 | Theory and Applications of Quantum Machines (Minor) | 8 CR | Metelmann |

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Competence Goal
The students know the possible applications of quantum technologies and understand the operation of key core architectures such as superconducting circuits. Students understand the detrimental effect of dissipation on the operation and performance of quantum technologies, and they learn possible protocols to avoid dissipation. Students learn about various readout elements and protocols and understand the fundamental quantum mechanical limitations of measurements. Students understand the relevant basic concepts in the field of superconducting circuits, such as cavity, qubit, dispersive readout, fidelity, etc., as well as the basic concepts of optomechanical architectures, such as sidebands, dynamic feedback, fundamental limits on measurement accuracy, etc. Students are able to analyze, structure, and formally describe simple problems in the area of open quantum systems. Simple problems here include a two-level system or a mechanical mode coupled to the light field of a cavity. Students are able to apply the methodology of the Heisenberg-Langevin equations as well as that of the master equation. Students are able to perform the calculation of noise spectra of these example systems. Students will learn the modern methodologies of modeling open quantum systems, e.g. the formalism of quantum trajectories, feedback protocols and quasi-distributions.

Content
This module aims to provide students with the theoretical and practical aspects of modern quantum technologies. Different technological architectures will be covered, e.g. superconducting circuits as a basis for future efficient computers, optomechanical systems as a basis for increasing the sensitivity of force sensors, or spin-based quantum communication systems. The module will cover the basic concepts of theoretical modeling of open quantum systems, with a focus on quantum mechanical measurement and readout. The influence of dissipation as well as the fundamental limits of measurement accuracy will be addressed. The module will provide an overview of future applications of quantum technologies, and at the same time highlight the challenges that these technologies face.

Workload
240 hours consisting of attendance time (60 h), wrap-up of the lecture and preparation of the exercises (180 h).

Literature
Module: Theory of Magnetism II [M-PHYS-102985]

Responsible: PD Dr. Igor Gornyi
PD Dr. Boris Narozhnyy

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-105961</td>
<td>Theory of Magnetism II</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

Gain knowledge of the fundamentals of the theory of magnetism. Mastering different methods of describing classical and quantum magnets. Acquire physical understanding of the main phenomena and concepts.

Content

Anticipated structure of the lecture:

- Introduction
- Molecular field theory for magnets.
- Mott insulators
- Heisenberg magnets.
- Magnetism due to nonlocalized electrons.
- Magnetism and spin transport (giant magnetoresistance, spin-torque effects).
- Spin Hall effect and quantum spin Hall effect.
- Spin fluids.
- Frustrated magnets
- Spin glass

Workload

240 h consisting of attendance time (60 h) and wrap-up of the lecture incl. exam preparation (180 h)

Recommendation

As a general rule, this lecture should be taken after Condensed Matter Theory I.

Literature

Module: Theory of Magnetism, with Exercises [M-PHYS-105381]

Responsible: Prof. Dr. Markus Garst

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
- Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-110869 | Theory of Magnetism, with Exercises | 8 CR | Garst |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Competence Goal

Gaining understanding of phenomena and concepts in quantum and classical magnetism, mastering basic theoretical tools for their description, and acquiring the ability to analyse and solve problems theoretically in the field of magnetism.

Content

Introduction to the concepts of magnetism; Heisenberg model; Spin representations; Ground states and excitations; Spin-ice and spin-liquids; Spin path integral and semiclassical approximations; Spin wave theory; Non-linear sigma model and micromagnetism; Landau-Lifshitz-Gilbert equation and conserved quantities; Topological solutions: domain walls, vortices & skyrmions; Spintronics

Workload

240 h consisting of attendance time (60 h), wrap-up of the lecture incl. exam preparation and working on the exercises (180 h)

Recommendation

Basic knowledge in solid state physics, quantum mechanics, and statistical physics is required.
Module: Theory of Magnetism, with Exercises (Minor) [M-PHYS-105385]

Responsible: Prof. Dr. Markus Garst

Organisation: KIT Department of Physics

Part of: Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110873</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Competence Goal
Gaining understanding of phenomena and concepts in quantum and classical magnetism, mastering basic theoretical tools for their description, and acquiring the ability to analyse and solve problems theoretically in the field of magnetism

Content
Introduction to the concepts of magnetism; Heisenberg model; Spin representations; Ground states and excitations; Spin-ice and spin-liquids; Spin path integral and semiclassical approximations; Spin wave theory; Non-linear sigma model and micromagnetism; Landau-Lifshitz-Gilbert equation and conserved quantities; Topological solutions: domain walls, vortices & skyrmions; Spintronics

Workload
240 h consisting of attendance time (60 h), follow-up of the lecture and working on the exercises (180 h)

Recommendation
Basic knowledge in solid state physics, quantum mechanics, and statistical physics is required.
4.226 Module: Theory of Seismic Waves [M-PHYS-102367]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: Second Major in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104736</td>
<td>Theory of Seismic Waves</td>
<td>6 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

To pass the module, an oral exam must be passed (approx. 20 min). As prerequisites the examinations of other type must be passed, based on successful participation of the exercises. Each exercise deals with a specific topic (e.g., stress and strain tensors, Zoeppritz equations, or rays) and is based on solving a given theoretical problem by means of calculus. In some cases equations and solutions need to be visualized using Matlab (or equivalent tools).

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102657 - Theory of Seismic Waves (Minor) must not have been started.

Competence Goal

The students know the fundamental laws and equations of linear elasticity and wave propagation. They understand wave propagation phenomena such as source effects, reflection and transmission or the effects of anisotropy, absorption, dispersion and scattering and can describe them in mathematical terms. They are able to apply the concepts and equations to theoretical problems and relate the theory to phenomena observed in field data.

Content

- Theory of elasticity, stress and strain, elastic tensor, fundamental laws and equations
- Anisotropic elastic wave equation and various simplifications
- Mathematical description of sources, near-field and far-field terms
- Boundary conditions
- Reflection and transmission of plane waves at plane interfaces, Zoeppritz equations
- Surface waves, dispersion relation, phase and group velocity
- Introduction to ray theory, eikonal and transport equations and their solutions
- Absorption and dispersion
- Wave propagation in anisotropic media
- Scattering

Workload

180 hours composed of attendance time (45 h), wrap-up of the lectures and solving the exercises (135 h)

Recommendation

Knowledge of differential and vector calculus is essential. Familiarity with Matlab (alternatively Python or Mathematica) is beneficial for certain exercises.

Literature

4.227 Module: Theory of Seismic Waves (Minor) [M-PHYS-102657]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: Minor in Physics: Geophysics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-105571 Theory of Seismic Waves (Minor) 6 CR Bohlen

Competence Certificate

To pass the module, the examinations of other type must be passed, based on successful participation of the exercises. Each exercise deals with a specific topic (e.g., stress and strain tensors, Zoeppritz equations, or rays) and is based on solving a given theoretical problem by means of calculus. In some cases equations and solutions need to be visualized using Matlab (or equivalent tools).

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-102367 - Theory of Seismic Waves must not have been started.

Competence Goal

The students know the fundamental laws and equations of linear elasticity and wave propagation. They understand wave propagation phenomena such as source effects, reflection and transmission or the effects of anisotropy, absorption, dispersion and scattering and can describe them in mathematical terms. They are able to apply the concepts and equations to theoretical problems and relate the theory to phenomena observed in field data.

Content

- Theory of elasticity, stress and strain, elastic tensor, fundamental laws and equations
- Anisotropic elastic wave equation and various simplifications
- Mathematical description of sources, near-field and far-field terms
- Boundary conditions
- Reflection and transmission of plane waves at plane interfaces, Zoeppritz equations
- Surface waves, dispersion relation, phase and group velocity
- Introduction to ray theory, eikonal and transport equations and their solutions
- Absorption and dispersion
- Wave propagation in anisotropic media
- Scattering

Workload

180 hours composed of attendance time (45 h), wrap-up of the lectures and solving the exercises (135 h)

Recommendation

Knowledge of differential and vector calculus is essential. Familiarity with Matlab (alternatively Python or Mathematica) is beneficial for certain exercises.

Literature

4.228 Module: Theory of Strongly Correlated Electron Systems [M-PHYS-106056]

Responsible: PD Dr. Robert Eder

Organisation: KIT Department of Physics

Part of: Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS–112245 | Theory of Strongly Correlated Electron Systems | 12 CR | Eder |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Competence Goal

The students acquire knowledge about strongly correlated electron systems and understand their basic principles, both on the level of atomic physics for realistic models and on the level of simplified models which are deduced from realistic models and used to discuss various effects in actual solids. The students can apply simple theoretical tools such as variational wave functions, canonical transformations, perturbation theory and Green's functions (the latter only on a very basic level). The students also learn and understand applications of the theory to some important experimental techniques in the field such as photoelectron spectroscopy, X-ray absorption spectroscopy and other types of spectroscopy.

Content

The module is concerned with the theory of strongly correlated electron systems i.e. solids which contain 3d or 4f transition metal ions. The small radius of the 3d or 4f shells in these elements enhances the Coulomb repulsion between electrons considerably so that one faces a situation where the interaction between particles is the dominant term in the Hamiltonian. The standard theory for electrons in solids therefore looses its validity and a variety of unexpected phenomena are observed. There is no such thing as a universal theory for strongly correlated electron systems, rather there is a variety of theories for approximations to treat different phenomena. The following topics will be addressed: The method of linear combination of atomic orbitals, Coulomb repulsion in atomic shells aka multiplet theory, crystalline electric field effects, Hubbard model and 'classic' approximations, Mott insulators, magnetic exchange and magnetic anisotropy, quantum spin systems, Anderson model and 'classic' approximations, Kondo effect.

Workload

360 hours consisting of attendance time (90 h), wrap-up of the lecture incl. exam preparation and preparation of the exercises (270 h)

Recommendation

Good knowledge of quantum mechanics and statistical physics and basic knowledge of solid state physics is necessary.

Literature

Will be discussed in the lecture.

Responsible: PD Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Organisation: KIT Department of Physics

Part of:
Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-113258 | Topology in Condensed Matter Physics: Fundamentals and Advanced Topics | 8 CR | Gornyi, Mirlin |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module [M-PHYS-106587 - Topology in Condensed Matter Physics: Fundamentals and Advanced Topics (Minor)] must not have been started.
2. The module [M-PHYS-106588 - Topology in Condensed Matter Physics: Fundamentals and Selected Topics] must not have been started.

Competence Goal

Gaining understanding of basic concepts of topology in physics and of their applications to modern topics in condensed-matter physics. Mastering theoretical tools for description of topological phenomena in condensed matter physics and acquiring an ability to apply these tools to a solution of a broad class of topology-related problems.

Content

From elementary quantum mechanics lectures, we know that different states can be distinguished by their quantum numbers, such as momentum, angular momentum, etc. The appearance of these quantum numbers is closely related to symmetry-related invariance under transformations, e.g., translations or rotations. The introduction of concepts of topology into physics makes it possible to identify further, so-called "topological" quantum numbers. Topological aspects have long been known in physics, e.g., from the Dirac hypothesis of the existence of magnetic monopoles (which would explain the quantization of the electric charge), as well as from nuclear physics of the 50s ("Skyrmions"). The enormous variety of topological effects and their fundamental importance in condensed-matter physics has only become apparent in recent times. Today, an outstanding precision of the integer quantum Hall effect (QHE) is understood as a consequence of its topological nature. Furthermore, extraordinary properties of graphene and of other novel materials—topological insulators and superconductors, Weyl semimetals, etc.—are also due to their topological nature. Fractional charges and exotic statistics of low-lying excitations in fractional QHE are topologically imposed and stabilized, as is also the case for quantum spin liquids. Realizations of Majorana excitations in topological systems are of great interest, especially in connection with their potential application for topological quantum computing. Modern solid-state physics would be deprived of many of its most fascinating and intrinsic aspects without topological concepts.

The following topics will be covered in the lecture course:

1. Fundamental topological concepts: winding numbers and homotopy groups, Berry connection, curvature, and phase; Chern numbers; topological (Thouless) pumping.
2. Models of 1D topological matter: Su–Schrieffer–Heeger model; Kitaev chain with Majorana edge states (1D topological superconductor); Haldane quantum spin chains.
5. Topological insulators and superconductors, Quantum Spin Hall Effect.
6. Classification of topological quantum matter; "periodic table" of topological insulators and superconductors; bulk-boundary correspondence
8. Topology in strongly interacting systems. Topologically ordered phases of matter with fractionalized or non-abelian excitations.
Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (180 hours).

Recommendation
In general this lecture should be attended after Theory of Condensed Matter I.

Literature
• D. Thouless, Topological Quantum Numbers in Non-Relativistic Physics
• A. Altland and B. Simons, Condensed Matter Field Theory
• R. Moessner and J. E. Moore, Topological Phases of Matter
• B. A. Bernevig (with T.L. Hughes), Topological Insulators and Topological Superconductors
• M. A. N. Araujo and P. Sacramento, Topology in Condensed Matter: An Introduction
• Xiao-Gang Wen, Quantum Field Theory of Many-Body Systems
• S. M. Girvin and Kun Yang, Modern Condensed Matter Physics
• Somendra M. Bhattacharjee et al., Topology and Condensed Matter Physics
• Online course on topology in condensed matter: https://topocondmat.org/
 Topological Quantum Matter -- Weizmann online course: https://www.youtube.com/@topologicalquantummatter-w4105
Module: Topology in Condensed Matter Physics: Fundamentals and Advanced Topics (Minor) [M-PHYS-106587]

Responsible: PD Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Organisation: KIT Department of Physics

Part of: Minor in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-113259</td>
<td>Topology in Condensed Matter Physics: Fundamentals and Advanced Topics (Minor)</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Modeled Conditions
The following conditions have to be fulfilled:

1. The module M-PHYS-106586 - Topology in Condensed Matter Physics: Fundamentals and Advanced Topics must not have been started.
2. The module M-PHYS-106588 - Topology in Condensed Matter Physics: Fundamentals and Selected Topics must not have been started.

Competence Goal
Gaining understanding of basic concepts of topology in physics and of their applications to modern topics in condensed-matter physics. Mastering theoretical tools for description of topological phenomena in condensed matter physics and acquiring an ability to apply these tools to a solution of a broad class of topology-related problems.

Content
From elementary quantum mechanics lectures, we know that different states can be distinguished by their quantum numbers, such as momentum, angular momentum, etc. The appearance of these quantum numbers is closely related to symmetry-related invariance under transformations, e.g., translations or rotations. The introduction of concepts of topology into physics makes it possible to identify further, so-called "topological" quantum numbers. Topological aspects have long been known in physics, e.g., from the Dirac hypothesis of the existence of magnetic monopoles (which would explain the quantization of the electric charge), as well as from nuclear physics of the 50s ("Skyrmions"). The enormous variety of topological effects and their fundamental importance in condensed-matter physics has only become apparent in recent times. Today, an outstanding precision of the integer quantum Hall effect (QHE) is understood as a consequence of its topological nature. Furthermore, extraordinary properties of graphene and of other novel materials—topological insulators and superconductors, Weyl semimetals, etc.—are also due to their topological nature. Fractional charges and exotic statistics of low-lying excitations in fractional QHE are topologically imposed and stabilized, as is also the case for quantum spin liquids. Realizations of Majorana excitations in topological systems are of great interest, especially in connection with their potential application for topological quantum computing. Modern solid-state physics would be deprived of many of its most fascinating and intrinsic aspects without topological concepts.

The following topics will be covered in the lecture course:

1. Fundamental topological concepts: winding numbers and homotopy groups, Berry connection, curvature, and phase; Chern numbers; topological (Thouless) pumping.
2. Models of 1D topological matter: Su–Schrieffer–Heeger model; Kitaev chain with Majorana edge states (1D topological superconductor); Haldane quantum spin chains.
5. Topological insulators and superconductors, Quantum Spin Hall Effect.
6. Classification of topological quantum matter; “periodic table” of topological insulators and superconductors; bulk-boundary correspondence
8. Topology in strongly interacting systems. Topologically ordered phases of matter with fractionalized or non-abelian excitations.
Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture and preparation of the exercises (180 hours).

Recommendation
In general this lecture should be attended after Theory of Condensed Matter I.

Literature
- D. Thouless, Topological Quantum Numbers in Non-Relativistic Physics
- A. Altland and B. Simons, Condensed Matter Field Theory
- R. Moessner and J. E. Moore, Topological Phases of Matter
- B. A. Bernevig (with T.L. Hughes), Topological Insulators and Topological Superconductors
- Xiao-Gang Wen, Quantum Field Theory of Many-Body Systems
- S. M. Girvin and Kun Yang, Modern Condensed Matter Physics
- Somendra M. Bhattacharjee et al., Topology and Condensed Matter Physics
- Online course on topology in condensed matter: https://topocondmat.org/
 Topological Quantum Matter -- Weizmann online course: https://www.youtube.com/@topologicalquantummatter-w4105

Responsible: PD Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Organisation: KIT Department of Physics

Part of:
Major in Physics: Condensed Matter Theory (Elective Condensed Matter Theory)
Second Major in Physics: Condensed Matter Theory

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>Grade to a tenth</td>
<td>Irregular</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-113260</td>
<td>Topology in Condensed Matter Physics: Fundamentals and Selected Topics</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Modeled Conditions

The following conditions have to be fulfilled:

1. The module **M-PHYS-106586 - Topology in Condensed Matter Physics: Fundamentals and Advanced Topics** must not have been started.
2. The module **M-PHYS-106587 - Topology in Condensed Matter Physics: Fundamentals and Advanced Topics (Minor)** must not have been started.

Competence Goal

Gaining understanding of basic concepts of topology in physics and of their applications to selected topics in modern condensed-matter physics.

Content

From elementary quantum mechanics lectures, we know that different states can be distinguished by their quantum numbers, such as momentum, angular momentum, etc. The appearance of these quantum numbers is closely related to symmetry-related invariance under transformations, e.g., translations or rotations. The introduction of concepts of topology into physics makes it possible to identify further, so-called “topological” quantum numbers. Topological aspects have long been known in physics, e.g., from the Dirac hypothesis of the existence of magnetic monopoles (which would explain the quantization of the electric charge), as well as from nuclear physics of the 50s (“Skyrmions”). The enormous variety of topological effects and their fundamental importance in condensed-matter physics has only become apparent in recent times. Today, an outstanding precision of the integer quantum Hall effect (QHE) is understood as a consequence of its topological nature. Furthermore, extraordinary properties of graphene and of other novel materials—topological insulators and superconductors, Weyl semimetals, etc.—are also due to their topological nature. Fractional charges and exotic statistics of low-lying excitations in fractional QHE are topologically imposed and stabilized, as is also the case for quantum spin liquids. Realizations of Majorana excitations in topological systems are of great interest, especially in connection with their potential application for topological quantum computing. Modern solid-state physics would be deprived of many of its most fascinating and intrinsic aspects without topological concepts.

The following topics will be covered in the lecture course:

1. Fundamental topological concepts: winding numbers and homotopy groups, Berry connection, curvature, and phase; Chern numbers; topological (Thouless) pumping.
2. Models of 1D topological matter: Su–Schrieffer–Heeger model; Kitaev chain with Majorana edge states (1D topological superconductor); Haldane quantum spin chains.

Workload

60 hours consisting of attendance time (15 hours), wrap-up of the lecture incl. exam preparation and preparation of the exercises (45 hours).

Recommendation

In general this lecture should be attended after Theory of Condensed Matter I.
Literature

- D. Thouless, Topological Quantum Numbers in Non-Relativistic Physics
- A. Altland and B. Simons, Condensed Matter Field Theory
- R. Moessner and J. E. Moore, Topological Phases of Matter
- B. A. Bernevig (with T.L. Hughes), Topological Insulators and Topological Superconductors
- Xiao-Gang Wen, Quantum Field Theory of Many-Body Systems
- S. M. Girvin and Kun Yang, Modern Condensed Matter Physics
- Somendra M. Bhattacharjee et al., Topology and Condensed Matter Physics
- Online course on topology in condensed matter: https://topocondmat.org/
 Topological Quantum Matter -- Weizmann online course: https://www.youtube.com/@topologicalquantummatter-w4105
Module: Wildcard Non-Physics Elective, Module with 1 Brick [M-PHYS-102091]

4.232 Module: Wildcard Non-Physics Elective, Module with 1 Brick [M-PHYS-102091]

Organisation: KIT Department of Physics
Part of: Non-Physics Elective

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

T-PHYS-104384
Wildcard Non-Physics Elective, Module with 1 Brick, 8 CP graded
8 CR

Prerequisites

none
Module: Wildcard Non-Physics Elective, Module with 2 Bricks [M-PHYS-103129]

Organisation: KIT Department of Physics

Part of: Non-Physics Elective

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106221</td>
<td>Wildcard Non-Physics Elective, Module with 2 Bricks, 4 CP graded</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-106222</td>
<td>Wildcard Non-Physics Elective, Module with 2 Bricks, 4 CP graded</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

Prerequisites

none
4.234 Module: Wildcard Non-Physics Elective, Module with 3 Bricks [M-PHYS-103130]

Organisation: KIT Department of Physics
Part of: Non-Physics Elective

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106223</td>
<td>Wildcard Non-Physics Elective, Module with 3 Bricks, 3 CP graded</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-PHYS-106224</td>
<td>Wildcard Non-Physics Elective, Module with 3 Bricks, 3 CP graded</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-PHYS-106225</td>
<td>Wildcard Non-Physics Elective, Module with 3 Bricks, 2 CP graded</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Prerequisites
none
Module: Wildcard Non-Physics Elective, Module with 4 Bricks [M-PHYS-103131]

Organisation: KIT Department of Physics
Part of: Non-Physics Elective

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106226</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-PHYS-106227</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-PHYS-106228</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-PHYS-106229</td>
<td>Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded</td>
<td>2 CR</td>
</tr>
</tbody>
</table>

Prerequisites

none
Module: X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab [M-PHYS-105555]

Responsibility: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Optics and Photonics

Credits: 8
Grading scale: Grade to a tenth
Recurrence: Each winter term
Duration: 1 term
Language: German/English
Level: 4
Version: 1

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111156</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab</td>
<td>8 CR</td>
<td>Baumbach, Stankov</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites
none

Modeled Conditions
The following conditions have to be fulfilled:

1. The module **M-PHYS-105556** - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab must not have been started.
2. The module **M-PHYS-105557** - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor) must not have been started.

Competence Goal
Students are introduced to the basic concepts of X-ray physics and its applications to characterize the structure and dynamics of crystalline solids and nanostructures as an extension to topics in wave optics, quantum mechanical scattering theory, crystallography and solid state physics. They understand and are able to apply the physical principles of modern X-ray experimental methods in spatial, frequency and momentum spaces at laboratory sources and large-scale facilities (synchrotron radiation sources, free electron lasers). The lecture, exercises and practical courses at the KIT Light Source combine theory, experiments and high-tech instrumentation with state-of-the-art research applications in the nanoscience. The exercises and practical courses enable the students to prepare and perform X-ray experiments at laboratory X-ray sources and at synchrotron radiation beamlines.

Content
Introduction to modern X-ray physics. The lecture bridges the gap from basic physics to modern X-ray methods for students of physics, chemistry, materials science, crystallography & mineralogy, and gives an overview of important current application fields:

- Theoretical and experimental foundations of X-ray physics, optics and analysis, esp. X-ray scattering, diffraction and spectroscopy.
- Modern instrumentation in the X-ray laboratory and at large-scale facilities (synchrotron radiation sources, free electron lasers).
- Application examples from crystallography and nanoscience.
- The exercises optionally include the possibility of supervised performance of three experiments on state-of-the-art X-ray equipment of the KIT Light Source.
Workload
240 hours consisting of attendance time (60 hours), wrap-up of the lecture incl. exam preparation, preparation and follow-up of the exercises and the internship (180 hours).

Recommendation
Fundamentals of classical electrodynamics, optics, quantum mechanics and basic knowledge of solid state physics.

Literature
Module: X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor) [M-PHYS-105557]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of:
Minor in Physics: Condensed Matter
Minor in Physics: Nanophysics
Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111158</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor)</td>
<td>8 CR</td>
<td></td>
<td>Baumbach, Stankov</td>
</tr>
</tbody>
</table>

Competence Certificate

The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105555 - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab must not have been started.
2. The module M-PHYS-105556 - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab must not have been started.

Competence Goal

Students are introduced to the basic concepts of X-ray physics and its applications to characterize the structure and dynamics of crystalline solids and nanostructures as an extension to topics in wave optics, quantum mechanical scattering theory, crystallography and solid state physics. They understand and are able to apply the physical principles of modern X-ray experimental methods in spatial, frequency and momentum spaces at laboratory sources and large-scale facilities (synchrotron radiation sources, free electron lasers). The lecture, exercises and practical courses at the KIT Light Source combine theory, experiments and high-tech instrumentation with state-of-the-art research applications in the nanoscience. The exercises and practical courses enable the students to prepare and perform X-ray experiments at laboratory X-ray sources and at synchrotron radiation beamlines.

Content

Introduction to modern X-ray physics. The lecture bridges the gap from basic physics to modern X-ray methods for students of physics, chemistry, materials science, crystallography & mineralogy, and gives an overview of important current application fields:

- Theoretical and experimental foundations of X-ray physics, optics and analysis, esp. X-ray scattering, diffraction and spectroscopy.
- Modern instrumentation in the X-ray laboratory and at large-scale facilities (synchrotron radiation sources, free electron lasers).
- Application examples from crystallography and nanoscience.
- The exercises optionally include the possibility of supervised performance of three experiments on state-of-the-art X-ray equipment of the KIT Light Source.

Workload

240 hours consisting of attendance time (60 hours), follow-up of the lecture, preparation and follow-up of the exercises and the internship (180 hours).
Recommendation
Fundamentals of classical electrodynamics, optics, quantum mechanics and basic knowledge of solid state physics.

Literature

Module: X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab [M-PHYS-105556]

Responsibility:
- Prof. Dr. Gerd Tilo Baumbach
- Dr. Svetoslav Stankov

Organisation:
KIT Department of Physics

Part of:
- Major in Physics: Condensed Matter (Elective Condensed Matter)
- Major in Physics: Nanophysics (Elective Nanophysics)
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Second Major in Physics: Condensed Matter (Elective Condensed Matter)
- Second Major in Physics: Nanophysics (Elective Nanophysics)
- Second Major in Physics: Optics and Photonics

Credits
- 4

Grading scale
- Grade to a tenth

Recurrence
- Each winter term

Duration
- 1 term

Language
- German/English

Level
- 4

Version
- 1

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Description</th>
<th>Credits</th>
<th>Level</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111157</td>
<td>X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab</td>
<td>4</td>
<td>4</td>
<td>Baumbach, Stankov</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Modeled Conditions

The following conditions have to be fulfilled:

1. The module M-PHYS-105555 - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab must not have been started.
2. The module M-PHYS-105557 - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor) must not have been started.

Competence Goal

Students are introduced to the basic concepts of X-ray physics and their application to characterize the structure and dynamics of crystalline solids and nanostructures as an extension to topics in wave optics, quantum mechanical scattering theory, crystallography and solid state physics. They understand the physical principles of modern X-ray measurement methods imaging in spatial, frequency and momentum spaces at laboratory sources and large-scale facilities (synchrotron radiation sources, free electron lasers) and can apply them.

Content

Introduction to modern X-ray physics. The lecture bridges the gap from basic physics to modern X-ray methods for students of physics, chemistry, materials science, crystallography & mineralogy, and gives an overview of important current application fields:

- Theoretical and experimental foundations of X-ray physics, optics and analysis, esp. X-ray scattering, diffraction and spectroscopy.
- Modern instrumentation in the X-ray laboratory and at large facilities (synchrotron facilities, free electron lasers).
- Application examples from crystallography and nanosciences.

Workload

120 hours consisting of attendance time (30 hours), wrap-up of lecture incl. exam preparation (90 hours).

Recommendation

Fundamentals of classical electrodynamics, optics, quantum mechanics and basic knowledge of solid state physics.
Literature

Module: X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab [M-PHYS-105558]

4.239 Module: X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab [M-PHYS-105558]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-PHYS-111159 | X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab | 8 CR | Baumbach, Stankov |

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

Students acquire the experimental and theoretical basis for performing data acquisition and interpretation of 2D and 3D X-ray imaging in real and reciprocal space. This includes microscopic absorption and (non-) interferometric phase contrast imaging, diffraction-enhanced imaging, and scattering methods. The lecture makes connections to routine applications of these methods in life sciences and solid state research at the KIT Light Source. Students apply the knowledge gained in the lecture in experimental group work.

Content

The lecture bridges the gap from basic physics to modern X-ray methods for physicists, chemists and materials scientists and gives an overview of important current application fields:

- Theoretical and experimental foundations of X-ray optics and X-ray analysis, especially computed tomography, X-ray microscopy, diffraction and scattering.
- Modern instrumentation in the X-ray laboratory and at large-scale facilities (synchrotron storage rings, free electron lasers).
- Application examples from crystallography, nanoscience and life science.

Workload

240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation, preparation and follow-up of the exercises and the internship (180 hours).

Recommendation

Fundamentals of classical electrodynamics, optics and basic knowledge of solid state physics.

Literature

4.240 Module: X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab (Minor) [M-PHYS-105560]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of: Minor in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111161</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab (Minor)</td>
<td>8 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The course credit is achieved through successful participation in the exercises. The details will be announced in the first lecture or at the first tutorial.

Prerequisites
none

Competence Goal
Students acquire the experimental and theoretical basis for performing data acquisition and interpretation of 2D and 3D X-ray imaging in real and reciprocal space. This includes microscopic absorption and (non-) interferometric phase contrast imaging, diffraction-enhanced imaging, and scattering methods. The lecture makes connections to routine applications of these methods in life sciences and solid state research at the KIT Light Source. Students apply the knowledge gained in the lecture in experimental group work.

Content
The lecture bridges the gap from basic physics to modern X-ray methods for physicists, chemists and materials scientists and gives an overview of important current application fields:

- Theoretical and experimental foundations of X-ray optics and X-ray analysis, especially computed tomography, X-ray microscopy, diffraction and scattering.
- Modern instrumentation in the X-ray laboratory and at large-scale facilities (synchrotron storage rings, free electron lasers).
- Application examples from crystallography, nanoscience and life science.

Workload
240 hours consisting of attendance time (60 hours), follow-up of the lecture incl. exam preparation, preparation and follow-up of the exercises and the internship (180 hours).

Recommendation
Fundamentals of classical electrodynamics, optics and basic knowledge of solid state physics.

Literature
Module: X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, without Exercises and without Lab [M-PHYS-105559]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of:
- Major in Physics: Optics and Photonics (Elective Optics and Photonics)
- Second Major in Physics: Optics and Photonics

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-111160</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, without Exercises and without Lab</td>
<td>4 CR</td>
<td>Baumbach, Stankov</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral Exam. In the MSc Physics, this module is examined together with further modules attended as part of the major in physics. The total duration of the oral exam is approx. 60 minutes.

Prerequisites

none

Competence Goal

Students acquire the experimental and theoretical basis for performing data acquisition and interpretation of 2D and 3D X-ray imaging in real and reciprocal space. This includes microscopic absorption and (non-) interferometric phase contrast imaging, diffraction-enhanced imaging, and scattering methods. The lecture makes connections to routine applications of these methods in life sciences and solid state research at the KIT Light Source.

Content

The lecture bridges the gap from basic physics to modern X-ray methods for physicists, chemists and materials scientists and gives an overview of important current application fields:

- Theoretical and experimental foundations of X-ray optics and X-ray analysis, especially computed tomography, X-ray microscopy, diffraction and scattering.
- Modern instrumentation in the X-ray laboratory and at large-scale physical facilities (synchrotron storage rings, free electron lasers).
- Application examples from crystallography, nanosciences and life sciences.

Workload

120 hours consisting of attendance time (30 hours), wrap-up of lecture incl. exam preparation (90 hours).

Recommendation

Fundamentals of classical electrodynamics, optics and basic knowledge of solid state physics.

Literature

5 Courses

5.1 Course: Accelerator Physics, with ext. Exercises [T-PHYS-109904]

Responsible: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller
Organisation: KIT Department of Physics
Part of: M-PHYS-104869 - Accelerator Physics, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Session Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4028011</td>
<td>Accelerator physics</td>
<td>4</td>
<td>Lecture</td>
<td></td>
<td>Müller, Bernhard, Härer, Maier</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4028012</td>
<td>Praktische Übungen an KARA zur Beschleunigerphysik</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td>Müller, Härer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4028011</td>
<td>Accelerator physics</td>
<td>4</td>
<td>Lecture / On-Site</td>
<td></td>
<td>Müller, Bernhard, Härer, Reißig</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4028012</td>
<td>Praktische Übungen an KARA zur Beschleunigerphysik</td>
<td>1</td>
<td>Practice / On-Site</td>
<td></td>
<td>Müller, Härer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4028011</td>
<td>Accelerator Physics</td>
<td>4</td>
<td>Lecture / On-Site</td>
<td></td>
<td>Müller, Bernhard, Härer, Noll</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4028012</td>
<td>Practical Exercises at KARA for Accelerator Physics</td>
<td>1</td>
<td>Practice / On-Site</td>
<td></td>
<td>Müller, Härer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.2 Course: Accelerator Physics, with ext. exercises (Minor) [T-PHYS-109903]

Responsible: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Organisation: KIT Department of Physics
Part of: M-PHYS-104870 - Accelerator Physics, with ext. exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>02</td>
<td>4028011</td>
<td>Accelerator physics</td>
<td>4</td>
<td>Lecture</td>
<td>Müller, Bernhard, Härer, Maier</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>02</td>
<td>4028012</td>
<td>Praktische Übungen an KARA zur Beschleunigerphysik</td>
<td>1</td>
<td>Practice</td>
<td>Müller, Härer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>02</td>
<td>4028011</td>
<td>Accelerator physics</td>
<td>4</td>
<td>Lecture / 🗣</td>
<td>Müller, Bernhard, Härer, Reißig</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>02</td>
<td>4028012</td>
<td>Praktische Übungen an KARA zur Beschleunigerphysik</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Müller, Härer</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>02</td>
<td>4028011</td>
<td>Accelerator Physics</td>
<td>4</td>
<td>Lecture / 🗣</td>
<td>Müller, Bernhard, Härer, Noll</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>02</td>
<td>4028012</td>
<td>Practical Exercises at KARA for Accelerator Physics</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Müller, Härer</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.3 Course: Accelerator Physics, without ext. Exercises [T-PHYS-109905]

Responsible: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Organisation: KIT Department of Physics
Part of: M-PHYS-104871 - Accelerator Physics, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Accelerator physics</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Müller, Bernhard, Härer, Maier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Accelerator physics</td>
<td>4 SWS</td>
<td>Lecture / 🗣️</td>
<td>Müller, Bernhard, Härer, Reißig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Accelerator Physics</td>
<td>4 SWS</td>
<td>Lecture / 🗣️</td>
<td>Müller, Bernhard, Härer, Noll</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.4 Course: Accelerator Physics, without ext. exercises (Minor) [T-PHYS-109906]

Responsible: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Organisation: KIT Department of Physics

Part of: M-PHYS-104872 - Accelerator Physics, without ext. exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Accelerator physics</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Müller, Bernhard, Härer, Maier</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Accelerator physics</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Müller, Bernhard, Härer, Reißig</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Accelerator Physics</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Müller, Bernhard, Härer, Noll</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🪑 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.5 Course: Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training [T-PHYS-112943]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Prof. Dr. Anke-Susanne Müller
Dr. Anton Plech
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of: M-PHYS-106399 - Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 4028101 | Accelerators and Synchrotron Radiation for Materials Research with Tutorials and a Practical Training | 5 SWS | Block / On-Site | Baumbach, Müller, Härer, Plech, Schuh, Stankov |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.6 Course: Advanced Numerical Weather Prediction [T-PHYS-111429]

Responsible: Prof. Dr. Peter Knippertz
Organisation: KIT Department of Physics
Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

ST 2021	4052051	Advanced Numerical Weather Prediction	2 SWS	Lecture / 📲	Knippertz
ST 2021	4052052	Exercises to Advanced Numerical Weather Prediction	1 SWS	Practice / 📲	Knippertz, Burba, Borne
ST 2022	4052051	Advanced Numerical Weather Prediction	2 SWS	Lecture / 📲	Knippertz
ST 2022	4052052	Exercises to Advanced Numerical Weather Prediction	1 SWS	Practice / 📲	Knippertz, Burba, Borne
ST 2023	4052051	Advanced Numerical Weather Prediction	2 SWS	Lecture / 📲	Knippertz
ST 2023	4052052	Exercises to Advanced Numerical Weather Prediction	1 SWS	Practice / 📲	Knippertz, Oertel, Pickl

Legend: 📲 Online, ☡ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Students must achieve 50% of the points on the exercise sheets.

Prerequisites
None

Recommendation
None

Annotation
None
5.7 Course: Advanced Physics Laboratory Course [T-PHYS-102479]

Responsible:
- Dr. Gernot Guigas
- PD Dr. Andreas Naber
- Dr. Christoph Sürgers
- Dr. Joachim Wolf

Organisation:
KIT Department of Physics

Part of:
- M-PHYS-101395 - Advanced Physics Laboratory Course

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4011333</td>
<td>Physikalisches Fortgeschrittenenpraktikum für Masterstudenten (Kurs 1)</td>
<td>4 SWS</td>
<td>Practical course / 🗣️</td>
<td>Naber, Guigas, Sürgers, Wolf, Müller, Valerius</td>
</tr>
<tr>
<td>ST 2021 4011343</td>
<td>Physikalisches Fortgeschrittenenpraktikum für Masterstudenten (Kurs 2)</td>
<td>4 SWS</td>
<td>Practical course / 🗣️</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>ST 2021 4011349</td>
<td>Vorbesprechung zum Praktikum Moderne Physik und zum Physikalischen Fortgeschrittenenpraktikum für Masterstudenten</td>
<td></td>
<td>Practical course / 🗣️</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WT 21/22 4011333</td>
<td>Advanced lab course for Master students</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WT 21/22 4011349</td>
<td>Vorbesprechung zum Praktikum Moderne Physik und zum Physikalischen Fortgeschrittenenpraktikum für Masterstudenten</td>
<td></td>
<td>Practical course</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>ST 2022 4011333</td>
<td>Physikalisches Fortgeschrittenenpraktikum für Masterstudenten (Kurs 1)</td>
<td>4 SWS</td>
<td>Practical course / 🗣️</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>ST 2022 4011343</td>
<td>Physikalisches Fortgeschrittenenpraktikum für Masterstudenten (Kurs 2)</td>
<td>4 SWS</td>
<td>Practical course / 🗣️</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>ST 2022 4011349</td>
<td>Vorbesprechung zum Praktikum Moderne Physik und zum Physikalischen Fortgeschrittenenpraktikum für Masterstudenten</td>
<td></td>
<td>Practical course / 🗣️</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WT 22/23 4011333</td>
<td>Advanced lab course for Master students</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WT 22/23 4011349</td>
<td>Vorbesprechung zum Praktikum Moderne Physik und zum Physikalischen Fortgeschrittenenpraktikum für Masterstudenten</td>
<td></td>
<td>Practical course</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>ST 2023 4011353</td>
<td>Physikalisches Fortgeschrittenenpraktikum für Masterstudenten (Kurs 1)</td>
<td>4 SWS</td>
<td>Practical course / 🗣️</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>ST 2023 4011369</td>
<td>Vorbesprechung zum Praktikum Moderne Physik und zum Physikalischen Fortgeschrittenenpraktikum für Masterstudenten</td>
<td></td>
<td>Practical course / 🗣️</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WT 23/24 4011333</td>
<td>Advanced lab course for Master students</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
</tbody>
</table>

Type: Completed coursework

Credits: 6

Grading scale: pass/fail

Version: 1
Preliminary meeting for the Advanced lab course for Master students

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>4011349</th>
<th>Practical course / 🗣</th>
<th>Naber, Guigas, Sürgers, Wolf</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, ⬠ Blended (On-Site/Online), 🗣 On-Site, × Cancelled

Prerequisites

none
5.8 Course: Advanced Seminar: Accelerators and Detectors - Future Technologies for Research and Medicine [T-PHYS-112801]

Responsible: Prof. Dr. Bernhard Holzapfel
Prof. Dr. Ulrich Husemann
Prof. Dr. Anke-Susanne Müller

Organisation: KIT Department of Physics

Part of:
M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics
M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>Event Code</th>
<th>Description</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>4013214</td>
<td>Advanced Seminar: Accelerators and Detectors - Future Technologies for Research and Medicine</td>
<td>2</td>
<td>Husemann, Holzapfel, Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💼 Blended (On-Site/Online), 🔴 On-Site, ❌ Cancelled

Prerequisites

none
5.9 Course: Advanced Seminar: Advanced Topics in Quantum Field Theory and Physics Beyond the Standard [T-PHYS-111324]

<table>
<thead>
<tr>
<th>Responsible:</th>
<th>Prof. Dr. Ulrich Nierste</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation:</td>
<td>KIT Department of Physics</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Advanced Seminar: Advanced Topics in Quantum Field Theory and Physics beyond the Standard</td>
<td>2 SWS</td>
<td>Advanced seminar</td>
<td>Ziegler, Nierste</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 👤 On-Site, ⬇ Cancelled
5.10 Course: Advanced Seminar: Astroparticle Physics [T-PHYS-110293]

Responsible:
- Prof. Dr. Guido Drexlin
- Prof. Dr. Ralph Engel
- Prof. Dr. Kathrin Valerius

Organisation:
- KIT Department of Physics

Part of:
- M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics

Type
- Completed coursework

Credits
- 4

Grading scale
- pass/fail

Version
- 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4013224</td>
<td>Hauptseminar: Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 📚</td>
<td>Drexlin, Valerius, Engel</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4013224</td>
<td>Hauptseminar: Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 📚</td>
<td>Drexlin, Engel, Hiller, Roth, Valerius</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4013224</td>
<td>Hauptseminar: Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 📚</td>
<td>Drexlin, Valerius, Engel</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4013224</td>
<td>Hauptseminar: Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 📚</td>
<td>Drexlin, Engel, Roth, Valerius</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4013224</td>
<td>Advanced Seminar: Astroparticle Physics</td>
<td>2 SWS</td>
<td>Advanced seminar / 📚</td>
<td>Drexlin, Engel, Valerius, Hiller</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 📖 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
- none
5.11 Course: Advanced Seminar: Astroparticle Physics and Cosmology [T-PHYS-112800]

Responsible:
- Prof. Dr. Guido Drexlin
- Prof. Dr. Ralph Engel
- Prof. Dr. Kathrin Valerius

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>4013224</td>
<td>Hauptseminar: Astroteilchenphysik und Kosmologie</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>Drexlin, Engel, Valerius, Hiller</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- ☑ Blended (On-Site/Online)
- 🗣 On-Site
- ❌ Cancelled

Prerequisites
none
Course: Advanced Seminar: Conformational Dynamics in Biomolecules [T-PHYS-104544]

Responsible: Prof. Dr. Ulrich Nienhaus
Prof. Dr. Wolfgang Wenzel

Organisation: KIT Department of Physics

Part of:
- M-PHYS-102204 - Advanced Seminar in the Area Nanophysics
- M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics
- M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4013014</td>
<td>Hauptseminar: Konformationsdynamik in Biomolekülen: Experiment und Theorie</td>
<td>2</td>
<td>Advanced seminar /🖥</td>
<td>Nienhaus, Wenzel, Kobitski</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4013014</td>
<td>Hauptseminar: Konformationsdynamik in Biomolekülen: Experiment und Theorie</td>
<td>2</td>
<td>Advanced seminar /🗣</td>
<td>Nienhaus, Wenzel, Kobitski</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4013014</td>
<td>Hauptseminar: Konformationsdynamik in Biomolekülen: Experiment und Theorie</td>
<td>2</td>
<td>Advanced seminar /🗣</td>
<td>Nienhaus, Wenzel, Kobitski</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.13 Course: Advanced Seminar: Experimental and Theoretical Methods in Particle Physics [T-PHYS-106525]

Responsible: PD Dr. Stefan Gieseke
Prof. Dr. Gudrun Heinrich
Prof. Dr. Günter Quast
Prof. Dr. Dieter Zeppenfeld

Organisation: KIT Department of Physics

Part of:
M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics
M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td></td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4013644</td>
<td>Hauptseminar: Experimentelle und Theoretische Methoden der Teilchenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 🖥</td>
<td>Quast, Heinrich, Gieseke</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4013644</td>
<td>Hauptseminar: Experimentelle und Theoretische Methoden der Teilchenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>Quast, Heinrich, Gieseke</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4013644</td>
<td>Hauptseminar: Experimentelle und Theoretische Methoden der Teilchenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>Ferber, Heinrich, Rabbertz</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
5.14 Course: Advanced Seminar: Flavor Physics [T-PHYS-112804]

Responsible: Dr. Monika Blanke
TT-Prof. Dr. Felix Kahlhöfer

Organisation: KIT Department of Physics

Part of: M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 4013534 | Hauptseminar: Flavourphysik | 2 SWS | Advanced seminar / Blanke, Kahlhöfer |

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.15 Course: Advanced Seminar: General Relativity [T-PHYS-106126]

Responsible: Prof. Dr. Frans Klinkhamer

Organisation: KIT Department of Physics

Part of: M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4013614</td>
<td>Advanced Seminar: General Relativity</td>
<td>2 SWS</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4013614</td>
<td>Advanced Seminar: General Relativity</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.16 Course: Advanced Seminar: General Relativity II [T-PHYS-109974]

Responsible: Prof. Dr. Frans Klinkhamer

Organisation: KIT Department of Physics

Part of: M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4013614</td>
<td>Hauptseminar: General Relativity II, and more</td>
<td>2 SWS</td>
<td>Advanced seminar /</td>
<td>Klinkhamer, Emelyanov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
5.17 Course: Advanced Seminar: Higgs Meets Flavour [T-PHYS-110830]

Responsible:
Prof. Dr. Gudrun Heinrich
Prof. Dr. Milada Margarete Mühlleitner

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

Prerequisites
none

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>
5.18 Course: Advanced Seminar: Hydrodynamics in Classical and Quantum Fluids [T-PHYS-111323]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 4013414 | Advanced Seminar: Hydrodynamics in Classical and Quantum Fluids | 2 SWS | Advanced seminar | Garst, Schmalian |

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
5.19 Course: Advanced Seminar: Light-optical Nanoscopy [T-PHYS-104560]

Responsible: Prof. Dr. Ulrich Nienhaus
Organisation: KIT Department of Physics
Part of: M-PHYS-102204 - Advanced Seminar in the Area Nanophysics
M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4013014 Hauptseminar: Lichtoptische Nanoskopie</td>
<td>4</td>
<td>Complete coursework</td>
<td>1</td>
</tr>
<tr>
<td>WT 22/23 4013014 Hauptseminar: Lichtoptische Nanoskopie</td>
<td>4</td>
<td>Complete coursework</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.20 Course: Advanced Seminar: Low Energy Particle Physics (Belle II, LUXE) [T-PHYS-111864]

Responsible: Prof. Dr. Torben Ferber
Dr. Pablo Goldenzweig

Organisation: KIT Department of Physics

Part of: M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Expansion</td>
<td>1 terms</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 4013254 | Hauptseminar: Low energy particle physics (Belle II, LUXE) | 2 SWS | Advanced seminar / | Ferber, Goldenzweig |

Legend: 🕹 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
T 5.21 Course: Advanced Seminar: Modern Particle Accelerators and Research with Photons [T-PHYS-106129]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Prof. Dr. Anke-Susanne Müller

Organisation: KIT Department of Physics

Part of:
M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter
M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics
M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4013814</td>
<td>Hauptseminar: Moderne Teilchenbeschleuniger und Forschung mit Photonen</td>
<td>2 SWS</td>
<td>Advanced seminar</td>
<td>Bernhard, Stankov, Plech, Müller, Baumbach</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4013814</td>
<td>Hauptseminar: Moderne Teilchenbeschleuniger und Forschung mit Photonen</td>
<td>2 SWS</td>
<td>Advanced seminar</td>
<td>Baumbach, Müller, Bernhard, Stankov, Plech, Schwarz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4013814</td>
<td>Advanced Seminar: Modern Accelerators and Research with Photons</td>
<td>2 SWS</td>
<td>Advanced seminar</td>
<td>Bernhard, Stankov, Plech, Müller, Baumbach</td>
</tr>
</tbody>
</table>

Prerequisites

none
5 COURSES

5.22 Course: Advanced Seminar: Nano Optics [T-PHYS-111862]

Responsible: PD Dr. Andreas Naber
Prof. Dr. Carsten Rockstuhl
Prof. Dr. Martin Wegener

Organisation: KIT Department of Physics

Part of:
- M-PHYS-102204 - Advanced Seminar in the Area Nanophysics
- M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Prerequisites</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 4013024</td>
<td>Hauptseminar: Nano-Optik</td>
<td>2 SWS</td>
<td></td>
<td>Advanced seminar / On-Site</td>
<td>none</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), ⬇ On-Site, ✗ Cancelled

Responsible: Prof. Dr. Gerd Tilo Baumbach

Organisation: KIT Department of Physics

Part of: M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4013814</td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
</tr>
<tr>
<td></td>
<td>Hauptseminar: Neutronen und Röntgenstrahlung in der Festkörperphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 📚</td>
<td>Baumbach, Plech, Stankov</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4013814</td>
<td>Hauptseminar: Neutronen und Röntgenstrahlung in der Festkörperphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 📚</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4013814</td>
<td>Hauptseminar: Neutronen und Röntgenstrahlung in der Festkörperphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 📚</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗽 Cancelled

Prerequisites

none
5.24 Course: Advanced Seminar: Optoelectronics - Fundamentals and Devices [T-PHYS-105789]

Responsible: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Organisation: KIT Department of Physics

Part of:
- M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter
- M-PHYS-102204 - Advanced Seminar in the Area Nanophysics
- M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>4013034</th>
<th>Hauptseminar: Optoelektronik: Grundlagen und Bauelemente</th>
<th>2 SWS</th>
<th>Advanced seminar / 🖥</th>
<th>Kalt, Hetterich</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4013034</td>
<td>Hauptseminar: Optoelektronik: Grundlagen und Bauelemente</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>Kalt, Hetterich</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.25 Course: Advanced Seminar: Particle Physics [T-PHYS-112235]

Responsible: Prof. Dr. Torben Ferber
Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of: M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics

<table>
<thead>
<tr>
<th>Event</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 4013214</td>
<td>2 SWS</td>
<td>Hauptseminar: Teilchenphysik</td>
<td>Advanced seminar / 🗣</td>
<td>1</td>
</tr>
<tr>
<td>WT 23/24 4013214</td>
<td>2 SWS</td>
<td>Advanced Seminar: Particle Physics</td>
<td>Advanced seminar / 🗣</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
5.26 Course: Advanced Seminar: Particle Physics and Experimental Methods [T-PHYS-105791]

Responsible: Dr. Pablo Goldenzweig
Prof. Dr. Ulrich Husemann
Prof. Dr. Anke-Susanne Müller
Prof. Dr. Thomas Müller
Prof. Dr. Günter Quast

Organisation: KIT Department of Physics

Part of: M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Year</th>
<th>Event ID</th>
<th>Event Details</th>
<th>SWS</th>
<th>Grade</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4013214</td>
<td>Hauptseminar: Teilchenphysik und experimentelle Methoden</td>
<td>2</td>
<td>Advanced seminar / 🖥️</td>
<td>Husemann, Müller, Müller</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4013214</td>
<td>Hauptseminar: Teilchenphysik und experimentelle Methoden</td>
<td>2</td>
<td>Advanced seminar / 🗣️</td>
<td>Husemann, Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, 🗑️ Cancelled

Prerequisites

none
5.27 Course: Advanced Seminar: Particle Physics at the Highest Energy at the LHC [T-PHYS-107566]

Responsible: Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute
Prof. Dr. Thomas Müller
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 4013214 | Hauptseminar: Teilchenphysik bei höchster Energie am LHC | 2 SWS | Advanced seminar / 🗣 | Husemann, Klute, Wolf |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.28 Course: Advanced Seminar: Particle Physics beyond the Standard Model [T-PHYS-111863]

Responsible: Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of: M-PHYS-102206 - Advanced Seminar in the Area Experimental Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4013244</td>
<td>Hauptseminar: Teilchenphysik jenseits des Standardmodells</td>
<td>2 SWS Advanced seminar / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Klute</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4013244</td>
<td>Hauptseminar: Teilchenphysik jenseits des Standardmodells</td>
<td>2 SWS Advanced seminar / 🗣</td>
<td></td>
<td></td>
<td></td>
<td>Klute</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.29 Course: Advanced Seminar: Phenomena of the Quantum World [T-PHYS-112802]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Jörg Schmalian
Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics
Part of: M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 4013414 | Advanced Seminar: Phenomena of the Quantum World | 2 SWS | Advanced seminar / | Garst, Schmalian, Shnirman |

Prerequisites

none
5.30 Course: Advanced Seminar: Physics Beyond the Standard Model [T-PHYS-111452]

- **Responsible:** Prof. Dr. Ulrich Nierste
- **Organisation:** KIT Department of Physics
- **Part of:** M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>4013514</th>
<th>Hauptseminar: Physik jenseits des Standardmodells</th>
<th>2 SWS</th>
<th>Advanced seminar / 🗣</th>
<th>Nierste, Blanke</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.31 Course: Advanced Seminar: Quantum Mechanics: Selected Chapters [T-PHYS-113133]

Responsible: PD Dr. Robert Eder

Organisation: KIT Department of Physics

Part of:
- M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics
- M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>4013424</th>
<th>Advanced Seminar: Quantum Mechanics: Selected chapters</th>
<th>2 SWS</th>
<th>Advanced seminar / 📣</th>
<th>Eder</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📣 On-Site, ✗ Cancelled

Prerequisites

none
5.32 Course: Advanced Seminar: Quantum Optics [T-PHYS-106523]

Responsible: Prof. Dr. David Hunger
PD Dr. Andreas Naber
Prof. Dr. Carsten Rockstuhl
Prof. Dr. Martin Wegener

Organisation: KIT Department of Physics

Part of:
- M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter
- M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics
- M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 4013024 | Hauptseminar: Quantenoptik | 2 SWS | Advanced seminar | Hunger, Rockstuhl, Wegener |

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
5.33 Course: Advanced Seminar: Quantum Phase Transitions [T-PHYS-111889]

Responsible: Prof. Dr. Markus Garst

Organisation: KIT Department of Physics

Part of: M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 4013414 Advanced Seminar: Quantum phase transitions</td>
<td>2 SWS</td>
<td>Advanced seminar / Garst, Gornyi, Schmalian</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
5.34 Course: Advanced Seminar: Recent Experiments in Quantum Physics [T-PHYS-109971]

Responsible:
- Prof. Dr. David Hunger
- Prof. Dr. Matthieu Le Tacon
- Prof. Dr. Wolfgang Wernsdorfer
- PD Dr. Khalil Zakeri-Lori

Organisation:
KIT Department of Physics

Part of:
- M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter
- M-PHYS-102204 - Advanced Seminar in the Area Nanophysics

Type
- Completed coursework

Credits
- 4

Grading scale
- pass/fail

Recurrence
- Irregular

Version
- 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4013114</td>
<td>Hauptseminar: Aktuelle Experimente in der Quantenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 🖥</td>
<td>Wernsdorfer, Hunger, Reisinger, Willke</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4013114</td>
<td>Hauptseminar: Aktuelle Experimente in der Quantenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>Hunger, Wernsdorfer, Willke, Le Tacon</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4013114</td>
<td>Hauptseminar: Aktuelle Experimente in der Quantenphysik</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>Hunger, Wernsdorfer, Willke, Le Tacon</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online,
- 🧩 Blended (On-Site/Online),
- 🗣 On-Site,
- ✗ Cancelled

Prerequisites
none
5.35 Course: Advanced Seminar: Special Relativity [T-PHYS-105793]

Responsible: Prof. Dr. Frans Klinkhamer

Organisation: KIT Department of Physics

Part of: M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.36 Course: Advanced Seminar: Superconductivity - from Basics to Application [T-PHYS-111014]

Responsible: Prof. Dr. Matthieu Le Tacon
Prof. Dr. Alexey Ustinov
Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of:
- M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter
- M-PHYS-102204 - Advanced Seminar in the Area Nanophysics

Type
Completed coursework

Credits
4

Grading scale
pass/fail

Expansion
1 terms

Version
1

Prerequisites
none

Responsible: TT-Prof. Dr. Felix Kahlhöfer
Prof. Dr. Milada Margarete Mühlleitner

Organisation: KIT Department of Physics

Part of: M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 4013624 | Advanced Seminar: The Matter Puzzle - Baryon Asymmetry, Dark Matter and Particle Physics | 2 SWS | Advanced seminar / 🖥 | Mühlleitner, Kahlhöfer |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Authors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4013414</td>
<td>Hauptseminar: Topology in Condensed Matter Physics</td>
<td>2</td>
<td>Advanced seminar</td>
<td>Gornyi, Mirlin, Narozhnyy</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.39 Course: Advanced Seminar: Units of Measurement and Metrology: No Guessing but Precise Measurement! [T-PHYS-111451]

| Responsible: | Prof. Dr. Wulf Wulfhekel |
| Organisation: | KIT Department of Physics |
| Part of: | M-PHYS-102203 - Advanced Seminar in the Area Condensed Matter
M-PHYS-102205 - Advanced Seminar in the Area Optics and Photonics |

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>pass/fail</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Organisation</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4013114</td>
<td>Hauptseminar: Basisgrößen und Basiseinheiten: Nicht Raten - Messen</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>On-Site</td>
<td>4013114</td>
<td>Wulfhekel, Gozlinski</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4013114</td>
<td>Hauptseminar: Basisgrößen und Basiseinheiten: Nicht Raten - Messen</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>On-Site</td>
<td>4013114</td>
<td>Wulfhekel, Gozlinski</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.40 Course: Advanced Seminar: Unraveling the Puzzle of Dark Matter [T-PHYS-112236]

Responsible:
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Thomas Schwetz-Mangold

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102207 - Advanced Seminar in the Area Experimental Astroparticle Physics
M-PHYS-102208 - Advanced Seminar in the Area Theoretical Particle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Grade</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4013624</td>
<td>Hauptseminar: Unraveling the Puzzle of Dark Matter / Dem Rätsel der Dunklen Materie auf der Spur</td>
<td>2 SWS</td>
<td>Advanced seminar</td>
<td>Mühlleitner, Schwetz-Mangold</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.41 Course: Advanced Seminar: Virtual Design of Materials [T-PHYS-111865]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics
Part of:
- M-PHYS-102204 - Advanced Seminar in the Area Nanophysics
- M-PHYS-102209 - Advanced Seminar in the Area Condensed Matter Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>EventType</th>
<th>EventId</th>
<th>Title</th>
<th>SWS</th>
<th>Pretype</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4013324</td>
<td>Hauptseminar: Virtuelles Materialdesign</td>
<td>2</td>
<td>SWS</td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4013314</td>
<td>Hauptseminar: Virtuelles Materialdesign</td>
<td>2</td>
<td>SWS</td>
<td>Wenzel</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4013324</td>
<td>Hauptseminar: Virtual Materials Design</td>
<td>2</td>
<td>SWS</td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4013314</td>
<td>Advanced Seminar: Virtual Materials Design</td>
<td>2</td>
<td>SWS</td>
<td>Wenzel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.42 Course: Arctic Climate System [T-PHYS-111273]

Responsible: Prof. Dr. Björn-Martin Sinnhuber

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 4052101</td>
<td>Arctic Climate System</td>
<td>2 SWS</td>
<td>Lecture / Blended</td>
<td>Sinnhuber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4052101</td>
<td>Arctic Climate System</td>
<td>2 SWS</td>
<td>Lecture / Blended</td>
<td>Sinnhuber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a coursework according to §4 (3) SPO MSc Meteorology and Climate Physics in the form of a short lecture (approx. 10 minutes) on a topic relevant to the lecture. The detailed conditions will be discussed in the lecture.

Prerequisites

None

Annotation

5.43 Course: Array Techniques in Seismology, graded [T-PHYS-112590]

Responsible: apl. Prof. Dr. Joachim Ritter
Organisation: KIT Department of Physics
Part of: M-PHYS-106196 - Array Techniques in Seismology (Graded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Array Techniques in Seismology</td>
<td>1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Ritter</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Exercises to Array Techniques in Seismology</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Ritter, NN</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Array Techniques in Seismology</td>
<td>1 SWS</td>
<td>Lecture / 🗣️</td>
<td>Ritter</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exercises to Array Techniques in Seismology</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Ritter, NN</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate
Grading is based on written reports on exercises. A detailed rating scheme is distributed during the first lecture together with information on the required length of the reports and rating criteria.

Recommendation
Participants need to know the basics of seismology.
5.44 Course: Astroparticle Physics I [T-PHYS-102432]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics
Part of: M-PHYS-102075 - Astroparticle Physics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022011</td>
<td>Astroteilchenphysik I: Dunkle Materie</td>
<td>3 SWS</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022012</td>
<td>Übungen zur Astroteilchenphysik I: Dunkle Materie</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022011</td>
<td>Astroteilchenphysik I: Dunkle Materie</td>
<td>3 SWS</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022012</td>
<td>Übungen zur Astroteilchenphysik I: Dunkle Materie</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022011</td>
<td>Astroparticle Physics I: Dark Matter</td>
<td>3 SWS</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022012</td>
<td>Exercises to Astroparticle Physics I: Dark Matter</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.45 Course: Astroparticle Physics I (Minor) [T-PHYS-104379]

Responsible:
Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102076 - Astroparticle Physics I (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Astroteilchenphysik I: Dunkle Materie</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Drexlin, Schlösser</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Übungen zur Astroteilchenphysik I: Dunkle Materie</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Drexlin, Schlösser</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Astroteilchenphysik I: Dunkle Materie</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Drexlin, Schlösser, Huber, Valerius</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Übungen zur Astroteilchenphysik I: Dunkle Materie</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Drexlin, Schlösser, Huber, Valerius</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Astroparticle Physics I: Dark Matter</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Drexlin, Valerius, Lokhov</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exercises to Astroparticle Physics I: Dark Matter</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Drexlin, Valerius, Huber</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🤖 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.46 Course: Astroparticle Physics II - Cosmic Rays, with ext. Exercises [T-PHYS-105108]

Responsible: Prof. Dr. Ralph Engel
Dr. Markus Roth
Organisation: KIT Department of Physics
Part of: M-PHYS-102525 - Astroparticle Physics II - Cosmic Rays, with ext. Exercises

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4022041 Astroteilchenphysik II: Kosmische Strahlung 2 SWS Lecture</td>
<td>Grade to a third</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22 4022042 Übungen zu Astroteilchenphysik II: Kosmische Strahlung 1 SWS Practice</td>
<td>Grade to a third</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 4022041 Astroparticle Physics II: Cosmic Rays 2 SWS Lecture / 🗣</td>
<td>Grade to a third</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 4022042 Exercises to Astroparticle Physics II: Cosmic Rays 1 SWS Practice / 🗣</td>
<td>Grade to a third</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4022041 Astroparticle Physics II: Cosmic Rays 2 SWS Lecture / 🗣</td>
<td>Grade to a third</td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4022042 Exercises to Astroparticle Physics II: Cosmic Rays 1 SWS Practice / 🗣</td>
<td>Grade to a third</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Prerequisites

None
5.47 Course: Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor) [T-PHYS-106317]

Responsible: Prof. Dr. Ralph Engel
Dr. Markus Roth

Organisation: KIT Department of Physics

Part of: M-PHYS-103184 - Astroparticle Physics II - Cosmic Rays, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>WS</th>
<th>Type</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022041</td>
<td>Astroteilchenphysik II: Kosmische Strahlung</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>2</td>
<td>Engel, Veberic</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022042</td>
<td>Übungen zu Astroteilchenphysik II: Kosmische Strahlung</td>
<td>1 SWS</td>
<td>Practice</td>
<td>1</td>
<td>Engel, Stadelmaier</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022041</td>
<td>Astroparticle Physics II: Cosmic Rays</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>2</td>
<td>Engel, Unger</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022042</td>
<td>Exercises to Astroparticle Physics II: Cosmic Rays</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
<td>1</td>
<td>Engel, Fitoussi</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022041</td>
<td>Astroparticle Physics II: Cosmic Rays</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td>2</td>
<td>Engel, Schmidt</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022042</td>
<td>Exercises to Astroparticle Physics II: Cosmic Rays</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
<td>1</td>
<td>Engel, Hahn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.48 Course: Astroparticle Physics II - Cosmic Rays, without ext. Exercises [T-PHYS-102382]

Responsibility: Prof. Dr. Ralph Engel
Dr. Markus Roth

Organisation: KIT Department of Physics

Part of: M-PHYS-102078 - Astroparticle Physics II - Cosmic Rays, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022041</td>
<td>Astroteilchenphysik II: Kosmische Strahlung</td>
<td>2</td>
<td>Lecture</td>
<td>Engel, Veberic</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022042</td>
<td>Übungen zu Astroteilchenphysik II: Kosmische Strahlung</td>
<td>1</td>
<td>Practice</td>
<td>Engel, Stadelmaier</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022041</td>
<td>Astroparticle Physics II: Cosmic Rays</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Engel, Unger</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022042</td>
<td>Exercises to Astroparticle Physics II: Cosmic Rays</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Engel, Fitoussi</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022041</td>
<td>Astroparticle Physics II: Cosmic Rays</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Engel, Schmidt</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022042</td>
<td>Exercises to Astroparticle Physics II: Cosmic Rays</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Engel, Hahn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕐 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.49 Course: Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor) [T-PHYS-104380]

Responsible: Prof. Dr. Ralph Engel
Dr. Markus Roth

Organisation: KIT Department of Physics

Part of: M-PHYS-102082 - Astroparticle Physics II - Cosmic Rays, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astroteilchenphysik II: Kosmische Strahlung</td>
<td>4022041</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Engel, Veberic</td>
</tr>
<tr>
<td>Übungen zu Astroteilchenphysik II: Kosmische Strahlung</td>
<td>4022042</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Engel, Stadelmaier</td>
</tr>
<tr>
<td>Astroparticle Physics II: Cosmic Rays</td>
<td>4022041</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Engel, Unger</td>
</tr>
<tr>
<td>Exercises to Astroparticle Physics II: Cosmic Rays</td>
<td>4022042</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Engel, Fitoussi</td>
</tr>
<tr>
<td>Astroparticle Physics II: Cosmic Rays</td>
<td>4022041</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Engel, Schmidt</td>
</tr>
<tr>
<td>Exercises to Astroparticle Physics II: Cosmic Rays</td>
<td>4022042</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Engel, Hahn</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.50 Course: Astroparticle Physics II - Gamma Rays and Neutrinos [T-PHYS-111343]

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4022131</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021 4022132</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022 4022131</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022 4022132</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023 4022131</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023 4022132</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Ralph Engel

Organisation: KIT Department of Physics

Part of: M-PHYS-105683 - Astroparticle Physics II - Gamma Rays and Neutrinos

Type
Oral examination

Credits
6

Grading scale
Grade to a third

Version
1

Legend: 🖥 Online, 🗣️ Blended (On-Site/Online), 🗣️ On-Site, ☑️ Cancelled

Prerequisites

none
5.51 Course: Astroparticle Physics II - Gamma Rays and Neutrinos (Minor) [T-PHYS-111344]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Ralph Engel

Organisation: KIT Department of Physics

Part of: M-PHYS-105684 - Astroparticle Physics II - Gamma Rays and Neutrinos (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>6</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>4022131</th>
<th>Astroteilchenphysik II - Gamma Rays and Neutrinos</th>
<th>2 SWS</th>
<th>Lecture</th>
<th>Engel, Unger</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4022132</td>
<td>Übungen zu Astroteilchenphysik II - Gamma Rays and Neutrinos</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Engel, Fitoussi</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022131</td>
<td>Astroparticle Physics II - High-energy gamma rays and neutrinos</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Engel, Roth</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022132</td>
<td>Exercises to Astroparticle Physics II - High-energy gamma rays and neutrinos</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Engel, Roth</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022131</td>
<td>Astroparticle Physics II - Gamma-Ray Astronomy and Neutrinos</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Engel, Veberic</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022132</td>
<td>Exercises to Astroparticle Physics II - Gamma-Ray Astronomy and Neutrinos</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Engel, Veberic</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☢ Cancelled

Prerequisites
none
5.52 Course: Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises [T-PHYS-111346]

Responsible: Prof. Dr. Guido Drexl\(\text{\textemdash}\)lin
Prof. Dr. Ralph Engel

Organisation: KIT Department of Physics

Part of: M-PHYS-105686 - Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>4022131</th>
<th>Astroteilchenphysik II - Gamma Rays and Neutrinos</th>
<th>2 SWS</th>
<th>Lecture (\text{\textemdash})</th>
<th>Engel, Unger</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4022132</td>
<td>Übungen zu Astroteilchenphysik II - Gamma Rays and Neutrinos</td>
<td>2 SWS</td>
<td>Practice (\text{\textemdash})</td>
<td>Engel, Fitoussi</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022131</td>
<td>Astroparticle Physics II - High-energy gamma rays and neutrinos</td>
<td>2 SWS</td>
<td>Lecture (\text{\textemdash})</td>
<td>Engel, Roth</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022132</td>
<td>Exercises to Astroparticle Physics II - High-energy gamma rays and neutrinos</td>
<td>2 SWS</td>
<td>Practice (\text{\textemdash})</td>
<td>Engel, Roth</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022131</td>
<td>Astroparticle Physics II - Gamma-Ray Astronomy and Neutrinos</td>
<td>2 SWS</td>
<td>Lecture (\text{\textemdash})</td>
<td>Engel, Veberic</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022132</td>
<td>Exercises to Astroparticle Physics II - Gamma-Ray Astronomy and Neutrinos</td>
<td>2 SWS</td>
<td>Practice (\text{\textemdash})</td>
<td>Engel, Veberic</td>
</tr>
</tbody>
</table>

Legend: \(\text{\textemdash}\) Online, \(\text{\textemdash}\) Blended (On-Site/Online), \(\text{\textemdash}\) On-Site, \(\times\) Cancelled

Prerequisites

none
5 COURSES

Course: Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor) [T-PHYS-111345]

5.53 Course: Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor) [T-PHYS-111345]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Ralph Engel

Organisation: KIT Department of Physics

Part of: M-PHYS-105685 - Astroparticle Physics II - Gamma Rays and Neutrinos, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4022131	Astroteilchenphysik II - Gamma Rays and Neutrinos	2 SWS	Lecture / 🖥	Engel, Unger
ST 2021	4022132	Übungen zu Astroteilchenphysik II - Gamma Rays and Neutrinos	2 SWS	Practice / 🖥	Engel, Fitoussi
ST 2022	4022131	Astroparticle Physics II - High-energy gamma rays and neutrinos	2 SWS	Lecture / 🗤	Engel, Roth
ST 2022	4022132	Exercises to Astroparticle Physics II - High-energy gamma rays and neutrinos	2 SWS	Practice / 🗤	Engel, Roth
ST 2023	4022131	Astroparticle Physics II - Gamma-Ray Astronomy and Neutrinos	2 SWS	Lecture / 🗤	Engel, Veberic
ST 2023	4022132	Exercises to Astroparticle Physics II - Gamma-Ray Astronomy and Neutrinos	2 SWS	Practice / 🗤	Engel, Veberic

Prerequisites

none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗤 On-Site, ✗ Cancelled
5.54 Course: Astroparticle Physics II - Particles and Stars, with ext. Exercises [T-PHYS-105110]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius
Organisation: KIT Department of Physics
Part of: M-PHYS-102527 - Astroparticle Physics II - Particles and Stars, with ext. Exercises

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 📞</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 📞</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 📞</td>
<td>Drexlin, Schlösser, Hiller</td>
</tr>
<tr>
<td>ST 2022 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 📞</td>
<td>Drexlin, Huber, Hiller</td>
</tr>
<tr>
<td>ST 2023 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 📞</td>
<td>Drexlin, Valerius, Lokhov, Huber</td>
</tr>
<tr>
<td>ST 2023 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 📞</td>
<td>Drexlin, Huber</td>
</tr>
</tbody>
</table>

Legend: 📞 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites
none
5.55 Course: Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor) [T-PHYS-106319]

Responsible:
- Prof. Dr. Guido Drexlin
- Prof. Dr. Kathrin Valerius

Organisation:
- KIT Department of Physics

Part of:
- M-PHYS-103186 - Astroparticle Physics II - Particles and Stars, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Drexlin</td>
</tr>
<tr>
<td>ST 2021 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Drexlin, Huber</td>
</tr>
<tr>
<td>ST 2022 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Drexlin, Schlösser, Hiller</td>
</tr>
<tr>
<td>ST 2022 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Drexlin, Huber, Hiller</td>
</tr>
<tr>
<td>ST 2023 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Drexlin, Valerius, Lokhov, Huber</td>
</tr>
<tr>
<td>ST 2023 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Drexlin, Huber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites
- None
Course: Astroparticle Physics II - Particles and Stars, without ext. Exercises [T-PHYS-102498]

Responsible:
- Prof. Dr. Guido Drexlin
- Prof. Dr. Kathrin Valerius

Organisation:
- KIT Department of Physics

Part of:
- M-PHYS-102081 - Astroparticle Physics II - Particles and Stars, without ext. Exercises

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023 4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023 4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🗣 Online, 🦂 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
5.57 Course: Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor) [T-PHYS-104383]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: M-PHYS-102086 - Astroparticle Physics II - Particles and Stars, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lecture/Practice</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4022111</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Drexlin</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4022112</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Drexlin, Huber</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022111</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Drexlin, Schlösser, Hiller</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022112</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Drexlin, Huber, Hiller</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022111</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Drexlin, Valerius, Lokhov, Huber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022112</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Drexlin, Huber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
5.58 Course: Atmospheric Aerosols [T-PHYS-111418]

Responsible: Dr. Ottmar Möhler

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Completed coursework</td>
<td>Credits</td>
<td>Grading scale</td>
<td>Recurrence</td>
<td>Version</td>
</tr>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4052041</td>
<td>2 SWS</td>
<td>Atmospheric Aerosols</td>
<td>Lecture / 🖼️</td>
<td>Möhler</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 4052042</td>
<td>1 SWS</td>
<td>Exercises to Atmospheric Aerosols</td>
<td>Practice / 🖼️</td>
<td>Möhler, Bogert</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 4052041</td>
<td>2 SWS</td>
<td>Atmospheric Aerosols</td>
<td>Lecture / 🗻️</td>
<td>Möhler</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 4052042</td>
<td>1 SWS</td>
<td>Exercises to Atmospheric Aerosols</td>
<td>Practice / 🗻️</td>
<td>Möhler, Böhmländer</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4052041</td>
<td>2 SWS</td>
<td>Atmospheric Aerosols</td>
<td>Lecture / 🗻️</td>
<td>Möhler</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4052042</td>
<td>1 SWS</td>
<td>Exercises to Atmospheric Aerosols</td>
<td>Practice / 🗻️</td>
<td>Möhler, Bogert</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖼️ Online, 🗻️ Blended (On-Site/Online), 🗻️ On-Site, ✗ Cancelled

Competence Certificate
The students participating in the lecture on Atmospheric Aerosols with Exercises are expected to regularly participate in the Exercises. To pass the course, each student has to submit a solution for at least 50% of all exercises, and to present at least one solution to the tutor and the other participants.

Prerequisites
None

Recommendation
None

Annotation
None
5.59 Course: Atmospheric Radiation [T-PHYS-111419]

Responsible: PD Dr. Michael Höpfner

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4052071</td>
<td>Atmospheric Radiation</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Höpfner, Järvinen</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052071</td>
<td>Atmospheric Radiation</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Höpfner, Johansson</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052071</td>
<td>Atmospheric Radiation</td>
<td>2 SWS</td>
<td>Lecture / 🧩</td>
<td>Höpfner, Johansson</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Short presentation at the end of the semester

Prerequisites

None

Recommendation

None

Annotation

None
5.60 Course: Basics Module - Self Assignment BAK [T-ZAK-112653]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
The monitoring in this module includes a course credit according to § 5 section 4 in the form of minutes of which two are to be handed in freely chosen topics of the lecture series "Introduction to Applied Studies on Culture and Society". Length: approx. 6,000 characters each (incl. spaces).

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

Annotation
The Basic Module consists of the lecture "Introduction to Supplementary Studies on Culture and Society", which is offered only in the winter semester. It is therefore recommended that students start their studies in the winter semester and complete them before module 2.
5.61 Course: Basics Module - Self Assignment BeNe [T-ZAK-112345]

Responsible: Christine Myglas

Organisation: Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

Type
- Completed coursework

Credits 3

Grading scale pass/fail

Version 1

Competence Certificate

The monitoring in this module includes a course credit according to § 5 section 4:

Introduction to Sustainable Development in the form of minutes of which two are to be handed in freely chosen topics of the lecture series "Introduction to Sustainable Development". Length: approx. 6,000 characters each (incl. spaces).

or

Sustainability Spring Days at KIT in the form of a reflection report on all components of the project days “Sustainability Spring Days at KIT”. Length approx. 12,000 characters (incl. spaces).

Prerequisites

None

Self service assignment of supplementary stdues

This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation

Annotation

Module Basics consists of the lecture "Introduction to Sustainable Development", which is only offered in the summer semester or alternatively of the project days "Sustainability Spring Days at KIT", which is only offered in the winter semester. It is recommended to complete the course before Elective Module an Specialisation Module.

In exceptional cases, Elective Module or Specialisation Module can also be completed simultaneously with Basics Module. However, the prior completion of the advanced modules Elective and Specialisation should be avoided.
5.62 Course: Basics of Nanotechnology I [T-PHYS-102529]

Responsible: apl. Prof. Dr. Gernot Goll
Organisation: KIT Department of Physics
Part of: M-PHYS-102097 - Basics of Nanotechnology I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Grundlagen der Nanotechnologie I</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Goll</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Grundlagen der Nanotechnologie I</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Goll</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Nanotechnology I</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Goll</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
none
5.63 Course: Basics of Nanotechnology I (Minor) [T-PHYS-102528]

Responsible: apl. Prof. Dr. Gernot Goll

Organisation: KIT Department of Physics

Part of: M-PHYS-102096 - Basics of Nanotechnology I (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Title</th>
<th>Type</th>
<th>SWS</th>
<th>Schedule</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Grundlagen der Nanotechnologie I</td>
<td>Lecture</td>
<td>2</td>
<td>Goll</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Grundlagen der Nanotechnologie I</td>
<td>Lecture</td>
<td>2</td>
<td>Goll</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Nanotechnology I</td>
<td>Lecture</td>
<td>2</td>
<td>Goll</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Prerequisites

none
5.64 Course: Basics of Nanotechnology II [T-PHYS-102531]

Responsible: apl. Prof. Dr. Gernot Goll
Organisation: KIT Department of Physics
Part of: M-PHYS-102100 - Basics of Nanotechnology II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Lecture Type</th>
<th>Location</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4021151 Grundlagen der Nanotechnologie II</td>
<td>Lecture / 🖥</td>
<td>Goll</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4021151 Grundlagen der Nanotechnologie II</td>
<td>Lecture / 📚</td>
<td>Goll</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4021151 Grundlagen der Nanotechnologie II</td>
<td>Lecture / 📚</td>
<td>Goll</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
T 5.65 Course: Basics of Nanotechnology II (Minor) [T-PHYS-102530]

Responsible: apl. Prof. Dr. Gernot Goll

Organisation: KIT Department of Physics

Part of: M-PHYS-102099 - Basics of Nanotechnology II (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4021151	Grundlagen der Nanotechnologie II	2 SWS	Lecture / 🖥	Goll
ST 2022	4021151	Grundlagen der Nanotechnologie II	2 SWS	Lecture / 🗣	Goll
ST 2023	4021151	Grundlagen der Nanotechnologie II	2 SWS	Lecture / 🗣	Goll

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.66 Course: Block Practical Course: ETP Data Science [T-PHYS-113159]

Responsible: Prof. Dr. Torben Ferber
Dr. rer. nat. Jan Kieseler
Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of: M-PHYS-106530 - Block Practical Course: ETP Data Science

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>
5.67 Course: Classical Theory of Gauge Fields [T-PHYS-111943]

Responsible: Prof. Dr. Ulrich Nierste
Dr. Robert Ziegler
Organisation: KIT Department of Physics
Part of: M-PHYS-105934 - Classical Theory of Gauge Fields

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4026191</td>
<td>Classical Theory of Gauge Fields</td>
<td>Ziegler, Nierste</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 📠 On-Site, ✗ Cancelled
5.68 Course: Climate Modeling & Dynamics with ICON [T-PHYS-111412]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>2</td>
<td>Lecture</td>
<td>4</td>
<td></td>
<td></td>
<td>Ginete Werner Pinto, Ludwig</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4052151</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercises to Climate Modeling & Dynamics with ICON</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td></td>
<td></td>
<td>Ginete Werner Pinto, Lemburg, Breil</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4052152</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052151</td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>2</td>
<td>Lecture</td>
<td>4</td>
<td></td>
<td></td>
<td>Ginete Werner Pinto, Ludwig</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052152</td>
<td>Exercises to Climate Modeling & Dynamics with ICON</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td></td>
<td></td>
<td>Ginete Werner Pinto, Ludwig</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052151</td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>2</td>
<td>Lecture</td>
<td>4</td>
<td></td>
<td></td>
<td>Ginete Werner Pinto, Ludwig</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052152</td>
<td>Exercises to Climate Modeling & Dynamics with ICON</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td></td>
<td></td>
<td>Ginete Werner Pinto, Lemburg, Braun</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate
Successful participation in the excercises.

Prerequisites
None

Recommendation
None

Annotation
None
5.69 Course: Cloud Physics [T-PHYS-111416]

Responsible: Prof. Dr. Corinna Hoose

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4052081</td>
<td>Cloud Physics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Hoose</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4052082</td>
<td>Exercises to Cloud Physics</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Hoose, Jung</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052081</td>
<td>Cloud Physics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Hoose, Le Roy de Bonnevile, Frey, Oertel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052082</td>
<td>Exercises to Cloud Physics</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Wallentin, Hoose</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052081</td>
<td>Cloud Physics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Hoose, Oertel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052082</td>
<td>Exercises to Cloud Physics</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Hoose, Wallentin</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
At least 50% of the points of the exercises have to be reached. At least once, a solution to one of the exercises has to be presented in class.

Prerequisites
None

Recommendation
None

Annotation
None
Course: Computational Condensed Matter Physics [T-PHYS-109895]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics
Part of: M-PHYS-104862 - Computational Condensed Matter Physics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4023161 Computational Condensed Matter Physics</td>
<td>4 SWS</td>
<td>Lecture / 📚</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021 4023162 Übungen zu Computational Condensed Matter Physics</td>
<td>2 SWS</td>
<td>Practice / 📚</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022 4023161 Computational Condensed Matter Physics</td>
<td>4 SWS</td>
<td>Lecture / 📚</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022 4023162 Übungen zu Computational Condensed Matter Physics</td>
<td>2 SWS</td>
<td>Practice / 📚</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023 4023161 Computational Condensed Matter Physics</td>
<td>4 SWS</td>
<td>Lecture / 📚</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
<tr>
<td>ST 2023 4023162 Übungen zu Computational Condensed Matter Physics</td>
<td>2 SWS</td>
<td>Practice / 📚</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.71 Course: Computational Condensed Matter Physics (Minor) [T-PHYS-109894]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics
Part of: M-PHYS-104863 - Computational Condensed Matter Physics (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Completed coursework</td>
<td>12</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>4 SWS</td>
<td>Wenzel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>2 SWS</td>
<td>Wenzel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>4 SWS</td>
<td>Wenzel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>2 SWS</td>
<td>Wenzel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lecture</td>
<td>4 SWS</td>
<td>Wenzel</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>2 SWS</td>
<td>Wenzel</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.72 Course: Computational Methods for Particle Physics and Cosmology [T-PHYS-112378]

Responsible: TT-Prof. Dr. Felix Kahlhöfer
Organisation: KIT Department of Physics
Part of: M-PHYS-106117 - Computational Methods for Particle Physics and Cosmology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4025061</td>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td></td>
<td>Kahlhöfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4025062</td>
<td>Exercises to Computational methods for particle physics and cosmology</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td></td>
<td>Kahlhöfer, Gonzalo, Morandini</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.73 Course: Computational Methods for Particle Physics and Cosmology (Minor) [T-PHYS-112379]

Responsible: TT-Prof. Dr. Felix Kahlhöfer
Organisation: KIT Department of Physics
Part of: M-PHYS-106118 - Computational Methods for Particle Physics and Cosmology (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4025061</td>
<td>Computational Methods for Particle Physics and Cosmology</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Irregular</td>
<td>Kahlhöfer</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercises to Computational methods for particle physics and cosmology</td>
<td>Practice / 🗣</td>
<td>1 SWS</td>
<td>Irregular</td>
<td>Kahlhöfer, Gonzalo, Morandini</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.74 Course: Computational Photonics, with ext. Exercises [T-PHYS-103633]

Responsible: Prof. Dr. Carsten Rockstuhl
Organisation: KIT Department of Physics
Part of: M-PHYS-101933 - Computational Photonics, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 4023021 | Computational Photonics | 2 SWS | Lecture / 🗣 | Rockstuhl, Nyman |
| ST 2023 | 4023022 | Exercises to Computational Photonics | 1 SWS | Practice / 🗣 | Rockstuhl, Nyman |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
5.75 Course: Computational Photonics, with ext. Exercises (Minor) [T-PHYS-106132]

Responsible: Prof. Dr. Carsten Rockstuhl
Organisation: KIT Department of Physics
Part of: M-PHYS-103090 - Computational Photonics, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 4023021 | Computational Photonics | 2 SWS | Lecture / 🗣 | Rockstuhl, Nyman |
| ST 2023 | 4023022 | Exercises to Computational Photonics | 1 SWS | Practice / 🗣 | Rockstuhl, Nyman |

Legend: 🖥 Online, 🢅 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.76 Course: Computational Photonics, without ext. Exercises [T-PHYS-106131]

Responsible: Prof. Dr. Carsten Rockstuhl
Organisation: KIT Department of Physics
Part of: M-PHYS-103089 - Computational Photonics, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2023 | 4023021 | Computational Photonics | 2 SWS | Lecture / 🗣 | Rockstuhl, Nyman |
| ST 2023 | 4023022 | Exercises to Computational Photonics | 1 SWS | Practice / 🗣 | Rockstuhl, Nyman |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.77 Course: Computational Photonics, without ext. Exercises (Minor) [T-PHYS-106326]

Responsible: Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of: M-PHYS-103193 - Computational Photonics, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 4023021</td>
<td>2 SWS</td>
<td>Computational Photonics</td>
<td>Lecture</td>
<td>Rockstuhl, Nyman</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4023022</td>
<td>1 SWS</td>
<td>Exercises to Computational Photonics</td>
<td>Practice</td>
<td>Rockstuhl, Nyman</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗓 On-Site, ✗ Cancelled

Prerequisites

none
5.78 Course: Condensed Matter Theory I, Fundamentals [T-PHYS-102559]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of: M-PHYS-102054 - Condensed Matter Theory I, Fundamentals

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4024011</td>
<td>4</td>
<td>Lecture / 🗣️</td>
<td>Gornyi</td>
</tr>
<tr>
<td>WT 21/22 4024012</td>
<td>2</td>
<td>Practice / 🖥️</td>
<td>Gornyi, Narozhnnyy, Snizhko</td>
</tr>
<tr>
<td>WT 22/23 4024011</td>
<td>4</td>
<td>Lecture / 🗣️</td>
<td>Shnirman</td>
</tr>
<tr>
<td>WT 22/23 4024012</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Shnirman, Shapiro, Perrin</td>
</tr>
<tr>
<td>WT 23/24 4024011</td>
<td>4</td>
<td>Lecture / 🗣️</td>
<td>Garst</td>
</tr>
<tr>
<td>WT 23/24 4024012</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Garst, Masell</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🗣️ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
none
5.79 Course: Condensed Matter Theory I, Fundamentals (Minor) [T-PHYS-102557]

Responsible:
- Prof. Dr. Markus Garst
- Prof. Dr. Alexander Mirlin
- Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of: M-PHYS-102052 - Condensed Matter Theory I, Fundamentals (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td></td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week</th>
<th>Lecture</th>
<th>Type</th>
<th>SWS</th>
<th>Type/Online</th>
<th>Tutor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4024011</td>
<td>Theorie der Kondensierten Materie I</td>
<td>4</td>
<td>Lecture</td>
<td>Gornyi</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4024012</td>
<td>Übungen zu Theorie der Kondensierten Materie I</td>
<td>2</td>
<td>Practice</td>
<td>Gornyi, Narozhnyy, Snizhko</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4024011</td>
<td>Theorie der Kondensierten Materie I</td>
<td>4</td>
<td>Lecture</td>
<td>Shnirman</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4024012</td>
<td>Übungen zu Theorie der Kondensierten Materie I</td>
<td>2</td>
<td>Practice</td>
<td>Shnirman, Shapiro, Perrin</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4024011</td>
<td>Condensed Matter Theory I</td>
<td>4</td>
<td>Lecture</td>
<td>Garst</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4024012</td>
<td>Exercises to Condensed Matter Theory I</td>
<td>2</td>
<td>Practice</td>
<td>Garst, Masell</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- ❌ Cancelled

Prerequisites

none
5.80 Course: Condensed Matter Theory I, Fundamentals and Advanced Topics [T-PHYS-102558]

Responsible:
Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
Prof. Dr. Alexander Shnirman

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102053 - Condensed Matter Theory I, Fundamentals and Advanced Topics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>12</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4024011</td>
<td>Theorie der Kondensierten Materie I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gornyi</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4024012</td>
<td>Übungen zu Theorie der Kondensierten Materie I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gornyi, Narozhnyy, Snizhko</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4024011</td>
<td>Theorie der Kondensierten Materie I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shnirman</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4024012</td>
<td>Übungen zu Theorie der Kondensierten Materie I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Shnirman, Shapiro, Perrin</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4024011</td>
<td>Condensed Matter Theory I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Garst</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4024012</td>
<td>Exercises to Condensed Matter Theory I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Garst, Masell</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Prerequisites
none
5.81 Course: Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor)
[T-PHYS-102556]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of: M-PHYS-102051 - Condensed Matter Theory I, Fundamentals and Advanced Topics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>12</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4024011</td>
<td>Lecture /️</td>
<td>4</td>
<td>SWS</td>
<td>Lecture /️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gornyj</td>
<td></td>
<td>Gornyj</td>
</tr>
<tr>
<td></td>
<td>4024012</td>
<td>Practice /️</td>
<td>2</td>
<td>SWS</td>
<td>Practice /️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Gornyj</td>
<td>Narozhnyy, Snizhko</td>
<td></td>
</tr>
<tr>
<td></td>
<td>402411</td>
<td>Lecture /️</td>
<td>4</td>
<td>SWS</td>
<td>Lecture /️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shnirman</td>
<td></td>
<td>Shnirman</td>
</tr>
<tr>
<td></td>
<td>4024012</td>
<td>Practice /️</td>
<td>2</td>
<td>SWS</td>
<td>Practice /️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Shnirman, Shapiro, Perrin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4024011</td>
<td>Lecture /️</td>
<td>4</td>
<td>SWS</td>
<td>Lecture /️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Garst</td>
<td></td>
<td>Garst</td>
</tr>
<tr>
<td></td>
<td>4024012</td>
<td>Practice /️</td>
<td>2</td>
<td>SWS</td>
<td>Practice /️</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Garst, Masell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: ️ Online, ️️ Blended (On-Site/Online), ️ On-Site, ️️️ Cancelled

Prerequisites

none
5.82 Course: Condensed Matter Theory II: Many-Body Systems, Fundamentals [T-PHYS-104591]

Responsible:
- Prof. Dr. Markus Garst
- Prof. Dr. Alexander Mirlin
- PD Dr. Boris Narozhnyy
- Prof. Dr. Jörg Schmalian

Organisation:
- KIT Department of Mathematics
- KIT Department of Physics

Part of:
- M-PHYS-102313 - Condensed Matter Theory II: Many-Body Theory, Fundamentals

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4024111</td>
<td>4 SWS</td>
<td>Condensed Matter Theory II: Many-Body Theory</td>
<td>Lecture / 📀</td>
<td>Garst</td>
</tr>
<tr>
<td>ST 2021 4024112</td>
<td>2 SWS</td>
<td>Exercises to Condensed Matter Theory II</td>
<td>Practice / 📀</td>
<td>Garst, Azhar</td>
</tr>
<tr>
<td>ST 2022 4024111</td>
<td>4 SWS</td>
<td>Condensed Matter Theory II: Many-Body Theory</td>
<td>Lecture / 📀</td>
<td>Garst</td>
</tr>
<tr>
<td>ST 2022 4024112</td>
<td>2 SWS</td>
<td>Exercises to Condensed Matter Theory II</td>
<td>Practice / 📀</td>
<td>Garst, Azhar</td>
</tr>
<tr>
<td>ST 2023 4024111</td>
<td>4 SWS</td>
<td>Condensed Matter Theory II: Many-Body Theory</td>
<td>Lecture / 📀</td>
<td>Mirlin, Gornyi</td>
</tr>
<tr>
<td>ST 2023 4024112</td>
<td>2 SWS</td>
<td>Exercises to Condensed Matter Theory II</td>
<td>Practice / 📀</td>
<td>Mirlin, Gornyi, Pöpperl, Ojajärvi</td>
</tr>
</tbody>
</table>

Legend: 📀 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
Course: Condensed Matter Theory II: Many-Body Systems, Fundamentals (Minor) [T-PHYS-104592]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
PD Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics
Part of: M-PHYS-102314 - Condensed Matter Theory II: Many-Body Theory, Fundamentals (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4024111	Condensed Matter Theory II: Many-Body Theory	4 SWS	Lecture / 🖥️	Garst
ST 2021	4024112	Exercises to Condensed Matter Theory II	2 SWS	Practice / 🖥️	Garst, Azhar
ST 2022	4024111	Condensed Matter Theory II: Many-Body Theory	4 SWS	Lecture / 🗣️	Garst
ST 2022	4024112	Exercises to Condensed Matter Theory II	2 SWS	Practice / 🗣️	Garst, Azhar
ST 2023	4024111	Condensed Matter Theory II: Many-Body Theory	4 SWS	Lecture / 🗣️	Mirlin, Gornyi
ST 2023	4024112	Exercises to Condensed Matter Theory II	2 SWS	Practice / 🗣️	Mirlin, Gornyi, Pöpperl, Ojajärvi

Legend: 🖥️ Online, 🏡 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
Course: Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics [T-PHYS-102560]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
PD Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: M-PHYS-102308 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4024111</td>
<td>4 SWS</td>
<td>Lecture / 🖥</td>
<td>Garst</td>
<td></td>
</tr>
<tr>
<td>ST 2021 4024112</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Garst, Azhar</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4024111</td>
<td>4 SWS</td>
<td>Lecture / 🖥</td>
<td>Garst</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4024112</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Garst, Azhar</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4024111</td>
<td>4 SWS</td>
<td>Lecture / 🖥</td>
<td>Mirlin, Gornyi</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4024112</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Mirlin, Gornyi, Pöpperl, Ojajärvi</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 💻 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.85 Course: Condensed Matter Theory II: Many-Body Systems, Fundamentals and Advanced Topics (Minor) [T-PHYS-102562]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
PD Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: M-PHYS-102312 - Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4024111</td>
<td>Condensed Matter Theory II: Many-Body Theory</td>
<td>4 SWS</td>
<td>Lecture / 📰</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4024112</td>
<td>Exercises to Condensed Matter Theory II</td>
<td>2 SWS</td>
<td>Practice / 📰</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4024111</td>
<td>Condensed Matter Theory II: Many-Body Theory</td>
<td>4 SWS</td>
<td>Lecture / 📰</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4024112</td>
<td>Exercises to Condensed Matter Theory II</td>
<td>2 SWS</td>
<td>Practice / 📰</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4024111</td>
<td>Condensed Matter Theory II: Many-Body Theory</td>
<td>4 SWS</td>
<td>Lecture / 📰</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4024112</td>
<td>Exercises to Condensed Matter Theory II</td>
<td>2 SWS</td>
<td>Practice / 📰</td>
</tr>
</tbody>
</table>

Legend: 📰 Online, ◼ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.86 Course: Condensed Matter Theory II: Many-Body Systems, selected topics [T-PHYS-106676]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin
PD Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Organisation: KIT Department of Physics

Part of: M-PHYS-103331 - Condensed Matter Theory II: Many-Body Theory, selected topics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4024111 condensed Matter Theory II: Many-Body Theory</td>
<td>Lecture / 🖥️</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Garst</td>
</tr>
<tr>
<td>ST 2021 4024112 Exercises to Condensed Matter Theory II</td>
<td>Practice / 🖥️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Garst, Azhar</td>
</tr>
<tr>
<td>ST 2022 4024111 Condensed Matter Theory II: Many-Body Theory</td>
<td>Lecture / 🗤️</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Garst</td>
</tr>
<tr>
<td>ST 2022 4024112 Exercises to Condensed Matter Theory II</td>
<td>Practice / 🗤️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Garst, Azhar</td>
</tr>
<tr>
<td>ST 2023 4024111 Condensed Matter Theory II: Many-Body Theory</td>
<td>Lecture / 🗤️</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Mirlin, Gornyi</td>
</tr>
<tr>
<td>ST 2023 4024112 Exercises to Condensed Matter Theory II</td>
<td>Practice / 🗤️</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Mirlin, Gornyi, Pöpperl, Ojajärvi</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🍰️ Blended (On-Site/Online), 🗤️ On-Site, ❌ Cancelled
5.87 Course: Detectors for Particle and Astroparticle Physics, with ext. Exercises [T-PHYS-102378]

Responsible:
PD Dr. Frank Hartmann
Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102121 - Detectors for Particle and Astroparticle Physics, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Lecture</td>
<td>Hartmann, NN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Practice</td>
<td>Hartmann, NN</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Lecture</td>
<td>Hartmann, Klute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Practice</td>
<td>Hartmann, Klute</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022071</td>
<td>Detectors for Particle and Astroparticle Physics</td>
<td>2</td>
<td>Lecture</td>
<td>Hartmann, Müller</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022072</td>
<td>Exercises to Detectors for Particle and Astroparticle Physics</td>
<td>2</td>
<td>Practice</td>
<td>Hartmann, Müller</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ❌ Cancelled

Prerequisites

none
5.88 Course: Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor) [T-PHYS-102431]

Responsible: PD Dr. Frank Hartmann
Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of: M-PHYS-102122 - Detectors for Particle and Astroparticle Physics, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Hartmann, NN</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Hartmann, NN</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Hartmann, Klute</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Hartmann, Klute</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022071</td>
<td>Detectors for Particle and Astroparticle Physics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Hartmann, Müller</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022072</td>
<td>Exercises to Detectors for Particle and Astroparticle Physics</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Hartmann, Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
Course: Detectors for Particle and Astroparticle Physics, without ext. Exercises [T-PHYS-104453]

Responsible:
- PD Dr. Frank Hartmann
- Prof. Dr. Ulrich Husemann
- Prof. Dr. Markus Klute

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102119 - Detectors for Particle and Astroparticle Physics, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Time</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Speaker</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Lecture</td>
<td>Hartmann, NN</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Practice</td>
<td>Hartmann, NN</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Lecture /公布</td>
<td>Hartmann, Klute</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Practice /公布</td>
<td>Hartmann, Klute</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022071</td>
<td>Detectors for Particle and Astroparticle Physics</td>
<td>2</td>
<td>Lecture /公布</td>
<td>Hartmann, Müller</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022072</td>
<td>Exercises to Detectors for Particle and Astroparticle Physics</td>
<td>2</td>
<td>Practice /公布</td>
<td>Hartmann, Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.90 Course: Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor) [T-PHYS-104454]

Responsible: PD Dr. Frank Hartmann
Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of: M-PHYS-102120 - Detectors for Particle and Astroparticle Physics, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Course</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022071 Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Hartmann, NN</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022072 Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Hartmann, NN</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022071 Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Hartmann, Klute</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022072 Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>Practice / 🗣️</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Hartmann, Klute</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022071 Detectors for Particle and Astroparticle Physics</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Hartmann, Müller</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022072 Exercises to Detectors for Particle and Astroparticle Physics</td>
<td>Practice / 🗣️</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Hartmann, Müller</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.91 Course: Elective Module - Subject, Body, Individual: the Other Side of Sustainability - Self Assignment BeNe [T-ZAK-112349]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary stdues
This course can be used for self service assignment of grade acquired from the following study providers:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
5.92 Course: Elective Module - Sustainability Assessment of Technology - Self Assignment BeNe [T-ZAK-112348]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
5.93 Course: Elective Module - Sustainability in Culture, Economy and Society - Self Assignment BeNe [T-ZAK-112350]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
5.94 Course: Elective Module - Sustainable Cities and Neighbourhoods - Self Assignment BeNe [T-ZAK-112347]

Organisation: University

Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Examination of another kind according to § 7 section 7 in the form of a presentation in the selected course.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
The content of the Basics Module is helpful.
5.95 Course: Electron Microscopy I, with Exercises [T-PHYS-105965]

Responsible: TT-Prof. Dr. Yolita Eggeler
Organisation: KIT Department of Physics
Part of: M-PHYS-102989 - Electron Microscopy I, with Exercises

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
<tr>
<td>4027011</td>
<td>Electron Microscopy I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Practice</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4027012</td>
<td>Exercises to Electron Microscopy I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4027011</td>
<td>Electron Microscopy I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Practice / 🗣️</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4027012</td>
<td>Exercises to Electron Microscopy I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Lecture / 🗣️</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4027011</td>
<td>Electron Microscopy I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Practice / 🗣️</td>
<td>2 SWS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4027012</td>
<td>Exercises to Electron Microscopy I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ☑ Cancelled

Prerequisites
none
5.96 Course: Electron Microscopy I, with Exercises (Minor) [T-PHYS-105968]

Responsible: TT-Prof. Dr. Yolita Eggeler
Organisation: KIT Department of Physics
Part of: M-PHYS-102991 - Electron Microscopy I, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4027011</td>
<td>Electron Microscopy I</td>
<td>2 SWS</td>
<td>Lecture</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4027012</td>
<td>Exercises to Electron Microscopy I</td>
<td>2 SWS</td>
<td>Practice</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4027011</td>
<td>Electron Microscopy I</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4027012</td>
<td>Exercises to Electron Microscopy I</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4027011</td>
<td>Electron Microscopy I</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4027012</td>
<td>Exercises to Electron Microscopy I</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ⏺️ Cancelled

Prerequisites:
none
5.97 Course: Electron Microscopy I, without Exercises [T-PHYS-105967]

Responsible: TT-Prof. Dr. Yolita Eggeler
Organisation: KIT Department of Physics
Part of: M-PHYS-102990 - Electron Microscopy I, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4027011</td>
<td>Electron Microscopy I</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Online, Blended (On-Site/Online), On-Site,</td>
</tr>
<tr>
<td>WT 22/23 4027011</td>
<td>Electron Microscopy I</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4027011</td>
<td>Electron Microscopy I</td>
<td>2 SWS</td>
<td>Lecture / On-Site</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
Course: Electron Microscopy II, with Exercises [T-PHYS-102349]

Responsible: TT-Prof. Dr. Yolita Eggeler
Organisation: KIT Department of Physics
Part of: M-PHYS-102227 - Electron Microscopy II, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Mode</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4027021</td>
<td>Elektronenmikroskopie II</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>Eggeler</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4027022</td>
<td>Übungen zu Elektronenmikroskopie II</td>
<td>2</td>
<td>Practice / 🖥</td>
<td>Eggeler</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4027021</td>
<td>Elektronenmikroskopie II</td>
<td>2</td>
<td>Lecture / 📂</td>
<td>Eggeler</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4027022</td>
<td>Übungen zu Elektronenmikroskopie II</td>
<td>2</td>
<td>Practice / 📂</td>
<td>Eggeler</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4027021</td>
<td>Elektronenmikroskopie II</td>
<td>2</td>
<td>Lecture / 🗤</td>
<td>Eggeler</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4027022</td>
<td>Übungen zu Elektronenmikroskopie II</td>
<td>2</td>
<td>Practice / 🗤</td>
<td>Eggeler</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.99 Course: Electron Microscopy II, with Exercises (Minor) [T-PHYS-106306]

Responsible: TT-Prof. Dr. Yolita Eggeler
Organisation: KIT Department of Physics
Part of: M-PHYS-103172 - Electron Microscopy II, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4027021</td>
<td>Elektronenmikroskopie II</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Eggeler</td>
<td></td>
</tr>
<tr>
<td>ST 2021 4027022</td>
<td>Übungen zu Elektronenmikroskopie II</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Eggeler</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4027021</td>
<td>Elektronenmikroskopie II</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Eggeler</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4027022</td>
<td>Übungen zu Elektronenmikroskopie II</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Eggeler</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4027021</td>
<td>Elektronenmikroskopie II</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Eggeler</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4027022</td>
<td>Übungen zu Elektronenmikroskopie II</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Eggeler</td>
<td></td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Prerequisites

none
Course: Electron Microscopy II, without Exercises [T-PHYS-105817]

Responsible: TT-Prof. Dr. Yolita Eggeler

Organisation: KIT Department of Physics

Part of: M-PHYS-102844 - Electron Microscopy II, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4027021</td>
<td>2 SWS</td>
<td>Elektronenmikroskopie II</td>
<td>Lecture / 🕵️‍♀️</td>
<td>Eggeler</td>
</tr>
<tr>
<td>ST 2022 4027021</td>
<td>2 SWS</td>
<td>Elektronenmikroskopie II</td>
<td>Lecture / 🕵️‍♀️</td>
<td>Eggeler</td>
</tr>
<tr>
<td>ST 2023 4027021</td>
<td>2 SWS</td>
<td>Elektronenmikroskopie II</td>
<td>Lecture / 🕵️‍♀️</td>
<td>Eggeler</td>
</tr>
</tbody>
</table>

Legend: 🕵️‍♀️ Online, 🕵️ Blended (On-Site/Online), 🕵️‍♀️ On-Site, ✗ Cancelled

Prerequisites

none
5.101 Course: Electronic Properties of Solids I, with Exercises [T-PHYS-102577]

Responsible:
- Prof. Dr. Matthieu Le Tacon
- Prof. Dr. Wolfgang Wernsdorfer
- Prof. Dr. Wulf Wulfhekel

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102089 - Electronic Properties of Solids I, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021011</td>
<td>Electronic Properties of Solids I</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Le Tacon, Willke</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021012</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern I</td>
<td>1</td>
<td>Practice</td>
<td>Le Tacon, Willke</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4021011</td>
<td>Electronic Properties of Solids I</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Le Tacon, Willke</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4021012</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern I</td>
<td>1</td>
<td>Practice</td>
<td>Le Tacon, Willke</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4021011</td>
<td>Electronic Properties of Solids I</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Le Tacon, Willke</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4021012</td>
<td>Exercises to Electronic Properties of Solids I</td>
<td>1</td>
<td>Practice</td>
<td>Le Tacon, Willke</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- ✗ Cancelled

Prerequisites

none
5.102 Course: Electronic Properties of Solids I, with Exercises (Minor) [T-PHYS-102087]

Responsible: Prof. Dr. Matthieu Le Tacon
Prof. Dr. Wolfgang Wernsdorfer
Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of: M-PHYS-102087 - Electronic Properties of Solids I, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>10</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Week No.</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>负责任</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021011</td>
<td>Lecture / 🗣️</td>
<td>4 SWS</td>
<td>Le Tacon, Willke</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021012</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Le Tacon, Willke</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4021011</td>
<td>Lecture / 🗣️</td>
<td>4 SWS</td>
<td>Le Tacon, Willke</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4021012</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Le Tacon, Willke</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4021011</td>
<td>Lecture / 🗣️</td>
<td>4 SWS</td>
<td>Le Tacon, Willke</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4021012</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Le Tacon, Willke</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
Course: Electronic Properties of Solids I, without Exercises [T-PHYS-102578]

Responsible: Prof. Dr. Matthieu Le Tacon
Prof. Dr. Wolfgang Wernsdorfer
Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of: M-PHYS-102090 - Electronic Properties of Solids I, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Weekly Study Hours</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021011</td>
<td>Electronic Properties of Solids I</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Le Tacon, Willke</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4021011</td>
<td>Electronic Properties of Solids I</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Le Tacon, Willke</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4021011</td>
<td>Electronic Properties of Solids I</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Le Tacon, Willke</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏫 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled

Prerequisites

none
5.104 Course: Electronic Properties of Solids II, with Exercises [T-PHYS-104422]

Responsible: Prof. Dr. Matthieu Le Tacon
Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: M-PHYS-102108 - Electronic Properties of Solids II, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>ECTS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>Le Tacon, Weber</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4021112</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern II</td>
<td>2 SWS</td>
<td>Practice</td>
<td>2</td>
<td></td>
<td>Le Tacon, Weber</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>Ustinov</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021112</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern II</td>
<td>2 SWS</td>
<td>Practice</td>
<td>2</td>
<td></td>
<td>Ustinov, Fischer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>2</td>
<td></td>
<td>Ustinov</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021112</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern II</td>
<td>2 SWS</td>
<td>Practice</td>
<td>2</td>
<td></td>
<td>Ustinov, Fischer</td>
</tr>
</tbody>
</table>

Legend: 🚥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☓ Cancelled

Prerequisites

none
5.105 Course: Electronic Properties of Solids II, with Exercises (Minor) [T-PHYS-104420]

Responsible: Prof. Dr. Matthieu Le Tacon
Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: M-PHYS-102106 - Electronic Properties of Solids II, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4021111	Elektronische Eigenschaften von Festkörpern II	2 SWS	Lecture / 🖥	Le Tacon, Weber
ST 2021	4021112	Übungen zu Elektronische Eigenschaften von Festkörpern II	2 SWS	Practice / 🖥	Le Tacon, Weber
ST 2022	4021111	Elektronische Eigenschaften von Festkörpern II	2 SWS	Lecture / 🗣	Ustinov
ST 2022	4021112	Übungen zu Elektronische Eigenschaften von Festkörpern II	2 SWS	Practice / 🗣	Ustinov, Fischer
ST 2023	4021111	Elektronische Eigenschaften von Festkörpern II	2 SWS	Lecture / 🗣	Ustinov
ST 2023	4021112	Übungen zu Elektronische Eigenschaften von Festkörpern II	2 SWS	Practice / 🗣	Ustinov, Fischer

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.106 Course: Electronic Properties of Solids II, without Exercises [T-PHYS-104423]

Responsible: Prof. Dr. Matthieu Le Tacon
Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: M-PHYS-102109 - Electronic Properties of Solids II, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Event Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>2</td>
<td>Lecture</td>
<td>Le Tacon, Weber</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>2</td>
<td>Lecture</td>
<td>Ustinov</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>2</td>
<td>Lecture</td>
<td>Ustinov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.107 Course: Electronics for Physicists [T-PHYS-104479]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics
Part of: M-PHYS-102184 - Electronics for Physicists

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022061</td>
<td>Elektronik für Physiker</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Weber</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Analogelektronik)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022066</td>
<td>Elektronik für Physiker</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Weber, Feldbusch</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Digitalelektronik)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022061</td>
<td>Elektronik für Physiker</td>
<td>2 SWS</td>
<td>Lecture /配音</td>
<td>Simon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Analogelektronik)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022066</td>
<td>Elektronik für Physiker</td>
<td>2 SWS</td>
<td>Lecture /配音</td>
<td>Feldbusch, Simon</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(Digitalelektronik)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022061</td>
<td>Electronics for Physicists (Analog Electronics)</td>
<td>2 SWS</td>
<td>Lecture /配音</td>
<td>Simon, Feldbusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022066</td>
<td>Electronics for Physicists (Digital Electronics)</td>
<td>2 SWS</td>
<td>Lecture /配音</td>
<td>Simon, Feldbusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022067</td>
<td>Practical Exercises to Electronics for Physicists</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.108 Course: Electronics for Physicists (Minor) [T-PHYS-104480]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics

Part of: M-PHYS-102185 - Electronics for Physicists (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>10</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Course Description</th>
<th>Type</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022061</td>
<td>Elektronik für Physiker (Analogelektronik)</td>
<td>Lecture</td>
<td>2</td>
<td>Weber</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022066</td>
<td>Elektronik für Physiker (Digitalelektronik)</td>
<td>Lecture</td>
<td>2</td>
<td>Weber, Feldbusch</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>Practical course</td>
<td>4</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022061</td>
<td>Elektronik für Physiker (Analogelektronik)</td>
<td>Lecture</td>
<td>2</td>
<td>Simon</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022066</td>
<td>Elektronik für Physiker (Digitalelektronik)</td>
<td>Lecture</td>
<td>2</td>
<td>Feldbusch, Simon</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>Practical course</td>
<td>4</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022061</td>
<td>Electronics for Physicists (Analog Electronics)</td>
<td>Lecture</td>
<td>2</td>
<td>Simon, Feldbusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022066</td>
<td>Electronics for Physicists (Digital Electronics)</td>
<td>Lecture</td>
<td>2</td>
<td>Simon, Feldbusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022067</td>
<td>Practical Exercises to Electronics for Physicists</td>
<td>Practical course</td>
<td>4</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Electronics for Physicists: Analog Electronics [T-PHYS-104475]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics

Part of: M-PHYS-102179 - Electronics for Physicists: Analog Electronics

Events

<table>
<thead>
<tr>
<th>Event Year</th>
<th>Code</th>
<th>Course Title</th>
<th>Weekly Schedule</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022061</td>
<td>Elektronik für Physiker (Analogelektronik)</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Weber</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022061</td>
<td>Elektronik für Physiker (Analogelektronik)</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Simon</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022061</td>
<td>Electronics for Physicists (Analog Electronics)</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Simon, Feldbusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022067</td>
<td>Practical Exercises to Electronics for Physicists</td>
<td>4 SWS</td>
<td>Practical course</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.110 Course: Electronics for Physicists: Analog Electronics (Minor) [T-PHYS-104476]

Responsible:
- PD Dr. Klaus Rabbertz
- Prof. Dr. Frank Simon

Organisation:
- KIT Department of Physics

Part of:
- M-PHYS-102180 - Electronics for Physicists: Analog Electronics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>6</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>4022061</th>
<th>Elektronik für Physiker (Analogelektronik)</th>
<th>2 SWS</th>
<th>Lecture</th>
<th>Weber</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4 SWS</td>
<td>Practical course /</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022061</td>
<td>Elektronik für Physiker (Analogelektronik)</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Simon</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4 SWS</td>
<td>Practical course /</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022061</td>
<td>Electronics for Physicists (Analog Electronics)</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Simon, Feldbusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022067</td>
<td>Practical Exercises to Electronics for Physicists</td>
<td>4 SWS</td>
<td>Practical course /</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
5.111 Course: Electronics for Physicists: Digital Electronics [T-PHYS-104477]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics

Part of: M-PHYS-102182 - Electronics for Physicists: Digital Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022066</td>
<td>Elektronik für Physiker (Digitalelektronik)</td>
<td>2</td>
<td>Lecture</td>
<td>Weber, Feldbusch</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4</td>
<td>Practical course / 🗣️</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022066</td>
<td>Elektronik für Physiker (Digitalelektronik)</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Feldbusch, Simon</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4</td>
<td>Practical course / 🗣️</td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022066</td>
<td>Electronics for Physicists (Digital Electronics)</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Simon, Feldbusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022067</td>
<td>Practical Exercises to Electronics for Physicists</td>
<td>4</td>
<td>Practical course / 🗣️</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
Course: Electronics for Physicists: Digital Electronics (Minor) [T-PHYS-104478]

Responsible: PD Dr. Klaus Rabbertz
Prof. Dr. Frank Simon

Organisation: KIT Department of Physics

Part of: M-PHYS-102183 - Electronics for Physicists: Digital Electronics (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Weber, Feldbusch</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Practical course</td>
<td>4 SWS</td>
<td></td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Feldbusch, Simon</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Practical course</td>
<td>4 SWS</td>
<td></td>
<td>Rabbertz</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Simon, Feldbusch</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Practical course</td>
<td>4 SWS</td>
<td></td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🤖 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.113 Course: Energetics [T-PHYS-111417]

Responsible: Prof. Dr. Andreas Fink

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course</th>
<th>Weeks</th>
<th>Credits</th>
<th>Grading</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4052131</td>
<td>Energetics</td>
<td>2</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Fink</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052131</td>
<td>Energetics</td>
<td>2</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Fink</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052131</td>
<td>Energetics</td>
<td>2</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Fink</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Active participation

Prerequisites
None

Recommendation
None

Annotation
None
5.114 Course: Energy Meteorology [T-PHYS-111428]

Responsible: apl. Prof. Dr. Stefan Emeis
Prof. Dr. Joaquim José Ginete Werner Pinto

Organisation: KIT Department of Physics

Part of:
M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4052191</td>
<td>Energy Meteorology</td>
<td>2</td>
<td>Lecture</td>
<td>Emeis, Schroedter-Homscheidt, Ginete Werner Pinto</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4052191</td>
<td>Energy Meteorology</td>
<td>2</td>
<td>Lecture</td>
<td>Emeis, Schroedter-Homscheidt, Ginete Werner Pinto</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4052191</td>
<td>Energy Meteorology</td>
<td>2</td>
<td>Lecture</td>
<td>Emeis, Schroedter-Homscheidt, Ginete Werner Pinto, Grams</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
The students work in small groups on a task chosen at the beginning of the course on the topics of wind, solar or electricity grids. At the end, each student presents his or her results in a short presentation (max. 5 slides) followed by a discussion.

Prerequisites
None

Recommendation
None

Annotation
None
5.115 Course: Exam on Selected Topics in Meteorology (Second Major) [T-PHYS-109380]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>3</td>
</tr>
</tbody>
</table>

Competence Certificate
Oral Exam

Prerequisites
Courses of at least 10 CP from the elective options of the module must be part of the oral examination.
5.116 Course: Experimental Biophysics II, with Seminar [T-PHYS-102532]

Responsible: Prof. Dr. Ulrich Nienhaus
Organisation: KIT Department of Physics
Part of: M-PHYS-102165 - Experimental Biophysics II, with Seminar

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>14</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Teacher</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4020121</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2021 4020122</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2021 4020124</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2021 4020125</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2022 4020121</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2022 4020122</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2022 4020124</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2022 4020125</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2023 4020121</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2023 4020122</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2023 4020124</td>
<td>2 SWS</td>
<td>Seminar</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2023 4020125</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Nienhaus</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.117 Course: Experimental Biophysics II, with Seminar (Minor) [T-PHYS-102533]

Responsible: Prof. Dr. Ulrich Nienhaus
Organisation: KIT Department of Physics
Part of: M-PHYS-102166 - Experimental Biophysics II, with Seminar (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4020121</td>
<td>Experimentelle Biophysik I la</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>1</td>
</tr>
<tr>
<td>ST 2021 4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2021 4020124</td>
<td>Seminar zu Experimentelle Biophysik II</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2021 4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2022 4020121</td>
<td>Experimentelle Biophysik I la</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2022 4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2022 4020124</td>
<td>Seminar zu Experimentelle Biophysik II</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2022 4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2023 4020121</td>
<td>Experimentelle Biophysik I la</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2023 4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2023 4020124</td>
<td>Seminar zu Experimentelle Biophysik II</td>
<td>2 SWS</td>
<td>Seminar / 🖥</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2023 4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Nienhaus</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗑 Cancelled

Prerequisites

none
5.118 Course: Experimental Biophysics II, without Seminar [T-PHYS-104471]

Responsible: Prof. Dr. Ulrich Nienhaus
Organisation: KIT Department of Physics
Part of: M-PHYS-102167 - Experimental Biophysics II, without Seminar

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>12</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4020121</td>
<td>Experimentelle Biophysik IIa</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>12</td>
<td>Nienhaus</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Practice / 📚</td>
<td></td>
<td>Nienhaus, Guigas</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2</td>
<td>Lecture / 📚</td>
<td></td>
<td>Nienhaus</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4020121</td>
<td>Experimentelle Biophysik IIa</td>
<td>2</td>
<td>Lecture / 📚</td>
<td></td>
<td>Nienhaus</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Practice / 📚</td>
<td></td>
<td>Nienhaus, Guigas</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2</td>
<td>Lecture / 📚</td>
<td></td>
<td>Nienhaus</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4020121</td>
<td>Experimentelle Biophysik IIa</td>
<td>2</td>
<td>Lecture / 📚</td>
<td></td>
<td>Nienhaus</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Practice / 📚</td>
<td></td>
<td>Nienhaus, Guigas</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2</td>
<td>Lecture / 📚</td>
<td></td>
<td>Nienhaus</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🛰 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
5.119 Course: Experimental Biophysics II, without Seminar (Minor) [T-PHYS-104472]

Responsible: Prof. Dr. Ulrich Nienhaus
Organisation: KIT Department of Physics
Part of: M-PHYS-102168 - Experimental Biophysics II, without Seminar (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>12</td>
<td>pass/fail</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4020121</td>
<td>Experimentelle Biophysik IIa</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Practice / 🖥️</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4020121</td>
<td>Experimentelle Biophysik IIa</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Practice / 🖥️</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4020121</td>
<td>Experimentelle Biophysik IIa</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Practice / 🖥️</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Nienhaus</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.120 Course: Field Theories of Condensed Matter: Conformal Field Theory [T-PHYS-109320]

Responsible: PD Dr. Igor Gornyi
PD Dr. Boris Narozhnyy

Organisation: KIT Department of Physics

Part of: M-PHYS-104548 - Field Theories of Condensed Matter: Conformal Field Theory

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4024151</td>
<td>Field Theories of Condensed Matter: Conformal Field Theory</td>
<td>3</td>
<td>Lecture / 🖥</td>
<td>Gornyi, Narozhnyy, Snizhko</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4024152</td>
<td>Exercises to Field Theories of Condensed Matter</td>
<td>1</td>
<td>Practice / 🖥</td>
<td>Gornyi, Narozhnyy, Snizhko</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.121 Course: Flavour Physics in the Standard Model and beyond [T-PHYS-110281]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible:
Dr. Monika Blanke
Prof. Dr. Ulrich Nierste

Organisation:
KIT Department of Physics

Part of:
M-PHYS-105064 - Flavour Physics in the Standard Model and beyond

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>4026181</th>
<th>Flavour physics in the Standard Model and beyond</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Blanke, Nierste</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.122 Course: Full-Waveform Inversion [T-PHYS-109272]

Responsible: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Organisation: KIT Department of Physics

Part of: M-PHYS-104522 - Full-Waveform Inversion (Ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4060181 Full-waveform inversion</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Bohlen, Hertweck, Houpt</td>
</tr>
<tr>
<td></td>
<td>4060182 Exercises on Full-waveform inversion</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Bohlen, NN</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4060181 Full-waveform inversion</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Bohlen, Gao</td>
</tr>
<tr>
<td></td>
<td>4060182 Exercises on Full-waveform inversion</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Bohlen, Gao</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060181 Full-waveform inversion</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Bohlen, Gao</td>
</tr>
<tr>
<td></td>
<td>4060182 Exercises on Full-waveform inversion</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Gao, Bohlen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.123 Course: General Relativity [T-PHYS-102395]

Responsible: Prof. Dr. Frans Klinkhamer

Organisation: KIT Department of Physics

Part of: M-PHYS-102319 - General Relativity

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4026131	General Relativity	3 SWS	Lecture / 🖥	Klinkhamer
ST 2021	4026132	Exercises to General Relativity	2 SWS	Practice / 🖥	Klinkhamer, Emelyanov
ST 2022	4026131	General Relativity	3 SWS	Lecture / 🛡️	Klinkhamer
ST 2022	4026132	Exercises to General Relativity	2 SWS	Practice / 🛡️	Klinkhamer, Emelyanov

Legend: 🖥 Online, 🛡️ Blended (On-Site/Online), 🗠️ On-Site, ✗ Cancelled

Prerequisites

none
5.124 Course: General Relativity (Minor) [T-PHYS-102446]

Responsible: Prof. Dr. Frans Klinkhamer
Organisation: KIT Department of Physics
Part of: M-PHYS-102320 - General Relativity (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>10</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Description</th>
<th>SWS</th>
<th>Type</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4026131</td>
<td>General Relativity</td>
<td>3</td>
<td>Lecture</td>
<td>Klinkhamer</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4026132</td>
<td>Exercises to General Relativity</td>
<td>2</td>
<td>Practice</td>
<td>Klinkhamer, Emelyanov</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4026131</td>
<td>General Relativity</td>
<td>3</td>
<td>Lecture</td>
<td>Klinkhamer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4026132</td>
<td>Exercises to General Relativity</td>
<td>2</td>
<td>Practice</td>
<td>Klinkhamer, Emelyanov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Prerequisites

none
5.125 Course: General Relativity II [T-PHYS-106678]

Responsible: Prof. Dr. Frans Klinkhamer

Organisation: KIT Department of Physics

Part of: M-PHYS-103333 - General Relativity II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>4026041</th>
<th>General Relativity II, and more</th>
<th>3 SWS</th>
<th>Lecture / 🗣</th>
<th>Klinkhamer, Emelyanov</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4026042</td>
<td>Exercises to General Relativity II, and more</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Klinkhamer, Emelyanov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚫ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.126 Course: General Relativity II (Minor) [T-PHYS-106679]

Responsible: Prof. Dr. Frans Klinkhamer

Organisation: KIT Department of Physics

Part of: M-PHYS-103334 - General Relativity II (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>10</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
<th>Hours</th>
<th>Contacts</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>General Relativity II, and more</td>
<td>3 SWS</td>
<td>Lecture / Online</td>
<td>Klinkhamer, Emelyanov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Exercises to General Relativity II, and more</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Klinkhamer, Emelyanov</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚡ Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled

Prerequisites

none
5.127 Course: Geological Hazards and Risk [T-PHYS-103525]

Responsible: Dr. Andreas Schäfer
Organisation: KIT Department of Physics
Part of: M-PHYS-101833 - Geological Hazards and Risk

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4060121</td>
<td>Geological Hazards and Risk</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Gottschämmer, Schäfer</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4060122</td>
<td>Exercises on Geological Hazards and Risk</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Gottschämmer, Schäfer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4060121</td>
<td>Geological Hazards and Risk</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Schäfer, Rietbrock</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4060122</td>
<td>Exercises on Geological Hazards and Risk</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Schäfer, Rietbrock</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060121</td>
<td>Geological Hazards and Risk</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Schäfer, Rietbrock</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060122</td>
<td>Exercises on Geological Hazards and Risk</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Schäfer, Rietbrock</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.128 Course: In-depth Module - Doing Culture - Self Assignment BAK [T-ZAK-112655]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
5.129 Course: In-depth Module - Global Cultures - Self Assignment BAK [T-ZAK-112658]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT). In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken. The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
5.130 Course: In-depth Module - Media & Aesthetics - Self Assignment BAK [T-ZAK-112656]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

Type
Examination of another type

Credits
3

Grading scale
Grade to a third

Version
1

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization.
In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
5 COURSES

Course: In-depth Module - Spheres of Life - Self Assignment BAK [T-ZAK-112657]

5.131 Course: In-depth Module - Spheres of Life - Self Assignment BAK [T-ZAK-112657]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade aquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
5.132 Course: In-depth Module - Technology & Responsibility - Self Assignment BAK [T-ZAK-112654]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
At least two presentations must be given: An examination of another kind according to § 5 section 3 (3) in the form of a presentation in one of the chosen courses (3 ECT).
In a third seminar, either (a) a presentation is held (preliminary study achievement) which remains not graded and a topic-related term paper is submitted or (b) a written exam is taken.
The three courses can be selected individually from the 5 thematic blocks or – in exceptional cases and according to the agreement with the responsible lecturer – all three courses can be selected from one block in the sense of a specialization. In addition, an oral examination is taken, which relates to the content of two of the chosen three courses.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Annotation
The content of the Basic Modul is helpful.
Course: In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region [T-PHYS-112830]

- **Responsible:** Prof. Dr. Andreas Rietbrock
- **Organisation:** KIT Department of Physics
- **Part of:** M-PHYS-106322 - In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2023</th>
<th>4060351</th>
<th>In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region</th>
<th>2 SWS</th>
<th>Lecture / 👤</th>
<th>Rietbrock, NN</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023</td>
<td>4060352</td>
<td>Exercises on In-Situ: Tectonics and Seismic Hazard in the Mediterranean Region</td>
<td>2 SWS</td>
<td>Practice / 👤</td>
<td>Rietbrock, NN</td>
</tr>
</tbody>
</table>

Legend: 🤖 Online, 🧩 Blended (On-Site/Online), 👤 On-Site, ✗ Cancelled

Competence Certificate

Students solve exercise sheets, prepare and give a presentation and write a final report.
5.134 Course: Introduction to Cosmology [T-PHYS-102384]

Responsible: Prof. Dr. Guido Drexlin
Organisation: KIT Department of Physics
Part of: M-PHYS-102175 - Introduction to Cosmology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Session</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022021</td>
<td>Einführung in die Kosmologie</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Drexlin</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022022</td>
<td>Übungen zur Einführung in die Kosmologie</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Drexlin, Huber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022021</td>
<td>Einführung in die Kosmologie</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Drexlin, Huber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022022</td>
<td>Übungen zur Einführung in die Kosmologie</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Drexlin, Huber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022021</td>
<td>Introduction to Cosmology</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Drexlin, Lokhov</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022022</td>
<td>Exercises to Introduction to Cosmology</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Drexlin, Lokhov, Huber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Introduction to Cosmology (Minor) [T-PHYS-102433]

Responsible: Prof. Dr. Guido Drexlin
Organisation: KIT Department of Physics
Part of: M-PHYS-102176 - Introduction to Cosmology (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Einführung in die Kosmologie</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Drexlin</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Übungen zur Einführung in die Kosmologie</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Drexlin, Huber</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Einführung in die Kosmologie</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Drexlin, Huber</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Übungen zur Einführung in die Kosmologie</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Drexlin, Huber</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Introduction to Cosmology</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Drexlin, Lokhov</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exercises to Introduction to Cosmology</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Drexlin, Lokhov, Huber</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🔄 Online, 🔄 Blended (On-Site/Online), 📚 On-Site, ❌ Cancelled
5.136 Course: Introduction to Flavor Physics, Fundamentals [T-PHYS-105963]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: M-PHYS-102987 - Introduction to Flavor Physics, Fundamentals

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>4026171</th>
<th>Introduction to Flavour Physics</th>
<th>4 SWS</th>
<th>Lecture / 📱</th>
<th>Nierste</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4026172</td>
<td>Exercises to Introduction to Flavour Physics</td>
<td>2 SWS</td>
<td>Practice / 📱</td>
<td>Nierste, Ziegler, Shtabovenko</td>
</tr>
</tbody>
</table>

Legend: 📱 Online, 🌐 Blended (On-Site/Online), 🎤 On-Site, ✗ Cancelled
5.137 Course: Introduction to Flavor Physics, Fundamentals (Minor) [T-PHYS-106322]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>10</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: M-PHYS-103189 - Introduction to Flavor Physics, Fundamentals (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2021 4026171</th>
<th>Introduction to Flavour Physics</th>
<th>4 SWS</th>
<th>Lecture / 🖥</th>
<th>Nierste</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4026172</td>
<td>Exercises to Introduction to Flavour Physics</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Nierste, Ziegler, Shtabovenko</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🡫 Blended (On-Site/Online), 🗣 On-Site, ☑ Cancelled
Course: Introduction to Flavor Physics, Fundamentals and Advanced Topics [T-PHYS-105962]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: M-PHYS-102986 - Introduction to Flavor Physics, Fundamentals and Advanced Topics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>12</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events					
ST 2021	4026171	Introduction to Flavour Physics	4 SWS	Lecture / Online	Nierste
ST 2021	4026172	Exercises to Introduction to Flavour Physics	2 SWS	Practice / Online	Nierste, Ziegler, Shtabovenko

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
Course: Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor) [T-PHYS-106321]

Responsible: Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: M-PHYS-103188 - Introduction to Flavor Physics, Fundamentals and Advanced Topics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>12</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4026171 Introduction to Flavour Physics</td>
<td>4 SWS</td>
<td>Lecture / 🖥️</td>
<td>Nierste</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021 4026172 Exercises to Introduction to Flavour Physics</td>
<td>2 SWS</td>
<td>Practice / 🖥️</td>
<td>Nierste, Ziegler, Shtabovenko</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🗺 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.140 Course: Introduction to General Relativity [T-PHYS-113186]

Responsible: Prof. Dr. Thomas Schwetz-Mangold

Organisation: KIT Department of Physics

Part of: M-PHYS-106532 - Introduction to General Relativity

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4022101</td>
<td>Introduction to General Relativity</td>
<td>3</td>
<td>Lecture / 🗣️</td>
<td>Schwetz-Mangold</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022102</td>
<td>Exercises to Introduction to General Relativity</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Schwetz-Mangold, Ovchynnikov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.141 Course: Introduction to General Relativity (Minor) [T-PHYS-113189]

Responsible: Prof. Dr. Thomas Schwetz-Mangold
Organisation: KIT Department of Physics
Part of: M-PHYS-106533 - Introduction to General Relativity (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 4022101</td>
<td></td>
<td>Introduction to General Relativity</td>
<td>3</td>
<td>Lecture</td>
<td>Schwetz-Mangold</td>
</tr>
<tr>
<td>WT 23/24 4022102</td>
<td></td>
<td>Exercises to Introduction to General Relativity</td>
<td>1</td>
<td>Practice</td>
<td>Schwetz-Mangold, Ovchynnikov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗽 On-Site, ✗ Cancelled
5.142 Course: Introduction to Neutron Scattering [T-PHYS-112831]

Responsible: PD Dr. Frank Weber
Organisation: KIT Department of Physics
Part of: M-PHYS-106323 - Introduction to Neutron Scattering

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grade scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 4021171 Introduction to Neutron Scattering</td>
<td>2 SWS</td>
<td>Lecture / 🗣 Weber</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4021172 Exercises to Introduction to Neutron Scattering</td>
<td>1 SWS</td>
<td>Practice / 🗣 Weber</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.143 Course: Introduction to Neutron Scattering (Minor) [T-PHYS-112832]

Responsible: PD Dr. Frank Weber
Organisation: KIT Department of Physics
Part of: M-PHYS-106324 - Introduction to Neutron Scattering (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2023 4021171</td>
<td></td>
<td>Introduction to Neutron Scattering</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td></td>
<td>Weber</td>
</tr>
<tr>
<td>ST 2023 4021172</td>
<td></td>
<td>Exercises to Introduction to Neutron Scattering</td>
<td>1</td>
<td>Practice / 🗣</td>
<td></td>
<td>Weber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled
5.144 Course: Introduction to Scientific Methods [T-PHYS-102480]

Responsible: Studiendekan Physik
Organisation: KIT Department of Physics
Part of: M-PHYS-101397 - Introduction to Scientific Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>15</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites:
none
5.145 Course: Introduction to Theoretical Cosmology [T-PHYS-109887]

Responsible: TT-Prof. Dr. Felix Kahlhöfer
Prof. Dr. Thomas Schwetz-Mangold
Organisation: KIT Department of Physics
Part of: M-PHYS-104855 - Introduction to Theoretical Cosmology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>4022201</th>
<th>Introduction into Theoretical Cosmology</th>
<th>3 SWS</th>
<th>Lecture / 🗣</th>
<th>Kahlhöfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4022202</td>
<td>Exercises to Introduction into Theoretical Cosmology</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Kahlhöfer, Bansal</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022201</td>
<td>Introduction into Theoretical Cosmology</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Kahlhöfer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022202</td>
<td>Exercises to Introduction into Theoretical Cosmology</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Kahlhöfer, Hemme</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
T 5.146 Course: Introduction to Theoretical Cosmology (Minor) [T-PHYS-109888]

Responsible: TT-Prof. Dr. Felix Kahlhöfer
Prof. Dr. Thomas Schwetz-Mangold

Organisation: KIT Department of Physics

Part of: M-PHYS-104856 - Introduction to Theoretical Cosmology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>4022201</th>
<th>Introduction into Theoretical Cosmology</th>
<th>3 SWS</th>
<th>Lecture / Kahlhöfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4022202</td>
<td>Exercises to Introduction into Theoretical Cosmology</td>
<td>1 SWS</td>
<td>Practice / Kahlhöfer, Bansal</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022201</td>
<td>Introduction into Theoretical Cosmology</td>
<td>3 SWS</td>
<td>Lecture / Kahlhöfer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022202</td>
<td>Exercises to Introduction into Theoretical Cosmology</td>
<td>1 SWS</td>
<td>Practice / Kahlhöfer, Hemme</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled
5.147 Course: Introduction to Theoretical Particle Physics, with ext. Exercises [T-PHYS-104536]

Responsible:
- PD Dr. Stefan Gieseke
- Prof. Dr. Gudrun Heinrich
- Prof. Dr. Kirill Melnikov
- Prof. Dr. Milada Margarete Mühlleitner
- Prof. Dr. Matthias Steinhauser

Organisation: KIT Department of Physics

Part of: M-PHYS-102221 - Introduction to Theoretical Particle Physics, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>10</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Event Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credit</th>
<th>Grading scale</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4026021</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3</td>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td>Gieseke</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4026022</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2</td>
<td>Practice</td>
<td></td>
<td></td>
<td>Gieseke, Borschensky</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026021</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3</td>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td>Steinhauser</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026022</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2</td>
<td>Practice / 🧩</td>
<td></td>
<td></td>
<td>Steinhauser, Zhang, Egner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026021</td>
<td>Introduction to Theoretical Particle Physics</td>
<td>3</td>
<td>Lecture / 🧩</td>
<td></td>
<td></td>
<td>Heinrich, Kerner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026022</td>
<td>Exercises to Introduction to Theoretical Particle Physics</td>
<td>2</td>
<td>Practice / 🧩</td>
<td></td>
<td></td>
<td>Heinrich, Bonetti</td>
</tr>
</tbody>
</table>

Prerequisites
none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.148 Course: Introduction to Theoretical Particle Physics, with ext. Exercises (Minor) [T-PHYS-104791]

Responsible: PD Dr. Stefan Gieseke
Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Matthias Steinhauser

Organisation: KIT Department of Physics

Part of: M-PHYS-102424 - Introduction to Theoretical Particle Physics, with ext. Exercises (Minor)

Type
- Completed coursework

Credits
- 10

Grading scale
- pass/fail

Version
- 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4026021</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3 SWS</td>
<td>Lecture / 🧩</td>
<td>Gieseke</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 4026022</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Gieseke, Borschensky</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 4026021</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3 SWS</td>
<td>Lecture / 🧩</td>
<td>Steinhauser</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 4026022</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Steinhauser, Zhang, Egner</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4026021</td>
<td>Introduction to Theoretical Particle Physics</td>
<td>3 SWS</td>
<td>Lecture / 🧩</td>
<td>Heinrich, Kerner</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4026022</td>
<td>Exercises to Introduction to Theoretical Particle Physics</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Heinrich, Bonetti</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🌐 Online, 🧩 Blended (On-Site/Online), 🧘 On-Site, ✗ Cancelled

Prerequisites
- none
T 5.149 Course: Introduction to Theoretical Particle Physics, without ext. Exercises [T-PHYS-104792]

Responsible: PD Dr. Stefan Gieseke
Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Matthias Steinhauser

Organisation: KIT Department of Physics

Part of: M-PHYS-102425 - Introduction to Theoretical Particle Physics, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4026021</td>
<td>Lecture / Online, Einführung in die Theoretische Teilchenphysik</td>
<td>3 SWS</td>
<td>Lecture / Online</td>
<td>Gieseke</td>
</tr>
<tr>
<td>WT 21/22 4026022</td>
<td>Practice / Online, Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Gieseke, Borschensky</td>
</tr>
<tr>
<td>WT 22/23 4026021</td>
<td>Lecture / Online, Einführung in die Theoretische Teilchenphysik</td>
<td>3 SWS</td>
<td>Lecture / Online</td>
<td>Steinhauser</td>
</tr>
<tr>
<td>WT 22/23 4026022</td>
<td>Practice / Online, Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Steinhauser, Zhang, Egner</td>
</tr>
<tr>
<td>WT 23/24 4026021</td>
<td>Lecture / Online, Introduction to Theoretical Particle Physics</td>
<td>3 SWS</td>
<td>Lecture / Online</td>
<td>Heinrich, Kerner</td>
</tr>
<tr>
<td>WT 23/24 4026022</td>
<td>Practice / Online, Exercises to Introduction to Theoretical Particle Physics</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Heinrich, Bonetti</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Prerequisites

none
5.150 Course: Introduction to Theoretical Particle Physics, without ext. Exercises (Minor) [T-PHYS-104793]

Responsible:
PD Dr. Stefan Gieseke
Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102426 - Introduction to Theoretical Particle Physics, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 21/22</th>
<th>4026021</th>
<th>Einführung in die Theoretische Teilchenphysik</th>
<th>3 SWS</th>
<th>Lecture / 🧩</th>
<th>Gieseke</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4026022</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Gieseke, Borschensky</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026021</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3 SWS</td>
<td>Lecture / 🧩</td>
<td>Steinhauser</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026022</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Steinhauser, Zhang, Egner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026021</td>
<td>Introduction to Theoretical Particle Physics</td>
<td>3 SWS</td>
<td>Lecture / 🧩</td>
<td>Heinrich, Kerner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026022</td>
<td>Exercises to Introduction to Theoretical Particle Physics</td>
<td>2 SWS</td>
<td>Practice / 🧩</td>
<td>Heinrich, Bonetti</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🧩 On-Site, ✗ Cancelled

Prerequisites

none
5.151 Course: Inversion and Tomography [T-PHYS-104737]

- **Responsible:** Prof. Dr. Thomas Bohlen
 apl. Prof. Dr. Joachim Ritter
- **Organisation:** KIT Department of Physics
- **Part of:** M-PHYS-102368 - Inversion and Tomography

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4060231</td>
<td>2 SWS</td>
<td>Inversion and Tomography</td>
<td>Ritter</td>
</tr>
<tr>
<td>ST 2021 4060232</td>
<td>2 SWS</td>
<td>Exercises to Inversion and Tomography</td>
<td>Ritter, Bie</td>
</tr>
<tr>
<td>ST 2022 4060231</td>
<td>2 SWS</td>
<td>Inversion and Tomography</td>
<td>Ritter</td>
</tr>
<tr>
<td>ST 2022 4060232</td>
<td>2 SWS</td>
<td>Exercises to Inversion and Tomography</td>
<td>Ritter, NN</td>
</tr>
<tr>
<td>ST 2023 4060231</td>
<td>2 SWS</td>
<td>Inversion and Tomography</td>
<td>Ritter</td>
</tr>
<tr>
<td>ST 2023 4060232</td>
<td>2 SWS</td>
<td>Exercises to Inversion and Tomography</td>
<td>Ritter, Gao</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.152 Course: Inversion and Tomography (Minor) [T-PHYS-105572]

Responsible: Prof. Dr. Thomas Bohlen
apl. Prof. Dr. Joachim Ritter

Organisation: KIT Department of Physics
Part of: M-PHYS-102658 - Inversion and Tomography (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4060231	Inversion and Tomography	2 SWS	Lecture / 🎤	Ritter
ST 2021	4060232	Exercises to Inversion and Tomography	2 SWS	Practice / 🎤	Ritter, Bie
ST 2022	4060231	Inversion and Tomography	2 SWS	Lecture / 🎤	Ritter
ST 2022	4060232	Exercises to Inversion and Tomography	2 SWS	Practice / 🎤	Ritter, NN
ST 2023	4060231	Inversion and Tomography	2 SWS	Lecture / 🎤	Ritter
ST 2023	4060232	Exercises to Inversion and Tomography	2 SWS	Practice / 🎤	Ritter, Gao

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🎤 On-Site, ❌ Cancelled
Prerequisites
none

Final Thesis
This course represents a final thesis. The following periods have been supplied:

- **Submission deadline**: 6 months
- **Maximum extension period**: 3 months
- **Correction period**: 8 weeks

This thesis requires confirmation by the examination office.
5.154 Course: Mathematical Methods of Theoretical Physics (two hours per week) [T-PHYS-111704]

- **Responsible:** Prof. Dr. Ulrich Nierste
- **Organisation:** KIT Department of Physics
- **Part of:** M-PHYS-105834 - Mathematical Methods of Theoretical Physics (two hours per week)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Delivery</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4025031</td>
<td>Mathematische Methoden der Theoretischen Physik</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Nierste</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4025032</td>
<td>Übungen zu Mathematische Methoden der Theoretischen Physik</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Nierste, Ziegler</td>
</tr>
</tbody>
</table>

Legend: 🛥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.155 Course: Mathematical Methods of Theoretical Physics (two hours per week) (Minor) [T-PHYS-111705]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: M-PHYS-105835 - Mathematical Methods of Theoretical Physics (two hours per week) (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4025031</td>
<td>Mathematische Methoden der Theoretischen Physik</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>1</td>
</tr>
<tr>
<td>WT 21/22 4025032</td>
<td>Übungen zu Mathematische Methoden der Theoretischen Physik</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Nierste, Ziegler</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📄 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.156 Course: Measurement Methods and Techniques in Experimental Physics, with ext. Exercises [T-PHYS-102376]

| Responsible | Prof. Dr. Guido Drexlin
| | PD Dr. Frank Hartmann
	Prof. Dr. Kathrin Valerius
Organisation	KIT Department of Physics
Part of	M-PHYS-102517 - Measurement Methods and Techniques in Experimental Physics, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Organisers</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Bornschein, Priester, Valerius</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td>Bornschein, Priester, Valerius</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Valerius, Priester, Röllig</td>
</tr>
<tr>
<td>ST 2023</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Valerius, Priester, Röllig</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.157 Course: Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor) [T-PHYS-105106]

Responsible: Prof. Dr. Guido Drexlin
PD Dr. Frank Hartmann
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: M-PHYS-102519 - Measurement Methods and Techniques in Experimental Physics, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>SLG</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>SLG</th>
<th>Type</th>
<th>SLG</th>
<th>Type</th>
<th>SLG</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>SWS</td>
<td>Lecture / 🗣</td>
<td>2022</td>
<td>4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>SWS</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>SWS</td>
<td>Practice / 🗣</td>
<td>2022</td>
<td>4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>1</td>
<td>SWS</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤖 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.158 Course: Measurement Methods and Techniques in Experimental Physics, without ext. Exercises [T-PHYS-105105]

Responsible: Prof. Dr. Guido Drexlin
PD Dr. Frank Hartmann
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: M-PHYS-102518 - Measurement Methods and Techniques in Experimental Physics, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2 SWS</td>
<td>Lecture /🗣</td>
<td>Bornschein, Priester, Valerius</td>
</tr>
<tr>
<td>ST 2022 4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>2 SWS</td>
<td>Practice /🗣</td>
<td>Bornschein, Priester, Valerius</td>
</tr>
<tr>
<td>ST 2023 4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2 SWS</td>
<td>Lecture /🗣</td>
<td>Valerius, Priester, Röllig</td>
</tr>
<tr>
<td>ST 2023 4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>1 SWS</td>
<td>Practice /🗣</td>
<td>Valerius, Priester, Röllig</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
5.159 Course: Measurement Methods and Techniques in Experimental Physics, without ext. Exercises (Minor) [T-PHYS-106327]

Responsible: Prof. Dr. Guido Drexlin
PD Dr. Frank Hartmann
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: M-PHYS-103194 - Measurement Methods and Techniques in Experimental Physics, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>Lecture / 🔴</td>
<td>Bornschein, Priester, Valerius</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>Practice / 🔴</td>
<td>Bornschein, Priester, Valerius</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>Lecture / 🔴</td>
<td>Valerius, Priester, Röllig</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>1</td>
<td>Practice / 🔴</td>
<td>Valerius, Priester, Röllig</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Prerequisites
none
5.160 Course: Methods of Data Analysis [T-PHYS-111426]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Peter Knippertz

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Type of Course</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4052171</td>
<td>Methods of Data Analysis</td>
<td>2 SWS</td>
<td>Lecture / 🖥️</td>
<td>Ginete Werner Pinto, Lerch</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4052172</td>
<td>Exercises to Methods of Data Analysis</td>
<td>1 SWS</td>
<td>Practice / 🖥️</td>
<td>Ginete Werner Pinto, Ehmele</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4052171</td>
<td>Methods of Data Analysis</td>
<td>2 SWS</td>
<td>Lecture / 🖥️</td>
<td>Ginete Werner Pinto, Lerch</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4052172</td>
<td>Exercises to Methods of Data Analysis</td>
<td>1 SWS</td>
<td>Practice / 🖥️</td>
<td>Ginete Werner Pinto, Ehmele</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4052171</td>
<td>Methods of Data Analysis</td>
<td>2 SWS</td>
<td>Lecture / 🖥️</td>
<td>Ginete Werner Pinto, Lerch, Ramos</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4052172</td>
<td>Exercises to Methods of Data Analysis</td>
<td>1 SWS</td>
<td>Practice / 🖥️</td>
<td>Ginete Werner Pinto, Horat, Kiefer</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Successful participation in the exercises.

Prerequisites
None

Recommendation
None

Annotation
None
5.161 Course: Microscale Fluid Mechanics [T-MACH-113144]

Responsible: Dr.-Ing. Philipp Marthaler
Organisation: KIT Department of Mechanical Engineering
Part of: M-MACH-106539 - Microscale Fluid Mechanics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 23/24 | 2153451 | Microscale Fluid Mechanics | 2 SWS | Lecture / 🗣️ | Marthaler |

Legend: 🖥 Online, 🎡 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

Oral exam, duration: approximately 30 minutes
no tools or reference materials may be used during the exam

Prerequisites

none
5.162 Course: Middle Atmosphere in the Climate System [T-PHYS-111413]

Responsible: PD Dr. Michael Höpfner
Dr. Miriam Sinnhuber

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4052061</td>
<td>Middle Atmosphere in the Climate System</td>
<td>2</td>
<td>Lecture</td>
<td>Höpfner, Sinnhuber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052061</td>
<td>Middle Atmosphere in the Climate System</td>
<td>2</td>
<td>Lecture</td>
<td>Höpfner, Sinnhuber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052061</td>
<td>Middle Atmosphere in the Climate System</td>
<td>2</td>
<td>Lecture</td>
<td>Höpfner, Sinnhuber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Short presentation at the end of the semester

Prerequisites
None

Recommendation
None

Annotation
None
Course: Modern Methods of Data Analysis, with ext. Exercises [T-PHYS-102495]

Responsible: Prof. Dr. Günter Quast
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-102127 - Modern Methods of Data Analysis, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Goldenzweig, Quast, Wolf</td>
<td></td>
</tr>
<tr>
<td>ST 2021 4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2 SWS</td>
<td>Practical course / 📚</td>
<td>Chwalek, Wolf</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
<td>Goldenzweig, Wolf</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2 SWS</td>
<td>Practical course / 📚</td>
<td>Metzner, Goldenzweig, Wolf</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2 SWS</td>
<td>Lecture / 📚</td>
<td>Goldenzweig, Wolf</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2 SWS</td>
<td>Practical course / 📚</td>
<td>Stefkova, Goldenzweig, Wolf</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled

Prerequisites

none
Course: Modern Methods of Data Analysis, with ext. Exercises (Minor) [T-PHYS-102496]

Responsible: Prof. Dr. Günter Quast
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-102128 - Modern Methods of Data Analysis, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course ID</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Goldenzweig, Quast, Wolf</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2</td>
<td>Practical course / On-Site</td>
<td>Chwalek, Wolf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2</td>
<td>Lecture / On-Site</td>
<td>Goldenzweig, Wolf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2</td>
<td>Practical course / On-Site</td>
<td>Metzner, Goldenzweig, Wolf</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2</td>
<td>Lecture / On-Site</td>
<td>Goldenzweig, Wolf</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2</td>
<td>Practical course / On-Site</td>
<td>Stefkova, Goldenzweig, Wolf</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.165 Course: Modern Methods of Data Analysis, without ext. Exercises [T-PHYS-102494]

Responsible: Prof. Dr. Günter Quast
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-102125 - Modern Methods of Data Analysis, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4022141 Advanced statistical methods and machine learning</td>
</tr>
<tr>
<td>ST 2021 4022142 Moderne Methoden der Datenanalyse: Computerpraktikum</td>
</tr>
<tr>
<td>ST 2022 4022141 Advanced statistical methods and machine learning</td>
</tr>
<tr>
<td>ST 2022 4022142 Moderne Methoden der Datenanalyse: Computerpraktikum</td>
</tr>
<tr>
<td>ST 2023 4022141 Advanced statistical methods and machine learning</td>
</tr>
<tr>
<td>ST 2023 4022142 Moderne Methoden der Datenanalyse: Computerpraktikum</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☝️ Cancelled

Prerequisites

none
5.166 Course: Modern Methods of Data Analysis, without ext. Exercises (Minor) [T-PHYS-102497]

Responsible: Prof. Dr. Günter Quast
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-102126 - Modern Methods of Data Analysis, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>Goldenzweig, Quast, Wolf</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2</td>
<td>Practical course / 🖥️</td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>Chwalek, Wolf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>Goldenzweig, Wolf</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2</td>
<td>Practical course / 🖥️</td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>Metzner, Goldenzweig, Wolf</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022141</td>
<td>Advanced statistical methods and machine learning</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>Goldenzweig, Wolf</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2</td>
<td>Practical course / 🖥️</td>
<td></td>
<td></td>
<td>Each summer term</td>
<td>Stefkova, Goldenzweig, Wolf</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, ☑️ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.167 Course: Modern Methods of Spectroscopy: Applications in Astroparticle Physics [T-PHYS-112237]

Responsible: Prof. Dr. Guido Drexlin
Prof. Dr. Kathrin Valerius

Organisation: KIT Department of Physics

Part of: M-PHYS-106047 - Modern Methods of Spectroscopy: Applications in Astroparticle Physics

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>2</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4032203</td>
<td>Blockpraktikum: Moderne Methoden der Spektroskopie - Anwendungen in der Astroteilchenphysik</td>
<td>5 SWS</td>
<td>Practical course / Online</td>
<td>Each term</td>
<td>1 terms</td>
<td>Drexlin, Valerius, Wolf</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4032203</td>
<td>Block Practical Course: Modern Methods of Spectroscopy - Applications in Astroparticle Physics</td>
<td>5 SWS</td>
<td>Practical course / Online</td>
<td>Each term</td>
<td>1 terms</td>
<td>Drexlin, Valerius, Wolf</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ⚫ Blended (On-Site/Online), 🆕 On-Site, ✗ Cancelled
Course: Molecular Electronics [T-PHYS-109305]

Responsible: Prof. Dr. Wulf Wulfhekel

Organisation: KIT Department of Physics

Part of: M-PHYS-104540 - Molecular Electronics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Weekly</th>
<th>Type</th>
<th>Hours</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021021</td>
<td>Molekulare Elektronik</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Wulfhekel, Gerhard</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021022</td>
<td>Übungen zu Molekulare Elektronik</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Wulfhekel, Gerhard</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled

Prerequisites

none
5.169 Course: Molecular Electronics (Minor) [T-PHYS-109306]

Responsible: Prof. Dr. Wulf Wulfhekel
Organisation: KIT Department of Physics
Part of: M-PHYS-104541 - Molecular Electronics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Session</th>
<th>Code</th>
<th>Course Title</th>
<th>Type</th>
<th>WS</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021021</td>
<td>Molekulare Elektronik</td>
<td>Lecture / 🗣</td>
<td>2 SWS</td>
<td>Wulfhekel, Gerhard</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021022</td>
<td>Übungen zu Molekulare Elektronik</td>
<td>Practice / 🗣</td>
<td>1 SWS</td>
<td>Wulfhekel, Gerhard</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites
none
5.170 Course: Molecular Spectroscopy [T-CHEMBIO-104639]

Responsible: apl. Prof. Dr. Andreas-Neil Unterreiner

Organisation: KIT Department of Chemistry and Biosciences
KIT Department of Physics

Part of: M-PHYS-102337 - Molecular Spectroscopy

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 5213</td>
<td>2 SWS</td>
<td>Molekülspektroskopie</td>
<td>Lecture / Online</td>
</tr>
<tr>
<td>WT 21/22 5214</td>
<td>1 SWS</td>
<td>Übungen zur Vorlesung Molekülspektroskopie</td>
<td>Practice / Online</td>
</tr>
<tr>
<td>WT 22/23 5213</td>
<td>2 SWS</td>
<td>Molekülspektroskopie</td>
<td>Lecture</td>
</tr>
<tr>
<td>WT 22/23 5214</td>
<td>1 SWS</td>
<td>Übungen zur Vorlesung Molekülspektroskopie</td>
<td>Practice</td>
</tr>
<tr>
<td>WT 23/24 5213</td>
<td>2 SWS</td>
<td>Molekülspektroskopie</td>
<td>Lecture</td>
</tr>
<tr>
<td>WT 23/24 5214</td>
<td>1 SWS</td>
<td>Übungen zur Vorlesung Molekülspektroskopie</td>
<td>Practice</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
5.171 Course: Monte Carlo Event Generators [T-PHYS-109892]

Responsible: PD Dr. Stefan Gieseke
Organisation: KIT Department of Physics
Part of: M-PHYS-104860 - Monte Carlo Event Generators

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type / Trigger</th>
<th>Legend</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4025141</td>
<td></td>
<td></td>
<td></td>
<td>Lecture / Online</td>
<td>Online, Blended (On-Site/Online), On-Site, Cancelled</td>
</tr>
<tr>
<td>Monte Carlo Ereignisgeneratoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2021 4025142</td>
<td></td>
<td></td>
<td></td>
<td>Practice / Online</td>
<td></td>
</tr>
<tr>
<td>Übungen zu Monte Carlo Ereignisgeneratoren</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
none
5.172 Course: Monte Carlo Event Generators (Minor) [T-PHYS-109893]

Responsible: PD Dr. Stefan Gieseke
Organisation: KIT Department of Physics
Part of: M-PHYS-104861 - Monte Carlo Event Generators (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2021 | 4025141 | Monte Carlo Ereignisgeneratoren | 2 SWS | Lecture / Online | Gieseke |
| ST 2021 | 4025142 | Übungen zu Monte Carlo Ereignisgeneratoren | 1 SWS | Practice / Online | Gieseke |

Legend: 📲 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.173 Course: Nanomaterials, with Exercises [T-PHYS-110285]

Responsible: Dr. Thomas Reisinger
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: M-PHYS-105068 - Nanomaterials, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Code</th>
<th>SWS</th>
<th>Type</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021061</td>
<td>Nanomaterials</td>
<td>2</td>
<td>Lecture</td>
<td>Wernsdorfer, Reisinger</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021062</td>
<td>Exercises to Nanomaterials</td>
<td>2</td>
<td>Practice</td>
<td>Wernsdorfer, Reisinger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.174 Course: Nanomaterials, with Exercises (Minor) [T-PHYS-110286]

Responsible: Dr. Thomas Reisinger
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: M-PHYS-105069 - Nanomaterials, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Course Type</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021061</td>
<td>Nanomaterials</td>
<td>2</td>
<td>Lecture</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021062</td>
<td>Exercises to Nanomaterials</td>
<td>2</td>
<td>Practice</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
</tbody>
</table>
5.175 Course: Nanomaterials, without Exercises [T-PHYS-110288]

Responsible: Dr. Thomas Reisinger
Prof. Dr. Wolfgang Wernsdorfer

Organisation: KIT Department of Physics

Part of: M-PHYS-105071 - Nanomaterials, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021061</td>
<td>Nanomaterials</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
</tbody>
</table>
5.176 Course: Nano-Optics [T-PHYS-102282]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: PD Dr. Andreas Naber
Organisation: KIT Department of Physics
Part of: M-PHYS-102146 - Nano-Optics

<table>
<thead>
<tr>
<th>Events</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credit</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4020021</td>
<td>Nano-Optics</td>
<td>3</td>
<td>Lecture / 🖥️</td>
<td>8</td>
<td>Grade to a third</td>
<td>Naber</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4020022</td>
<td>Exercises to Nano-Optics</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td></td>
<td>Naber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4020021</td>
<td>Nano-Optics</td>
<td>3</td>
<td>Lecture / 🗫</td>
<td>8</td>
<td>Grade to a third</td>
<td>Naber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4020022</td>
<td>Exercises to Nano-Optics</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td></td>
<td>Naber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4020021</td>
<td>Nano-Optics</td>
<td>3</td>
<td>Lecture / 🗫</td>
<td>8</td>
<td>Grade to a third</td>
<td>Naber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4020022</td>
<td>Exercises to Nano-Optics</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td></td>
<td>Naber</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗫 On-Site, ❌ Cancelled

Prerequisites
none
5.177 Course: Nano-Optics (Minor) [T-PHYS-102360]

Responsible: PD Dr. Andreas Naber
Organisation: KIT Department of Physics
Part of: M-PHYS-102147 - Nano-Optics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Type / Legend</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Nano-Optics</td>
<td>3</td>
<td>Lecture / 🖥️</td>
<td>Naber</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Exercises to Nano-Optics</td>
<td>1</td>
<td>Practice</td>
<td>Naber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Nano-Optics</td>
<td>3</td>
<td>Lecture / 🗣️</td>
<td>Naber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Exercises to Nano-Optics</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Naber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Nano-Optics</td>
<td>3</td>
<td>Lecture / 🗣️</td>
<td>Naber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exercises to Nano-Optics</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Naber</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🔄 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.178 Course: New Light Particles Beyond the Standard Model [T-PHYS-111115]

Responsible: Prof. Dr. Ulrich Nierste
Dr. Robert Ziegler

Organisation: KIT Department of Physics

Part of: M-PHYS-105534 - New Light Particles Beyond the Standard Model

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>
5.179 Course: New Light Particles Beyond the Standard Model (Minor) [T-PHYS-111196]

Responsible:
Prof. Dr. Ulrich Nierste
Dr. Robert Ziegler

Organisation:
KIT Department of Physics

Part of:
M-PHYS-105582 - New Light Particles Beyond the Standard Model (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>8</th>
<th>Grading scale</th>
<th>pass/fail</th>
<th>Expansion</th>
<th>1 terms</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Physics Master (Master of Science)
Module Handbook as of 20/10/2023
5.180 Course: New Light Particles Beyond the Standard Model, without Exercises [T-PHYS-111703]

Responsible: Prof. Dr. Ulrich Nierste
Dr. Robert Ziegler

Organisation: KIT Department of Physics

Part of: M-PHYS-105833 - New Light Particles Beyond the Standard Model, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Title</th>
<th>SWS</th>
<th>Delivery</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4025051</td>
<td>Light particles beyond the Standard Model</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Ziegler, Nierste</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4025051</td>
<td>Light Particles beyond the Standard Model</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Ziegler, Nierste</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣️ On-Site, ☑️ Cancelled
5.181 Course: Nonlinear Optics [T-ETIT-101906]

Responsible: Prof. Dr.-Ing. Christian Koos
Organisation: KIT Department of Electrical Engineering and Information Technology
Part of: M-ETIT-100430 - Nonlinear Optics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2309468</td>
<td>Nonlinear Optics</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>Koos</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2309469</td>
<td>Nonlinear Optics (Tutorial)</td>
<td>2</td>
<td>Practice / 🖥</td>
<td>Koos</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2309468</td>
<td>Nonlinear Optics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Koos</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2309469</td>
<td>Nonlinear Optics (Tutorial)</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Koos</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2309468</td>
<td>Nonlinear Optics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Koos</td>
</tr>
<tr>
<td>ST 2023</td>
<td>2309469</td>
<td>Nonlinear Optics (Tutorial)</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Koos</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛡 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled

Prerequisites

none
5.182 Course: Non-supersymmetric Extensions of the Standard Model (Minor) [T-PHYS-111277]

Responsible:
- Dr. Monika Blanke
- Prof. Dr. Ulrich Nierste

Organisation:
- KIT Department of Physics

Part of:
- M-PHYS-105639 - Non-supersymmetric Extensions of the Standard Model (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1 terms</td>
<td>1</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.183 Course: Ocean-Atmosphere Interactions [T-PHYS-111414]

Responsible: Prof. Dr. Andreas Fink

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Type: Completed coursework
Credits: 2
Grading scale: pass/fail
Recurrence: Each winter term
Version: 3

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2</td>
<td>Ocean-Atmosphere Interactions</td>
<td>Fink, van der Linden</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2</td>
<td>Ocean-Atmosphere Interactions</td>
<td>Fink, Woodhams</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2</td>
<td>Ocean-Atmosphere Interactions</td>
<td>Fink</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Active participation

Prerequisites
None

Recommendation
None

Annotation
None
5.184 Course: Oral Exam - Supplementary Studies on Culture and Society [T-ZAK-112659]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
An oral examination according to § 7 section 6 of approx. 45 minutes on the contents of two courses from In-depth Module.

Prerequisites
Prerequisite for the 'Oral Examination' is the successful completion of Modules 1 and 3 and the required elective sections in Module 2.
5.185 Course: Oral Exam - Supplementary Studies on Sustainable Development [T-ZAK-112351]

Organisation:
Part of: M-ZAK-106099 - Supplementary Studies on Sustainable Development

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
An oral examination according to § 7 section 6 of approx. 45 minutes on the contents of two courses from Elective Module.

Prerequisites
A requirement for the Supplementary Course: Oral examination is the successful completion of the modules Basics Module and Specialisation Module and the required electives of Elective Module.
5.186 Course: Particle Physics I [T-PHYS-102369]

Responsible: Prof. Dr. Torben Ferber
Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute
Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of: M-PHYS-102114 - Particle Physics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course Description</th>
<th>SW</th>
<th>Type</th>
<th>Credits</th>
<th>Grader</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022031</td>
<td>Teilchenphysik I</td>
<td>3</td>
<td>Lecture / Online</td>
<td>3</td>
<td>Quast, Klute</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022032</td>
<td>Praktische Übungen zur</td>
<td>2</td>
<td>Online</td>
<td>2</td>
<td>Quast, Klute, Faltermann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teilchenphysik I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022031</td>
<td>Teilchenphysik I</td>
<td>3</td>
<td>Lecture / Online</td>
<td>3</td>
<td>Ferber</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022032</td>
<td>Praktische Übungen zur</td>
<td>2</td>
<td>Online</td>
<td>2</td>
<td>Quast, Faltermann</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Teilchenphysik I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022031</td>
<td>Particle Physics I</td>
<td>3</td>
<td>Lecture / Online</td>
<td>3</td>
<td>Ferber</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022032</td>
<td>Exercises to Particle</td>
<td>2</td>
<td>Online</td>
<td>2</td>
<td>Ferber, Chwalek</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Physics I</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗹 On-Site, ✗ Cancelled
5.187 Course: Particle Physics I (Minor) [T-PHYS-102488]

Responsible:
Prof. Dr. Torben Ferber
Prof. Dr. Ulrich Husemann
Prof. Dr. Markus Klute
Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102115 - Particle Physics I (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Lecture Code</th>
<th>Course Description</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022031</td>
<td>Teilchenphysik I</td>
<td>3</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022032</td>
<td>Praktische Übungen zur Teilchenphysik I</td>
<td>2</td>
<td>/ 🗣️</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022031</td>
<td>Teilchenphysik I</td>
<td>3</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022032</td>
<td>Praktische Übungen zur Teilchenphysik I</td>
<td>2</td>
<td>/ 🗣️</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022031</td>
<td>Particle Physics I</td>
<td>3</td>
<td>Lecture / 🗣️</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022032</td>
<td>Exercises to Particle Physics I</td>
<td>2</td>
<td>/ 🗣️</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites

none
5.188 Course: Particle Physics II - Flavour Physics, with ext. Exercises [T-PHYS-104783]

Responsible: Prof. Dr. Torben Ferber
Dr. Pablo Goldenzweig
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: M-PHYS-102422 - Particle Physics II - Flavour Physics, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

- **WT 21/22** 4022081 Flavour-Physics 2 SWS Lecture Goldenzweig, Ferber
- **WT 21/22** 4022082 Übungen zu Flavour-Physik 2 SWS Practice Goldenzweig, Ferber
- **WT 22/23** 4022081 Flavour-Physics 2 SWS Lecture Goldenzweig, Ferber
- **WT 22/23** 4022082 Übungen zu Flavour-Physik 2 SWS Practice Goldenzweig, Stefkova
- **WT 23/24** 4022081 Particle Physics II: Flavour-Physics 2 SWS Lecture Goldenzweig, Ferber
- **WT 23/24** 4022082 Exercises to Particle Physics II: Flavour-Physics 2 SWS Practice Goldenzweig, Stefkova

Prerequisites

none
5.189 Course: Particle Physics II - Flavour Physics, with ext. Exercises (Minor) [T-PHYS-106316]

Responsible: Prof. Dr. Torben Ferber
Dr. Pablo Goldenzweig
Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics
Part of: M-PHYS-103183 - Particle Physics II - Flavour Physics, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Week</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grade</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022081</td>
<td>Flavour-Physics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Goldenzweig, Ferber</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022082</td>
<td>Übungen zu Flavour-Physik</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Goldenzweig, Ferber</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022081</td>
<td>Flavour-Physics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Goldenzweig, Ferber</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022082</td>
<td>Übungen zu Flavour-Physik</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Goldenzweig, Stefkova</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022081</td>
<td>Particle Physics II: Flavour-Physics</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Goldenzweig, Ferber</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022082</td>
<td>Exercises to Particle Physics II: Flavour-Physics</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Goldenzweig, Stefkova</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites: none
5.190 Course: Particle Physics II - Flavour Physics, without ext. Exercises [T-PHYS-102371]

Responsible:
Prof. Dr. Torben Ferber
Dr. Pablo Goldenzweig
Prof. Dr. Ulrich Nierste

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102154 - Particle Physics II - Flavour Physics, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>SWS</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td></td>
<td>Flavour-Physics</td>
<td>2</td>
<td>Lecture</td>
<td></td>
<td></td>
<td>Goldenzweig, Ferber</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übungen zu Flavour-Physik</td>
<td>2</td>
<td>Practice</td>
<td></td>
<td></td>
<td>Goldenzweig, Ferber</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td></td>
<td>Flavour-Physics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td></td>
<td></td>
<td>Goldenzweig, Ferber</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Übungen zu Flavour-Physik</td>
<td>2</td>
<td>Practice / 🗣</td>
<td></td>
<td></td>
<td>Goldenzweig, Stefkova</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td></td>
<td>Particle Physics II: Flavour-Physics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td></td>
<td></td>
<td>Goldenzweig, Ferber</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Exercises to Particle Physics II: Flavour-Physics</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td></td>
<td></td>
<td>Goldenzweig, Stefkova</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
5.191 Course: Particle Physics II - Flavour Physics, without ext. Exercises (Minor) [T-PHYS-102424]

Responsible:
- Prof. Dr. Torben Ferber
- Dr. Pablo Goldenzweig
- Prof. Dr. Ulrich Nierste

Organisation:
- KIT Department of Physics

Part of:
- M-PHYS-102155 - Particle Physics II - Flavour Physics, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4022081</td>
<td>Flavour-Physics</td>
<td>2</td>
<td>Lecture</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4022082</td>
<td>Übungen zu Flavour-Physik</td>
<td>2</td>
<td>Practice</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022081</td>
<td>Flavour-Physics</td>
<td>2</td>
<td>Lecture / 🗣</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4022082</td>
<td>Übungen zu Flavour-Physik</td>
<td>2</td>
<td>Practice / 🗣</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022081</td>
<td>Particle Physics II: Flavour-Physics</td>
<td>2</td>
<td>Lecture / 🗣</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4022082</td>
<td>Exercises to Particle Physics II: Flavour-Physics</td>
<td>2</td>
<td>Practice / 🗣</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, 🗐 Cancelled

Prerequisites
- none
5.192 Course: Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises [T-PHYS-111950]

Responsible: Prof. Dr. Markus Klute

Organisation: KIT Department of Physics

Part of: M-PHYS-105939 - Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2022	4022191	Particle Physics II - Physics Beyond the Standard Model	2 SWS	Lecture / 🎙	Klute
ST 2022	4022192	Exercises to Particle Physics II - Physics Beyond the Standard Model	2 SWS	Practice / 🎙	Klute, Chwalek
ST 2023	4022191	Particle Physics II - Physics Beyond the Standard Model	2 SWS	Lecture / 🎙	Klute
ST 2023	4022192	Exercises to Particle Physics II - Physics Beyond the Standard Model	2 SWS	Practice / 🎙	Klute, Chwalek

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🎙 On-Site, ❌ Cancelled

Prerequisites

none
5.193 Course: Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises (Minor) [T-PHYS-111951]

Responsible: Prof. Dr. Markus Klute
Organisation: KIT Department of Physics
Part of: M-PHYS-105940 - Particle Physics II - Physics Beyond the Standard Model, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4022191</td>
<td>Particle Physics II - Physics beyond the Standard Model</td>
<td>2 SWS Lecture / 🗣</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022192</td>
<td>Exercises to Particle Physics II - Physics beyond the Standard Model</td>
<td>2 SWS Practice / 🗣</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022191</td>
<td>Particle Physics II - Physics beyond the Standard Model</td>
<td>2 SWS Lecture / 🗣</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022192</td>
<td>Exercises to Particle Physics II - Physics beyond the Standard Model</td>
<td>2 SWS Practice / 🗣</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗦 Cancelled

Prerequisites
None
5.194 Course: Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises [T-PHYS-111948]

Responsible: Prof. Dr. Markus Klute
Organisation: KIT Department of Physics
Part of: M-PHYS-105937 - Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Event Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4022191</td>
<td>Particle Physics II - Physics beyond the Standard Model</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Klute</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022192</td>
<td>Exercises to Particle Physics II - Physics beyond the Standard Model</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Klute, Chwalek</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022191</td>
<td>Particle Physics II - Physics beyond the Standard Model</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Klute</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022192</td>
<td>Exercises to Particle Physics II - Physics beyond the Standard Model</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Klute, Chwalek</td>
</tr>
</tbody>
</table>

Legend: 🗣️ Online, 🛋️ Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Prerequisites

none
5.195 Course: Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises (Minor) [T-PHYS-111949]

Responsible: Prof. Dr. Markus Klute
Organisation: KIT Department of Physics
Part of: M-PHYS-105938 - Particle Physics II - Physics Beyond the Standard Model, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 4022191</td>
<td>Completed coursework</td>
<td>Particle Physics II - Physics beyond the Standard Model</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Klute</td>
</tr>
<tr>
<td>ST 2022 4022192</td>
<td>Completed coursework</td>
<td>Exercises to Particle Physics II - Physics beyond the Standard Model</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Klute, Chwalek</td>
</tr>
<tr>
<td>ST 2023 4022191</td>
<td>Completed coursework</td>
<td>Particle Physics II - Physics beyond the Standard Model</td>
<td>2 SWS</td>
<td>Lecture / Online</td>
<td>Klute</td>
</tr>
<tr>
<td>ST 2023 4022192</td>
<td>Completed coursework</td>
<td>Exercises to Particle Physics II - Physics beyond the Standard Model</td>
<td>2 SWS</td>
<td>Practice / Online</td>
<td>Klute, Chwalek</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online,
🧩 Blended (On-Site/Online),
🗣 On-Site,
🗙 Cancelled

Prerequisites
none
5.196 Course: Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises [T-PHYS-108474]

Responsible: Prof. Dr. Thomas Müller
PD Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of: M-PHYS-104088 - Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4022171</td>
<td>Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>Lecture/🖥</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Rabbertz, Jafari</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4022172</td>
<td>Übungen zu Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>Practice/🖥</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Rabbertz, NN</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022171</td>
<td>Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>Lecture/مشاوره</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Rabbertz, Müller</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4022172</td>
<td>Übungen zu Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>Practice/مشاوره</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Rabbertz, Müller</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.197 Course: Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor) [T-PHYS-108475]

Responsible: Prof. Dr. Thomas Müller
PD Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of: M-PHYS-104089 - Particle Physics II - Top Quarks and Jets at the LHC, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>Lecture / 🖥</td>
<td>2 SWS</td>
<td>pass/fail</td>
<td>Each summer term</td>
</tr>
<tr>
<td>ST 2022</td>
<td>Practice / 🗣</td>
<td>2 SWS</td>
<td>pass/fail</td>
<td>Each summer term</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.198 Course: Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises [T-PHYS-108472]

Responsible: Prof. Dr. Thomas Müller
PD Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of: M-PHYS-104086 - Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4022171</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Rabbertz, Jafari</td>
</tr>
<tr>
<td>ST 2021 4022172</td>
<td>2 SWS</td>
<td>Practice / 🗤</td>
<td>Rabbertz, NN</td>
</tr>
<tr>
<td>ST 2022 4022171</td>
<td>2 SWS</td>
<td>Lecture / 🗣 Blended</td>
<td>Rabbertz, Müller</td>
</tr>
<tr>
<td>ST 2022 4022172</td>
<td>2 SWS</td>
<td>Practice / 🗤 Blended</td>
<td>Rabbertz, Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗣 Blended (On-Site/Online), 🗤 On-Site, ☢ Cancelled

Prerequisites
none
5.199 Course: Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor) [T-PHYS-108473]

Responsible: Prof. Dr. Thomas Müller
PD Dr. Klaus Rabbertz

Organisation: KIT Department of Physics

Part of: M-PHYS-104087 - Particle Physics II - Top Quarks and Jets at the LHC, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>2</td>
<td></td>
<td>Rabbertz, Jafari</td>
</tr>
<tr>
<td>ST 2021</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>2</td>
<td></td>
<td>Rabbertz, NN</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Lecture / 📦</td>
<td>2</td>
<td></td>
<td>Rabbertz, Müller</td>
</tr>
<tr>
<td>ST 2022</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>2</td>
<td></td>
<td>Rabbertz, Müller</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.200 Course: Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises [T-PHYS-108470]

Responsible: Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-104084 - Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4022161 - Teilchenphysik II - W, Z und Higgs an Collidern</td>
<td>2 SWS</td>
<td>Lecture / 🛥️</td>
<td>Wolf</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4022162 - Übungen zu Teilchenphysik II - W, Z und Higgs an Collidern</td>
<td>1 SWS</td>
<td>Practice / 🛥️</td>
<td>Wolf, NN</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022161 - Teilchenphysik II - W, Z, Higgs am Collider</td>
<td>2 SWS</td>
<td>Lecture / 🛥️</td>
<td>Rabbertz, Faltermann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022162 - Übungen zu Teilchenphysik II - W, Z, Higgs am Collider</td>
<td>1 SWS</td>
<td>Practice / 🛥️</td>
<td>Rabbertz, Faltermann, Zuo</td>
</tr>
</tbody>
</table>

Legend: 🛥️ Online, 📘 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.201 Course: Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor) [T-PHYS-108471]

Responsible: Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-104085 - Particle Physics II - W, Z, Higgs at Colliders, with ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4022161</td>
<td>2 SWS</td>
<td>Teilchenphysik II - W, Z und Higgs an Collidern</td>
<td>Lecture / 🖥</td>
</tr>
<tr>
<td>ST 2021 4022162</td>
<td>1 SWS</td>
<td>Übungen zu Teilchenphysik II - W, Z und Higgs an Collidern</td>
<td>Practice / 🖥</td>
</tr>
<tr>
<td>ST 2023 4022161</td>
<td>2 SWS</td>
<td>Teilchenphysik II - W, Z, Higgs am Collider</td>
<td>Lecture / 🗤</td>
</tr>
<tr>
<td>ST 2023 4022162</td>
<td>1 SWS</td>
<td>Übungen zu Teilchenphysik II - W, Z, Higgs am Collider</td>
<td>Practice / 🗤</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗤 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none

Responsible: Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-104081 - Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4022161	Teilchenphysik II - W, Z und Higgs an Collidern	2 SWS	Lecture / 🖥	Wolf
ST 2021	4022162	Übungen zu Teilchenphysik II - W, Z und Higgs an Collidern	1 SWS	Practice / 🖥	Wolf, NN
ST 2023	4022161	Teilchenphysik II - W, Z, Higgs am Collider	2 SWS	Lecture / 🗤	Rabbertz, Faltermann
ST 2023	4022162	Übungen zu Teilchenphysik II - W, Z, Higgs am Collider	1 SWS	Practice / 🗤	Rabbertz, Faltermann, Zuo

Legend: 🖥 Online, 🗤 Blended (On-Site/Online), 🗤 On-Site, ✗ Cancelled

Prerequisites

none
5.203 Course: Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor) [T-PHYS-108469]

Responsible:
Prof. Dr. Günter Quast
PD Dr. Klaus Rabbertz
PD Dr. Roger Wolf

Organisation: KIT Department of Physics

Part of: M-PHYS-104082 - Particle Physics II - W, Z, Higgs at Colliders, without ext. Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>6</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Lecture Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4022161</td>
<td>Teilchenphysik II - W, Z und Higgs an Collidern</td>
<td>2</td>
<td>Lecture</td>
<td>Wolf</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4022162</td>
<td>Übungen zu Teilchenphysik II - W, Z und Higgs an Collidern</td>
<td>1</td>
<td>Practice</td>
<td>Wolf, NN</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022161</td>
<td>Teilchenphysik II - W, Z, Higgs am Collider</td>
<td>2</td>
<td>Lecture</td>
<td>Rabbertz, Faltermann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4022162</td>
<td>Übungen zu Teilchenphysik II - W, Z, Higgs am Collider</td>
<td>1</td>
<td>Practice</td>
<td>Rabbertz, Faltermann, Zuo</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.204 Course: Particle Physics with Extra Dimensions [T-PHYS-112244]

Responsible:
- Dr. Monika Blanke
- Prof. Dr. Ulrich Nierste

Organisation:
- KIT Department of Physics

Part of:
- M-PHYS-106055 - Particle Physics with Extra Dimensions

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>4025071</th>
<th>Particle Physics with Extra Dimensions</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Blanke, Nierste</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🇨mayı Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.205 Course: Photovoltaics [T-ETIT-101939]

Responsible: Prof. Dr.-Ing. Michael Powalla

Organisation: KIT Department of Electrical Engineering and Information Technology

Part of: M-ETIT-100513 - Photovoltaics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

ST 2021	2313737	Photovoltaics	4 SWS	Lecture /🖥	Powalla, Lemmer
ST 2021	2313738	Tutorial 2313737 Photovoltaik	1 SWS	Practice /🖥	Powalla, Lemmer
ST 2022	2313737	Photovoltaics	3 SWS	Lecture /🗣	Powalla, Lemmer
ST 2022	2313738	Tutorial 2313737 Photovoltaik	1 SWS	Practice /🗣	Powalla, Lemmer
ST 2023	2313737	Photovoltaics	3 SWS	Lecture /🗣	Powalla, Lemmer
ST 2023	2313738	Tutorial 2313737 Photovoltaik	1 SWS	Practice /🗣	Powalla, Lemmer

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

"M-ETIT-100524 - Solar Energy" must not have started.
5.206 Course: Physics of Planetary Atmospheres [T-PHYS-109177]

Responsible: Prof. Dr. Thomas Leisner

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>4</td>
</tr>
</tbody>
</table>

Events

- **WT 21/22**
 - 4052161 Physics of Planetary Atmospheres 2 SWS / Leisner
 - 4052162 Exercises to Physics of Planetary Atmospheres 2 SWS Practice / Leisner, Duft
 - 4052161 Physics of Planetary Atmospheres 2 SWS Lecture / Leisner, Sinnhuber, Reddmann, Duft

- **WT 22/23**
 - 4052162 Exercises to Physics of Planetary Atmospheres 2 SWS Practice / Leisner, Duft
 - 4052161 Physics of Planetary Atmospheres 2 SWS Lecture / Leisner, Sinnhuber, Reddmann

- **WT 23/24**
 - 4052161 Physics of Planetary Atmospheres 2 SWS Lecture / Leisner, Sinnhuber, Reddmann
 - 4052162 Exercises to Physics of Planetary Atmospheres 2 SWS Practice / Leisner, Duft

Competence Certificate

- If this module is part of the Specialization or Compulsory Subject, credits are earned through the associated exam (oral, written or otherwise).
- Otherwise, the exercises, computer exercises, internships or, if necessary, graduation lectures must be successfully completed.

Prerequisites

None

Recommendation

Basic knowledge of physics, physical chemistry and fluid dynamics at Bachelor level.

Annotation

180 hours consisting of attendance times (42 hours), follow-up of the lecture and editing exercises (138 hours).
5.207 Course: Physics of Seismic Instruments [T-PHYS-104727]

Responsible: Dr. Thomas Forbriger
Organisation: KIT Department of Physics
Part of: M-PHYS-102358 - Physics of Seismic Instruments

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4060051</td>
<td></td>
<td>Physics of seismic instruments</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>6</td>
<td></td>
<td>Forbriger</td>
</tr>
<tr>
<td>WT 21/22 4060052</td>
<td></td>
<td>Exercise on physics of seismic instruments</td>
<td>1</td>
<td>Practice / 📚</td>
<td></td>
<td></td>
<td>Forbriger, Rietbrock, Ciesielski</td>
</tr>
<tr>
<td>WT 22/23 4060051</td>
<td></td>
<td>Physics of seismic instruments</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>6</td>
<td></td>
<td>Forbriger, Rietbrock</td>
</tr>
<tr>
<td>WT 22/23 4060052</td>
<td></td>
<td>Exercise on physics of seismic instruments</td>
<td>1</td>
<td>Practice / 📚</td>
<td></td>
<td></td>
<td>Toularoud, Forbriger, Rietbrock</td>
</tr>
<tr>
<td>WT 23/24 4060051</td>
<td></td>
<td>Physics of seismic instruments</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>6</td>
<td></td>
<td>Forbriger, Rietbrock</td>
</tr>
<tr>
<td>WT 23/24 4060052</td>
<td></td>
<td>Exercise on physics of seismic instruments</td>
<td>1</td>
<td>Practice / 📚</td>
<td></td>
<td></td>
<td>Toularoud, Forbriger, Rietbrock</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🛍 Blended (On-Site/Online), 🗹 On-Site, ✗ Cancelled
5 COURSES

5.208 Course: Physics of Seismic Instruments (Minor) [T-PHYS-105567]

Responsible: Dr. Thomas Forbriger

Organisation: KIT Department of Physics

Part of: M-PHYS-102653 - Physics of Seismic Instruments (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4060051</td>
<td>Physics of seismic instruments</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Forbriger</td>
</tr>
<tr>
<td>WT 21/22 4060052</td>
<td>Exercise on physics of seismic instruments</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Forbriger, Rietbrock, Ciesielski</td>
</tr>
<tr>
<td>WT 22/23 4060051</td>
<td>Physics of seismic instruments</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Forbriger, Rietbrock</td>
</tr>
<tr>
<td>WT 22/23 4060052</td>
<td>Exercise on physics of seismic instruments</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Toularoud, Forbriger, Rietbrock</td>
</tr>
<tr>
<td>WT 23/24 4060051</td>
<td>Physics of seismic instruments</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Forbriger, Rietbrock</td>
</tr>
<tr>
<td>WT 23/24 4060052</td>
<td>Exercise on physics of seismic instruments</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Toularoud, Forbriger, Rietbrock</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.209 Course: Physics of Semiconductors, with Exercises [T-PHYS-102343]

Responsible: Prof. Dr. Heinz Kalt
Organisation: KIT Department of Physics
Part of: M-PHYS-102131 - Physics of Semiconductors, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td></td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Hours</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4020111</td>
<td>4 SWS</td>
<td>Halbleiterphysik</td>
<td>Lecture / 📚</td>
<td>Kalt</td>
<td></td>
</tr>
<tr>
<td>ST 2021 4020112</td>
<td>1 SWS</td>
<td>Übungen zu Halbleiterphysik</td>
<td>Practice / 🕹️</td>
<td>Kalt, N.</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4020111</td>
<td>4 SWS</td>
<td>Halbleiterphysik</td>
<td>Lecture / 📚</td>
<td>Kalt</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4020112</td>
<td>1 SWS</td>
<td>Übungen zu Halbleiterphysik</td>
<td>Practice / 🕹️</td>
<td>Kalt, Kalt</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🕹️ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.210 Course: Physics of Semiconductors, with Exercises (Minor) [T-PHYS-102301]

Responsible: Prof. Dr. Heinz Kalt

Organisation: KIT Department of Physics

Part of: M-PHYS-102130 - Physics of Semiconductors, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>10</td>
<td>pass/fail</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>4020111</th>
<th>Halbleiterphysik</th>
<th>4 SWS</th>
<th>Lecture / Online</th>
<th>Kalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4020112</td>
<td>Übungen zu Halbleiterphysik</td>
<td>1 SWS</td>
<td>Practice / Blended</td>
<td>Kalt, N.</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4020111</td>
<td>Halbleiterphysik</td>
<td>4 SWS</td>
<td>Lecture / On-Site</td>
<td>Kalt</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4020112</td>
<td>Übungen zu Halbleiterphysik</td>
<td>1 SWS</td>
<td>Practice / On-Site</td>
<td>Kalt, Kalt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 👥 On-Site, ✗ Cancelled
5.211 Course: Physics of Semiconductors, without Exercises [T-PHYS-104590]

Responsible: Prof. Dr. Heinz Kalt
Organisation: KIT Department of Physics
Part of: M-PHYS-102301 - Physics of Semiconductors, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4020111</td>
<td>Halbleiterphysik</td>
<td>4 SWS</td>
<td>Lecture / 📚</td>
<td>Kalt</td>
</tr>
<tr>
<td>ST 2022 4020111</td>
<td>Halbleiterphysik</td>
<td>4 SWS</td>
<td>Lecture / 📚</td>
<td>Kalt</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled
5.212 Course: Practice Module [T-ZAK-112660]

Responsible: Dr. Christine Mielke
Christine Myglas

Organisation:
Part of: M-ZAK-106235 - Supplementary Studies on Culture and Society

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Competence Certificate
Internship (3 ECT)
Report within the framework of the practical training (Length approx. 18,000 characters (incl. spaces)) (1 ECT)

Prerequisites
none

Annotation
Knowledge from the Basic Module and the Elective Module is helpful.
5.213 Course: Precision Phenomenology at Colliders and Computational Methods, with Exercises [T-PHYS-111279]

Responsible: Prof. Dr. Gudrun Heinrich
Organisation: KIT Department of Physics
Part of: M-PHYS-105640 - Precision Phenomenology at Colliders and Computational Methods, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Module Code</th>
<th>Title</th>
<th>Weekly Study Hours (SWS)</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4025151</td>
<td>Precision Phenomenology at Colliders and Computational Methods</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Heinrich</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4025152</td>
<td>Exercises to Precision Phenomenology at Colliders and Computational Methods</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Heinrich, Chen</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4025151</td>
<td>Precision Phenomenology at Colliders and Computational Methods</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Heinrich</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4025152</td>
<td>Exercises to Precision Phenomenology at Colliders and Computational Methods</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Heinrich, Kerner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.214 Course: Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor) [T-PHYS-111281]

Responsible: Prof. Dr. Gudrun Heinrich
Organisation: KIT Department of Physics
Part of: M-PHYS-105642 - Precision Phenomenology at Colliders and Computational Methods, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>4025151</td>
<td>2</td>
<td>Precision Phenomenology at Colliders and Computational Methods</td>
<td>Heinrich</td>
<td></td>
</tr>
<tr>
<td>4025152</td>
<td>2</td>
<td>Exercises to Precision Phenomenology at Colliders and Computational Methods</td>
<td>Heinrich, Chen</td>
<td></td>
</tr>
<tr>
<td>4025151</td>
<td>2</td>
<td>Precision Phenomenology at Colliders and Computational Methods</td>
<td>Heinrich</td>
<td></td>
</tr>
<tr>
<td>4025152</td>
<td>2</td>
<td>Exercises to Precision Phenomenology at Colliders and Computational Methods</td>
<td>Heinrich, Kerner</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.215 Course: Precision Phenomenology at Colliders and Computational Methods, without Exercises [T-PHYS-111280]

Responsible: Prof. Dr. Gudrun Heinrich
Organisation: KIT Department of Physics
Part of: M-PHYS-105641 - Precision Phenomenology at Colliders and Computational Methods, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>4</td>
<td>Grade to a third</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type / 🖥</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4025151</td>
<td>Precision Phenomenology at Colliders and Computational Methods</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Heinrich</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4025151</td>
<td>Precision Phenomenology at Colliders and Computational Methods</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Heinrich</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.216 Course: Quantum Detectors and Sensors [T-PHYS-112582]

Responsible: Prof. Dr. Sebastian Kempf
Organisation: KIT Department of Electrical Engineering and Information Technology
KIT Department of Physics
Part of: M-PHYS-106193 - Quantum Detectors and Sensors

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2312706</td>
<td>Quantum Detectors and Sensors</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Kempf</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2312707</td>
<td>Exercise for 2312706 Quantum Detectors and Sensors</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Wünsch, Mitarbeiter*innen, Schuster</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2312706</td>
<td>Quantum Detectors and Sensors</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Kempf</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2312707</td>
<td>Exercise for 2312706 Quantum Detectors and Sensors</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ilin</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2312706</td>
<td>Quantum Detectors and Sensors</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Kempf</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2312707</td>
<td>Exercise for 2312706 Quantum Detectors and Sensors</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Ilin</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.217 Course: Quantum Detectors and Sensors (Minor) [T-PHYS-112583]

Responsible: Prof. Dr. Sebastian Kempf
Organisation: KIT Department of Electrical Engineering and Information Technology
KIT Department of Physics
Part of: M-PHYS-106194 - Quantum Detectors and Sensors (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>2312706</td>
<td>Quantum Detectors and Sensors</td>
<td>3</td>
<td>Lecture</td>
<td>Kempf</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>2312707</td>
<td>Exercise for 2312706 Quantum Detectors and Sensors</td>
<td>1</td>
<td>Practice</td>
<td>Wünsch, Mitarbeiter*innen, Schuster</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2312706</td>
<td>Quantum Detectors and Sensors</td>
<td>3</td>
<td>Lecture</td>
<td>Kempf</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2312707</td>
<td>Exercise for 2312706 Quantum Detectors and Sensors</td>
<td>1</td>
<td>Practice</td>
<td>Ilin</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2312706</td>
<td>Quantum Detectors and Sensors</td>
<td>3</td>
<td>Lecture</td>
<td>Kempf</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>2312707</td>
<td>Exercise for 2312706 Quantum Detectors and Sensors</td>
<td>1</td>
<td>Practice</td>
<td>Ilin</td>
</tr>
</tbody>
</table>

Legend: 📲 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.218 Course: Quantum Optics at the Nano Scale, with Exercises [T-PHYS-113126]

Responsible: Prof. Dr. David Hunger

Organisation: KIT Department of Physics

Part of: M-PHYS-106508 - Quantum Optics at the Nano Scale, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Period</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4021161</td>
<td>Quantum Optics at the Nano Scale: Fundamentals and Applications</td>
<td>Lecture</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Hunger</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021162</td>
<td>Übungen zu Quantum Optics at the Nano Scale: Fundamentals and Applications</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Hunger, Hessenauer</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021161</td>
<td>Quantum Optics at the Nano Scale: Fundamentals and Applications</td>
<td>Lecture</td>
<td>3 SWS</td>
<td>Grade to a third</td>
<td>Hunger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021162</td>
<td>Übungen zu Quantum Optics at the Nano Scale: Fundamentals and Applications</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Grade to a third</td>
<td>Hunger, Köster</td>
</tr>
</tbody>
</table>

Prerequisites

none

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled
5.219 Course: Quantum Optics at the Nano Scale, with Exercises (Minor) [T-PHYS-113127]

- **Responsible:** Prof. Dr. David Hunger
- **Organisation:** KIT Department of Physics
- **Part of:** M-PHYS-106509 - Quantum Optics at the Nano Scale, with Exercises (Minor)

Type
- Completed coursework

Credits
- 8

Grading scale
- pass/fail

Recurrence
- Irregular

Version
- 1

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4021161</td>
<td>Quantum Optics at the Nano Scale: Fundamentals and Applications</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Hunger</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021162</td>
<td>Übungen zu Quantum Optics at the Nano Scale: Fundamentals and Applications</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Hunger, Hessenauer</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021161</td>
<td>Quantum Optics at the Nano Scale: Fundamentals and Applications</td>
<td>3 SWS</td>
<td>Lecture</td>
<td>Hunger</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021162</td>
<td>Übungen zu Quantum Optics at the Nano Scale: Fundamentals and Applications</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Hunger, Köster</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
- none
5.220 Course: Quantum Optics at the Nano Scale, without Exercises [T-PHYS-113128]

Responsible: Prof. Dr. David Hunger
Organisation: KIT Department of Physics
Part of: M-PHYS-106510 - Quantum Optics at the Nano Scale, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Prerequisites</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>3 SWS</td>
<td>none</td>
<td>Lecture / hunger</td>
</tr>
</tbody>
</table>

Events

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗺 On-Site, ✗ Cancelled
5.221 Course: Remote Sensing of Atmosphere and Ocean [T-PHYS-111424]

Responsible: Prof. Dr. Björn-Martin Sinnhuber

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1 terms</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4052151</td>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4052152</td>
<td>Exercises to Remote Sensing of Atmosphere and Ocean</td>
<td>1</td>
<td>Practice / 🖥</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4052151</td>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td>2</td>
<td>Lecture / 🖏️</td>
<td>Sinnhuber, Cermak</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4052152</td>
<td>Exercises to Remote Sensing of Atmosphere and Ocean</td>
<td>1</td>
<td>Practice / 🖏️</td>
<td>Sinnhuber, Cermak</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4052151</td>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td>2</td>
<td>Lecture / 🖏️</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4052152</td>
<td>Exercises to Remote Sensing of Atmosphere and Ocean</td>
<td>1</td>
<td>Practice / 🖏️</td>
<td>Sinnhuber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🖏️ On-Site, ❌ Cancelled

Competence Certificate

More than 50% of the points from the exercises must be achieved.

Prerequisites

None

Recommendation

None

Annotation

None
5.222 Course: Seismic Data Processing, Coursework [T-PHYS-108686]

Responsible: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Organisation: KIT Department of Physics

Part of: M-PHYS-104186 - Seismic Data Processing with Final Report (Graded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>
5.223 Course: Seismic Data Processing, Final Report (Graded) [T-PHYS-108656]

Responsible: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Organisation: KIT Department of Physics

Part of: M-PHYS-104186 - Seismic Data Processing with Final Report (Graded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td></td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading Scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4060321</td>
<td>Seismic Data Processing</td>
<td>1</td>
<td>Lecture / 🖥</td>
<td>2</td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4060322</td>
<td>Exercises to Seismic Data Processing</td>
<td>2</td>
<td>Practice / 🖥</td>
<td></td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4060321</td>
<td>Seismic Data Processing</td>
<td>1</td>
<td>Lecture / 🗣</td>
<td>2</td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4060322</td>
<td>Exercises to Seismic Data Processing</td>
<td>2</td>
<td>Practice / 🗣</td>
<td></td>
<td></td>
<td>Bohlen, Hertweck, Houpt</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4060321</td>
<td>Seismic Data Processing</td>
<td>1</td>
<td>Lecture / 🗣</td>
<td>2</td>
<td></td>
<td>Hertweck, Bohlen</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4060322</td>
<td>Exercises to Seismic Data Processing</td>
<td>2</td>
<td>Practice / 🗣</td>
<td></td>
<td></td>
<td>Hertweck, Bohlen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

Successful participation on "Seismic Data Processing, course achievement"

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-PHYS-108686 - Seismic Data Processing, Coursework must have been passed.
5.224 Course: Seismic Modeling [T-PHYS-110605]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: M-PHYS-105227 - Seismic Modeling

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Grade to</th>
<th>Recurrence</th>
<th>Teacher(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4060261</td>
<td>Seismic Modelling</td>
<td>1</td>
<td></td>
<td>Each summer term</td>
<td>Bohlen, Pan</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4060262</td>
<td>Exercises to Seismic Modelling</td>
<td>1</td>
<td></td>
<td></td>
<td>Bohlen, Pan</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4060261</td>
<td>Seismic Modelling</td>
<td>1</td>
<td></td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4060262</td>
<td>Exercises to Seismic Modelling</td>
<td>1</td>
<td></td>
<td></td>
<td>Bohlen, NN</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4060261</td>
<td>Seismic Modelling</td>
<td>1</td>
<td></td>
<td></td>
<td>Bohlen</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4060262</td>
<td>Exercises to Seismic Modelling</td>
<td>1</td>
<td></td>
<td></td>
<td>Bohlen</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Seismic Modeling (Minor) [T-PHYS-110607]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: M-PHYS-105228 - Seismic Modeling (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Time</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4060261</td>
<td>Seismic Modelling</td>
<td>1</td>
<td>Lecture</td>
<td>Bohlen, Pan</td>
<td></td>
</tr>
<tr>
<td>ST 2021</td>
<td>4060262</td>
<td>Exercises to Seismic Modelling</td>
<td>1</td>
<td>Practice</td>
<td>Bohlen, Pan</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4060261</td>
<td>Seismic Modelling</td>
<td>1</td>
<td>Lecture</td>
<td>Bohlen, Hertweck</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>4060262</td>
<td>Exercises to Seismic Modelling</td>
<td>1</td>
<td>Practice</td>
<td>Bohlen, NN</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4060261</td>
<td>Seismic Modelling</td>
<td>1</td>
<td>Lecture</td>
<td>Bohlen</td>
<td></td>
</tr>
<tr>
<td>ST 2023</td>
<td>4060262</td>
<td>Exercises to Seismic Modelling</td>
<td>1</td>
<td>Practice</td>
<td>Bohlen</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.226 Course: Seismics [T-PHYS-112843]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: M-PHYS-106326 - Seismics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Type / Legend</th>
<th>Instructors</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Seismics</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Exercises on Seismics</td>
<td>2</td>
<td>Practice / Online</td>
<td>Bohlen, Hertweck, Houpt</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seismics</td>
<td>2</td>
<td>Lecture / Online</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exercises on Seismics</td>
<td>2</td>
<td>Practice / Online</td>
<td>Bohlen, Hertweck, Houpt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🤳 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.227 Course: Seismsics (Minor) [T-PHYS-112833]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: M-PHYS-106325 - Seismsics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event ID</th>
<th>Type</th>
<th>SWS</th>
<th>Type/Location</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4060111</td>
<td>Seismsics</td>
<td>2</td>
<td>Lecture</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060111</td>
<td>Seismsics</td>
<td>2</td>
<td>Lecture</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4060112</td>
<td>Exercises on Seismsics</td>
<td>2</td>
<td>Practice</td>
<td>Bohlen, Hertweck, Houpt</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060112</td>
<td>Exercises on Seismsics</td>
<td>2</td>
<td>Practice</td>
<td>Bohlen, Hertweck, Houpt</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⬗ Cancelled
Course: Seismology [T-PHYS-110603]

Responsible: Prof. Dr. Andreas Rietbrock

Organisation: KIT Department of Physics

Part of: M-PHYS-105225 - Seismology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event ID</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Rietbrock, Gottschämmer, Linder</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Kufner, Gao, Rietbrock</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Kufner, Gao, Linder, Rietbrock</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Rietbrock, Gao</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td>Gao, Rietbrock</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.229 Course: Seismology (Minor) [T-PHYS-110604]

Responsible: Prof. Dr. Andreas Rietbrock
Organisation: KIT Department of Physics
Part of: M-PHYS-105226 - Seismology (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Subject</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Participants</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
<td>Each winter term</td>
<td>Rietbrock, Gottschämmer, Linder</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>Kufner, Gao, Rietbrock</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
<td>Each winter term</td>
<td>Kufner, Gao, Linder, Rietbrock</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>Rietbrock, Gao</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
<td>Each winter term</td>
<td>Gao, Rietbrock</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🔄 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
none
5.230 Course: Selfassignment-MScPhysics-graded [T-PHY-111562]

Responsible: Studiendekan Physik

Organisation: KIT Department of Physics

Part of: M-PHYS-101394 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Self service assignment of supplementary studies

This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
5.231 Course: Selfassignment-MScPhysics-ungraded [T-PHYS-111565]

Responsible: Studiendekan Physik

Organisation: KIT Department of Physics

Part of: M-PHYS-101394 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Self service assignment of supplementary studies

This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
5.232 Course: Seminar on IPCC Assessment Report [T-PHYS-111410]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto

Organisation: KIT Department of Physics

Part of: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Seminar on IPCC Assessment Report</td>
<td>2 SWS</td>
<td>Advanced seminar / 🗣</td>
<td>Each winter term</td>
<td>3</td>
</tr>
<tr>
<td>4052194</td>
<td>Ginete Werner Pinto, Ludwig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Seminar on IPCC Assessment Report</td>
<td>2 SWS</td>
<td>Advanced seminar / 🧩</td>
<td>Ginete Werner Pinto, Ludwig</td>
<td></td>
</tr>
<tr>
<td>4052194</td>
<td>Ludwig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Seminar on IPCC Assessment Report</td>
<td>2 SWS</td>
<td>Advanced seminar / 🧩</td>
<td>Ginete Werner Pinto, Ludwig</td>
<td></td>
</tr>
<tr>
<td>4052194</td>
<td>Ludwig</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, 🗙 Cancelled

Competence Certificate
Study of a chapter of the current IPCC report with subsequent presentation (~ 20-25 min) and submission of a written summary (1 page).

Prerequisites
none

Recommendation
none

Annotation
none
5.233 Course: Solid State Quantum Computing [T-PHYS-111118]

Responsible: Prof. Dr. Alexey Ustinov
Organisation: KIT Department of Physics
Part of: M-PHYS-105537 - Solid State Quantum Computing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| WT 21/22 | 4021081 | Solid-State Quantum Computing | 2 SWS | Lecture / 🧩 | Ustinov |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.234 Course: Solid State Quantum Computing, with Exercises [T-PHYS-111804]

Responsible: Prof. Dr. Alexey Ustinov

Organisation: KIT Department of Physics

Part of: M-PHYS-105871 - Solid State Quantum Computing, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Lead Educator</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021081</td>
<td>Solid-State Quantum Computing</td>
<td>2</td>
<td>Lecture / Blended</td>
<td>2</td>
<td>Grade to a third</td>
<td>Ustinov</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021082</td>
<td>Exercises to Solid-State Quantum Computing</td>
<td>2</td>
<td>Practice / On-Site</td>
<td>2</td>
<td>Grade to a third</td>
<td>Ustinov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
Course: Solid State Quantum Computing, with Exercises (Minor) [T-PHYS-111805]

Responsible: Prof. Dr. Alexey Ustinov
Organisation: KIT Department of Physics
Part of: M-PHYS-105872 - Solid State Quantum Computing, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021081</td>
<td>Solid-State Quantum Computing</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021082</td>
<td>Exercises to Solid-State Quantum Computing</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled
Course: Solid State Quantum Technologies [T-PHYS-109890]

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Responsible: Prof. Dr. Wolfgang Wernsdorfer
Organisation: KIT Department of Physics
Part of: M-PHYS-104858 - Solid State Quantum Technologies (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4021131</td>
<td>Solid State Quantum Technologies</td>
<td>2</td>
<td>Lecture / 🖥️</td>
<td>Wernsdorfer, Willke</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4021132</td>
<td>Exercises to Solid State Quantum Technologies</td>
<td>2</td>
<td>Practice / 🖥️</td>
<td>Wernsdorfer, Willke</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021131</td>
<td>Solid State Quantum Technologies</td>
<td>2</td>
<td>Lecture / 📡️</td>
<td>Wernsdorfer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021132</td>
<td>Exercises to Solid State Quantum Technologies</td>
<td>2</td>
<td>Practice / 📡️</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021131</td>
<td>Solid State Quantum Technologies</td>
<td>2</td>
<td>Lecture / 📡️</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021132</td>
<td>Exercises to Solid State Quantum Technologies</td>
<td>2</td>
<td>Practice / 📡️</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 📡️ Blended (On-Site/Online), 🗣️ On-Site, 🗑️ Cancelled
5.237 Course: Solid State Quantum Technologies [T-PHYS-109889]

Responsible: Prof. Dr. Wolfgang Wernsdorfer
Organisation: KIT Department of Physics
Part of: M-PHYS-104857 - Solid State Quantum Technologies

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4021131</td>
<td>Solid State Quantum Technologies (2 SWS) Lecture / 🖥️ Wernsdorfer, Willke</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4021132</td>
<td>Exercises to Solid State Quantum Technologies (2 SWS) Practice / 🖥️ Wernsdorfer, Willke</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021131</td>
<td>Solid State Quantum Technologies (2 SWS) Lecture / 📚 Wernsdorfer</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021132</td>
<td>Exercises to Solid State Quantum Technologies (2 SWS) Practice / 📚 Wernsdorfer, Reisinger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021131</td>
<td>Solid State Quantum Technologies (2 SWS) Lecture / 📚 Wernsdorfer, Reisinger</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021132</td>
<td>Exercises to Solid State Quantum Technologies (2 SWS) Practice / 📚 Wernsdorfer, Reisinger</td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 📚 On-Site, ✗ Cancelled
5.238 Course: Solid-State Optics, without Exercises [T-PHYS-104773]

Responsible: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Organisation: KIT Department of Physics

Part of: M-PHYS-102408 - Solid-State Optics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>Lecture / 🗣</td>
<td>Kalt</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>Lecture / 🗣</td>
<td>Hetterich, Kalt</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>Lecture / 🗣</td>
<td>Hetterich</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.239 Course: Solid-State Optics, without Exercises (Minor) [T-PHYS-104774]

Responsible: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Organisation: KIT Department of Physics

Part of: M-PHYS-102409 - Solid-State Optics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Course Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>4</td>
<td>Lecture / 🗣️</td>
<td>Kalt</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>4</td>
<td>Lecture / 🗣️</td>
<td>Hetterich, Kalt</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>4</td>
<td>Lecture / 🗣️</td>
<td>Hetterich</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
none
5.240 Course: Specialisation Module - Self Assignment BeNe [T-ZAK-112346]

Responsible: Christine Myglas
Organisation: M-ZAK-106099 - Supplementary Studies on Sustainable Development

Type
Examination of another type

Credits
6

Grading scale
Grade to a third

Version
1

Competence Certificate
The monitoring occurs in the form of several supplementary courses, which usually comprise a presentation of the (group) project, a written elaboration of the (group) project as well as an individual term paper, if necessary with appendices (examination performances of other kind according to statutes § 5 section 3 No. 3 or § 7 section 7).

The presentation is usually with the accompanying practice partners, as well as the written paper.

Prerequisites
Active participation in all three mandatory components.

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- ZAK Begleitstudium

Recommendation
Knowledge from 'Basic Module ' and 'Elective Module ' is helpful.
5.241 Course: Specialization Phase [T-PHYS-102481]

Responsible: Studiendekan Physik

Organisation: KIT Department of Physics

Part of: M-PHYS-101396 - Specialization Phase

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>15</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.242 Course: Spin Transport in Nanostructures [T-PHYS-104586]

Responsible: apl. Prof. Dr. Detlef Beckmann
Organisation: KIT Department of Physics
Part of: M-PHYS-102293 - Spin Transport in Nanostructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Semester Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>4021141</td>
<td>Spintransport in Nanostrukturen</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>Beckmann</td>
</tr>
<tr>
<td>2021</td>
<td>4021142</td>
<td>Übungen zu Spintransport in Nanostrukturen</td>
<td>1</td>
<td>Practice / 🖥️</td>
<td>Beckmann</td>
</tr>
<tr>
<td>2022</td>
<td>4021141</td>
<td>Spintransport in Nanostrukturen</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Beckmann</td>
</tr>
<tr>
<td>2022</td>
<td>4021142</td>
<td>Übungen zu Spintransport in Nanostrukturen</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Beckmann</td>
</tr>
<tr>
<td>2023</td>
<td>4021141</td>
<td>Spintransport in Nanostrukturen</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Beckmann, Maier</td>
</tr>
<tr>
<td>2023</td>
<td>4021142</td>
<td>Übungen zu Spintransport in Nanostrukturen</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Beckmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5 Courses

Course: Spin Transport in Nanostructures (Minor) [T-PHYS-110858]

Responsible: apl. Prof. Dr. Detlef Beckmann
Organisation: KIT Department of Physics
Part of: M-PHYS-105375 - Spin Transport in Nanostructures (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4021141</td>
<td>Spintransport in Nanostrukturen</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Beckmann</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4021142</td>
<td>Übungen zu Spintransport in Nanostrukturen</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Beckmann</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021141</td>
<td>Spintransport in Nanostrukturen</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Beckmann</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021142</td>
<td>Übungen zu Spintransport in Nanostrukturen</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Beckmann</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021141</td>
<td>Spintransport in Nanostrukturen</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Beckmann, Maier</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021142</td>
<td>Übungen zu Spintransport in Nanostrukturen</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Beckmann, Maier</td>
</tr>
</tbody>
</table>

Prerequisites

None
5.244 Course: Superconducting Nanostructures [T-PHYS-104513]

Responsible: apl. Prof. Dr. Detlef Beckmann
Organisation: KIT Department of Physics
Part of: M-PHYS-102191 - Superconducting Nanostructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td></td>
<td>Grade to a third</td>
<td>Irregular</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4021031</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Beckmann</td>
</tr>
<tr>
<td>WT 21/22 4021032</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Beckmann</td>
</tr>
<tr>
<td>WT 22/23 4021031</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Beckmann</td>
</tr>
<tr>
<td>WT 22/23 4021032</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Beckmann</td>
</tr>
<tr>
<td>WT 23/24 4021031</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Beckmann</td>
</tr>
<tr>
<td>WT 23/24 4021032</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Beckmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑️ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.245 Course: Superconducting Nanostructures (Minor) [T-PHYS-109621]

Responsible: apl. Prof. Dr. Detlef Beckmann

Organisation: KIT Department of Physics

Part of: M-PHYS-104723 - Superconducting Nanostructures (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecture/Practice</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4021031</td>
<td>Supraleiter-Nanostrukturen</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Beckmann</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4021032</td>
<td>Übungen zu Supraleiter-Nanostrukturen</td>
<td>1</td>
<td>Practice</td>
<td>Beckmann</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4021031</td>
<td>Supraleiter-Nanostrukturen</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Beckmann</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4021032</td>
<td>Übungen zu Supraleiter-Nanostrukturen</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Beckmann</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4021031</td>
<td>Superconducting Nanostructures</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Beckmann</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4021032</td>
<td>Exercises to Superconducting Nanostructures</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Beckmann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🇨Sİ Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
Course: Superconductivity, Josephson Effect and Applications, with Exercises [T-PHYS-111293]

Responsible: Prof. Dr. Alexander Shnirman
Organisation: KIT Department of Physics
Part of: M-PHYS-105655 - Superconductivity, Josephson Effect and Applications, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Event Number</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4024161</td>
<td>Superconductivity, Josephson effect and applications</td>
<td>3</td>
<td>Lecture / 📚</td>
<td>Shnirman</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4024162</td>
<td>Exercises to Superconductivity, Josephson effect and applications</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Shnirman</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4024161</td>
<td>Superconductivity, Josephson effect and applications</td>
<td>3</td>
<td>Lecture / 📚</td>
<td>Shnirman</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4024162</td>
<td>Exercises to Superconductivity, Josephson effect and applications</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Shnirman, Piasotski</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.247 Course: Superconductivity, Josephson Effect and Applications, with Exercises (Minor) [T-PHYS-111294]

Responsible: Prof. Dr. Alexander Shnirman
Organisation: KIT Department of Physics
Part of: M-PHYS-105656 - Superconductivity, Josephson Effect and Applications, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4024161</td>
<td>Superconductivity, Josephson effect and applications</td>
<td>3 SWS</td>
<td>Lecture / 🖥</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4024162</td>
<td>Exercises to Superconductivity, Josephson effect and applications</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4024161</td>
<td>Superconductivity, Josephson effect and applications</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4024162</td>
<td>Exercises to Superconductivity, Josephson effect and applications</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗣 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
Course: Superconductivity, Josephson Effect and Applications, without Exercises [T-PHYS-113257]

Responsible: Prof. Dr. Alexander Shnirman

Organisation: KIT Department of Physics

Part of: M-PHYS-106584 - Superconductivity, Josephson Effect and Applications, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>3 SWS</td>
<td>Lecture / 🚨 ONLINE</td>
<td></td>
<td>Shnirman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superconductivity, Josephson effect and applications</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>3 SWS</td>
<td>Lecture / 🗣️ ON-SITE</td>
<td></td>
<td>Shnirman</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Superconductivity, Josephson effect and applications</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🚨 Online, 🗣️ Blended (On-Site/Online), 🗣️ On-Site, 🗑️ Cancelled
5.249 Course: Surface Science, with Exercises [T-PHYS-113098]

Responsible: TT-Prof. Dr. Philip Willke
Prof. Dr. Wulf Wulfhekel
PD Dr. Khalil Zakeri-Lori

Organisation: KIT Department of Physics

Part of: M-PHYS-106482 - Surface Science, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4021121	Oberflächenphysik	4 SWS	Lecture / 🖥️	Wulfhekel
ST 2021	4021122	Übungen zu Oberflächenphysik	1 SWS	Practice / 🖥️	Wulfhekel, Gozlinski
ST 2022	4021121	Surface Science	4 SWS	Lecture / 🗣️	Willke, Zakeri-Lori
ST 2022	4021122	Übungen zu Oberflächenphysik	1 SWS	Practice / 🗣️	Willke, Zakeri-Lori
ST 2023	4021121	Surface Science	4 SWS	Lecture / 🗣️	Willke, Zakeri-Lori
ST 2023	4021122	Exercises to Surface Science	1 SWS	Practice / 🗣️	Willke, Zakeri-Lori

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Prerequisites

none
5.250 Course: Surface Science, with Exercises (Minor) [T-PHYS-113100]

Responsible: TT-Prof. Dr. Philip Willke
Prof. Dr. Wulf Wulfhekel
PD Dr. Khalil Zakeri-Lori

Organisation: KIT Department of Physics

Part of: M-PHYS-106484 - Surface Science, with Exercises (Minor)

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4021121</td>
<td>Oberflächenphysik</td>
<td>4</td>
<td>Lecture / 🖥</td>
<td>Wulfhekel</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4021122</td>
<td>Übungen zu Oberflächenphysik</td>
<td>1</td>
<td>Practice / 🖥</td>
<td>Wulfhekel, Gozlinski</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021121</td>
<td>Surface Science</td>
<td>4</td>
<td>Lecture / 🗣</td>
<td>Willke, Zakeri-Lori</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4021122</td>
<td>Übungen zu Oberflächenphysik</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Willke, Zakeri-Lori</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021121</td>
<td>Surface Science</td>
<td>4</td>
<td>Lecture / 🗣</td>
<td>Willke, Zakeri-Lori</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4021122</td>
<td>Exercises to Surface Science</td>
<td>1</td>
<td>Practice / 🗣</td>
<td>Willke, Zakeri-Lori</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Credits 10

Grading scale pass/fail

Recurrence Irregular

Version 1

Prerequisites

none
5.251 Course: Surface Science, without Exercises [T-PHYS-113099]

Responsible: TT-Prof. Dr. Philip Willke
Prof. Dr. Wulf Wulfhekel
PD Dr. Khalil Zakeri-Lori

Organisation: KIT Department of Physics
Part of: M-PHYS-106483 - Surface Science, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Lecture / Online</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4021121</td>
<td>4 SWS</td>
<td>Oberflächenphysik</td>
<td>Wulfhekel</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4021121</td>
<td>4 SWS</td>
<td>Surface Science</td>
<td>Willke, Zakeri-Lori</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4021121</td>
<td>4 SWS</td>
<td>Surface Science</td>
<td>Willke, Zakeri-Lori</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
5.252 Course: Symmetries and Groups [T-PHYS-104596]

Responsible: Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: M-PHYS-102317 - Symmetries and Groups

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam.</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>4025031</th>
<th>Symmetries, Groups and Extended Gauge Theories</th>
<th>4 SWS</th>
<th>Lecture / 🗝</th>
<th>Nierste</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4025032</td>
<td>Exercises to Symmetries, Groups and Extended Gauge Theories</td>
<td>2 SWS</td>
<td>Practice / 🗝</td>
<td>Nierste, Lang</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☐ Blended (On-Site/Online), 🗝 On-Site, ✗ Cancelled

Prerequisites

none
5.253 Course: Symmetries and Groups (Minor) [T-PHYS-104597]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: M-PHYS-102318 - Symmetries and Groups (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4025031</td>
<td>Symmetries, Groups and Extended Gauge Theories</td>
<td>4</td>
<td>Lecture / 🗣</td>
<td>Nierste</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4025032</td>
<td>Exercises to Symmetries, Groups and Extended Gauge Theories</td>
<td>2</td>
<td>Practice / 🗣</td>
<td>Nierste, Lang</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.254 Course: Symmetries, Groups and Extended Gauge Theories [T-PHYS-102393]

Responsible: Prof. Dr. Ulrich Nierste

Organisation: KIT Department of Physics

Part of: M-PHYS-102315 - Symmetries, Groups and Extended Gauge Theories

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>12</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lecture</td>
<td>4 SWS</td>
<td></td>
<td>Irregular</td>
<td></td>
</tr>
<tr>
<td>Practice</td>
<td>2 SWS</td>
<td></td>
<td>Irregular</td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

none
5.255 Course: Symmetries, Groups and Extended Gauge Theories (Minor) [T-PHYS-102444]

Responsible: Prof. Dr. Ulrich Nierste
Organisation: KIT Department of Physics
Part of: M-PHYS-102316 - Symmetries, Groups and Extended Gauge Theories (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 4025031</td>
<td>Symmetries, Groups and Extended Gauge Theories</td>
<td>4 SWS</td>
<td>Lecture / 🗣️</td>
<td>Irregular</td>
<td>1</td>
</tr>
<tr>
<td>WT 22/23 4025032</td>
<td>Exercises to Symmetries, Groups and Extended Gauge Theories</td>
<td>2 SWS</td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Prerequisites

none
5.256 Course: The ABC of DFT [T-PHYS-105960]

Responsible: Prof. Dr. Carsten Rockstuhl
Prof. Dr. Wolfgang Wenzel

Organisation: KIT Department of Physics

Part of: M-PHYS-102984 - The ABC of DFT

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Recurrence</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4023151</td>
<td></td>
<td>The ABC of DFT</td>
<td>2</td>
<td></td>
<td>Rockstuhl, Holzer</td>
</tr>
<tr>
<td>ST 2021 4023152</td>
<td></td>
<td>Exercises to The ABC of DFT</td>
<td>1</td>
<td></td>
<td>Rockstuhl, Krstic</td>
</tr>
<tr>
<td>ST 2022 4023151</td>
<td></td>
<td>The ABC of DFT</td>
<td>2</td>
<td></td>
<td>Wenzel, Krstic</td>
</tr>
<tr>
<td>ST 2022 4023152</td>
<td></td>
<td>Exercises to The ABC of DFT</td>
<td>1</td>
<td></td>
<td>Wenzel, Holzer</td>
</tr>
<tr>
<td>ST 2023 4023151</td>
<td></td>
<td>The ABC of DFT</td>
<td>2</td>
<td></td>
<td>Wenzel, Krstic</td>
</tr>
<tr>
<td>ST 2023 4023152</td>
<td></td>
<td>Exercises to The ABC of DFT</td>
<td>1</td>
<td></td>
<td>Wenzel, Holzer</td>
</tr>
</tbody>
</table>

Legend: 📧 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.257 Course: Theoretical Molecular Biophysics, with Seminar [T-PHYS-102365]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics
Part of: M-PHYS-102169 - Theoretical Molecular Biophysics, with Seminar

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Events</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4023031</td>
<td>Theoretische molekulare Biophysik</td>
<td>Lecture</td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4023032</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>Practice</td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4023031</td>
<td>Theoretische molekulare Biophysik</td>
<td>Lecture</td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4023032</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>Practice</td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4023031</td>
<td>Theoretical Molecular Biophysics</td>
<td>Lecture</td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4023032</td>
<td>Exercises to Theoretical Molecular Biophysics</td>
<td>Practice</td>
<td>Wenzel</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- ⚡ Cancelled

Physics Master (Master of Science)
Module Handbook as of 20/10/2023
618
5.258 Course: Theoretical Molecular Biophysics, with Seminar (Minor) [T-PHYS-102420]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics
Part of: M-PHYS-102170 - Theoretical Molecular Biophysics, with Seminar (Minor)

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Theoretische molekulare Biophysik</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Wenzel</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>1 SWS</td>
<td>Practice</td>
<td>Wenzel</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Theoretische molekulare Biophysik</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Wenzel</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Wenzel</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Theoretical Molecular Biophysics</td>
<td>2 SWS</td>
<td>Lecture / 🖥</td>
<td>Wenzel</td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Exercises to Theoretical Molecular Biophysics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Wenzel</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🗣 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.259 Course: Theoretical Molecular Biophysics, without Seminar [T-PHYS-104473]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics
Part of: M-PHYS-102171 - Theoretical Molecular Biophysics, without Seminar

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Event Code</th>
<th>Course Details</th>
<th>SWS</th>
<th>Type</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4023031</td>
<td>Theoretische molekulare Biophysik</td>
<td>2</td>
<td>Lecture</td>
<td></td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4023032</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>1</td>
<td>Practice</td>
<td></td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4023031</td>
<td>Theoretische molekulare Biophysik</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td></td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4023032</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>1</td>
<td>Practice / 🗣</td>
<td></td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4023031</td>
<td>Theoretical Molecular Biophysics</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td></td>
<td>Wenzel</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4023032</td>
<td>Exercises to Theoretical Molecular Biophysics</td>
<td>1</td>
<td>Practice / 🗣</td>
<td></td>
<td>Wenzel</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.260 Course: Theoretical Molecular Biophysics, without Seminar (Minor) [T-PHYS-104474]

Responsible: Prof. Dr. Wolfgang Wenzel
Organisation: KIT Department of Physics
Part of: M-PHYS-102172 - Theoretical Molecular Biophysics, without Seminar (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4023031 Theoretische molekulare Biophysik 2 SWS Lecture Wenzel</td>
</tr>
<tr>
<td>WT 21/22 4023032 Übungen zu Theoretische molekulare Biophysik 1 SWS Practice Wenzel</td>
</tr>
<tr>
<td>WT 22/23 4023031 Theoretische molekulare Biophysik 2 SWS Lecture / 🗣 Wenzel</td>
</tr>
<tr>
<td>WT 22/23 4023032 Übungen zu Theoretische molekulare Biophysik 1 SWS Practice / 🗣 Wenzel</td>
</tr>
<tr>
<td>WT 23/24 4023031 Theoretical Molecular Biophysics 2 SWS Lecture / 🗣 Wenzel</td>
</tr>
<tr>
<td>WT 23/24 4023032 Exercises to Theoretical Molecular Biophysics 1 SWS Practice / 🗣 Wenzel</td>
</tr>
</tbody>
</table>

Legend: 🗣 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.261 Course: Theoretical Nanooptics [T-PHYS-104587]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of: M-PHYS-102295 - Theoretical Nanooptics

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4023131</td>
<td>Theoretical Nanooptics</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4023132</td>
<td>Exercises to Theoretical</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanooptics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4023131</td>
<td>Theoretical Nanooptics</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4023132</td>
<td>Exercises to Theoretical</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanooptics</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4023131</td>
<td>Theoretical Nanooptics</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Garst, Fernandez Corbaton</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4023132</td>
<td>Exercises to Theoretical</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Garst, Fernandez Corbaton</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Nanooptics</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.262 Course: Theoretical Nanooptics (Minor) [T-PHYS-106311]

Responsible: Prof. Dr. Markus Garst
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of: M-PHYS-103177 - Theoretical Nanooptics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4023131</td>
<td>Theoretical Nanooptics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>6</td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td>WT 21/22 4023132</td>
<td>Exercises to Theoretical Nanooptics</td>
<td>1</td>
<td>Practice / 🗣</td>
<td></td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td>WT 22/23 4023131</td>
<td>Theoretical Nanooptics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td></td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td>WT 22/23 4023132</td>
<td>Exercises to Theoretical Nanooptics</td>
<td>1</td>
<td>Practice / 🗣</td>
<td></td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td>WT 23/24 4023131</td>
<td>Theoretical Nanooptics</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td></td>
<td>Garst, Fernandez Corbaton</td>
</tr>
<tr>
<td>WT 23/24 4023132</td>
<td>Exercises to Theoretical Nanooptics</td>
<td>1</td>
<td>Practice / 🗣</td>
<td></td>
<td>Garst, Fernandez Corbaton</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.263 Course: Theoretical Optics [T-PHYS-104578]

Responsible: PD Dr. Boris Narozhnyy
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of: M-PHYS-102277 - Theoretical Optics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>4023111</th>
<th>Theoretical Optics</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Rockstuhl</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4023112</td>
<td>Exercises to Theoretical Optics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Rockstuhl, Dhawan</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4023111</td>
<td>Theoretical Optics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Rockstuhl</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4023112</td>
<td>Exercises to Theoretical Optics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Rockstuhl, Whittam</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4023111</td>
<td>Theoretical Optics</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Narozhnyy</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4023112</td>
<td>Exercises to Theoretical Optics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Narozhnyy, Perdana</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
5.264 Course: Theoretical Optics - Unit [T-PHYS-102305]

Responsible: PD Dr. Boris Narozhnyy
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of: M-PHYS-102279 - Theoretical Optics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST</th>
<th>Course</th>
<th>Type</th>
<th>SWS</th>
<th>Lecture/Practice</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>2021</td>
<td>4023111 Theoretical Optics</td>
<td>Lecture/🖥</td>
<td>2</td>
<td>Lecture/🖥</td>
<td>Rockstuhl</td>
</tr>
<tr>
<td>2021</td>
<td>4023112 Exercises to Theoretical Optics</td>
<td>Practice/🖥</td>
<td>1</td>
<td>Practice/🖥</td>
<td>Rockstuhl, Dhawan</td>
</tr>
<tr>
<td>2022</td>
<td>4023111 Theoretical Optics</td>
<td>Lecture/🗣</td>
<td>2</td>
<td>Lecture/🗣</td>
<td>Rockstuhl</td>
</tr>
<tr>
<td>2022</td>
<td>4023112 Exercises to Theoretical Optics</td>
<td>Practice/🗣</td>
<td>1</td>
<td>Practice/🗣</td>
<td>Rockstuhl, Whittam</td>
</tr>
<tr>
<td>2023</td>
<td>4023111 Theoretical Optics</td>
<td>Lecture/🗣</td>
<td>2</td>
<td>Lecture/🗣</td>
<td>Narozhnyy</td>
</tr>
<tr>
<td>2023</td>
<td>4023112 Exercises to Theoretical Optics</td>
<td>Practice/🗣</td>
<td>1</td>
<td>Practice/🗣</td>
<td>Narozhnyy, Perdana</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
Course: Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises [T-PHYS-102544]

Responsible:
- Prof. Dr. Gudrun Heinrich
- Prof. Dr. Kirill Melnikov
- Prof. Dr. Milada Margarete Mühlleitner
- Prof. Dr. Ulrich Nierste
- Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102033 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises

Type
- Oral examination

Credits
- 12

Grading scale
- Grade to a third

Version
- 1

Events

<table>
<thead>
<tr>
<th></th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 21</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>Lecture</td>
<td>4</td>
<td>Zeppenfeld</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>ST 21</td>
<td>4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>Practice</td>
<td>2</td>
<td>Zeppenfeld, Löschner</td>
<td>Zeppenfeld, Löschner</td>
</tr>
<tr>
<td>ST 22</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>Lecture</td>
<td>4</td>
<td>Heinrich</td>
<td>Heinrich</td>
</tr>
<tr>
<td>ST 22</td>
<td>4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>Practice</td>
<td>2</td>
<td>Heinrich, Kerner</td>
<td>Heinrich, Kerner</td>
</tr>
<tr>
<td>ST 23</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>Lecture</td>
<td>4</td>
<td>Melnikov</td>
<td>Melnikov</td>
</tr>
<tr>
<td>ST 23</td>
<td>4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>Practice</td>
<td>2</td>
<td>Melnikov, Haindl, Pikelner</td>
<td>Melnikov, Haindl, Pikelner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026111</td>
<td>Theoretical Particle Physics I</td>
<td>Lecture</td>
<td>4</td>
<td>Mühlleitner</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026121</td>
<td>Exercises to Theoretical Particle Physics I</td>
<td>Practice</td>
<td>2</td>
<td>Borschensky</td>
<td>Borschensky</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- 🗑 Cancelled

Prerequisites
none
5.266 Course: Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor) [T-PHYS-102540]

Responsible:
- Prof. Dr. Gudrun Heinrich
- Prof. Dr. Kirill Melnikov
- Prof. Dr. Milada Margarete Mühlleitner
- Prof. Dr. Ulrich Nierste
- Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102037 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>12</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4 SWS</td>
<td>Lecture / 🖥</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>ST 2021 4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>2 SWS</td>
<td>Practice / 🖥</td>
<td>Zeppenfeld, Löschner</td>
</tr>
<tr>
<td>ST 2022 4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Heinrich</td>
</tr>
<tr>
<td>ST 2022 4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Heinrich, Kerner</td>
</tr>
<tr>
<td>ST 2023 4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Melnikov</td>
</tr>
<tr>
<td>ST 2023 4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Melnikov, Haindl, Pikeler</td>
</tr>
<tr>
<td>WT 23/24 4026111</td>
<td>Theoretical Particle Physics I</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>WT 23/24 4026121</td>
<td>Exercises to Theoretical Particle Physics I</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Mühlleitner, Borschensky</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
5.267 Course: Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises [T-PHYS-102546]

Responsible:
- Prof. Dr. Gudrun Heinrich
- Prof. Dr. Kirill Melnikov
- Prof. Dr. Milada Margarete Mühlleitner
- Prof. Dr. Ulrich Nierste
- Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102035 - Theoretical Particle Physics I, Fundamentals and Advanced Topics, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4025111	Theoretische Teilchenphysik I	4 SWS	Lecture / 🖥	Zeppenfeld
ST 2022	4025111	Theoretische Teilchenphysik I	4 SWS	Lecture / 🗣	Heinrich
ST 2023	4025111	Theoretische Teilchenphysik I	4 SWS	Lecture / 🗣	Melnikov
WT 23/24	4026111	Theoretical Particle Physics I	4 SWS	Lecture / 🗣	Mühlleitner

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
5.268 Course: Theoretical Particle Physics I, Fundamentals, with Exercises [T-PHYS-102545]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Ulrich Nierste
Prof. Dr. Matthias Steinhauser

Organisation: KIT Department of Physics

Part of: M-PHYS-102034 - Theoretical Particle Physics I, Fundamentals, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
</tr>
<tr>
<td>4025111 Theoretische Teilchenphysik I 4 SWS Lecture / 🖥 Zeppenfeld</td>
</tr>
<tr>
<td>4025112 Übungen zur Theoretischen Teilchenphysik I 2 SWS Practice / 🖥 Zeppenfeld, Löschner</td>
</tr>
<tr>
<td>ST 2022</td>
</tr>
<tr>
<td>4025111 Theoretische Teilchenphysik I 4 SWS Lecture / 🖥 Heinrich</td>
</tr>
<tr>
<td>4025112 Übungen zur Theoretischen Teilchenphysik I 2 SWS Practice / 🖥 Heinrich, Kerner</td>
</tr>
<tr>
<td>ST 2023</td>
</tr>
<tr>
<td>4025111 Theoretische Teilchenphysik I 4 SWS Lecture / 🖥 Melnikov</td>
</tr>
<tr>
<td>4025112 Übungen zur Theoretischen Teilchenphysik I 2 SWS Practice / 🖥 Melnikov, Haindl, Pikelner</td>
</tr>
<tr>
<td>WT 23/24</td>
</tr>
<tr>
<td>4026111 Theoretical Particle Physics I 4 SWS Lecture / 🖥 Mühlleitner</td>
</tr>
<tr>
<td>4026121 Exercises to Theoretical Particle Physics I 2 SWS Practice / 🖥 Mühlleitner, Borschensky</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧵 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.269 Course: Theoretical Particle Physics I, Fundamentals, with Exercises (Minor) [T-PHYS-102541]

Responsible:
 Prof. Dr. Gudrun Heinrich
 Prof. Dr. Kirill Melnikov
 Prof. Dr. Milada Margarete Mühlleitner
 Prof. Dr. Ulrich Nierste
 Prof. Dr. Matthias Steinhauser

Organisation:
 KIT Department of Physics

Part of:
 M-PHYS-102038 - Theoretical Particle Physics I, Fundamentals, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4025111	Theoretische Teilchenphysik I	4 SWS	Lecture / 🖥	Zeppenfeld
ST 2021	4025112	Übungen zur Theoretischen Teilchenphysik I	2 SWS	Practice / 🖥	Zeppenfeld, Löschner
ST 2022	4025111	Theoretische Teilchenphysik I	4 SWS	Lecture / 🗤	Heinrich
ST 2022	4025112	Übungen zur Theoretischen Teilchenphysik I	2 SWS	Practice / 🗤	Heinrich, Kerner
ST 2023	4025111	Theoretische Teilchenphysik I	4 SWS	Lecture / 🗤	Melnikov
ST 2023	4025112	Übungen zur Theoretischen Teilchenphysik I	2 SWS	Practice / 🗤	Melnikov, Haindl, Pikelner
WT 23/24	4026111	Theoretical Particle Physics I	4 SWS	Lecture / 🗤	Mühlleitner
WT 23/24	4026121	Exercises to Theoretical Particle Physics I	2 SWS	Practice / 🗤	Mühlleitner, Borschensky

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗤 On-Site, 🗹 Cancelled

Prerequisites
none
5.270 Course: Theoretical Particle Physics I, Fundamentals, without Exercises [T-PHYS-102547]

Responsible:
Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Ulrich Nierste
Prof. Dr. Matthias Steinhauser

Organisation:
KIT Department of Physics

Part of:
M-PHYS-102036 - Theoretical Particle Physics I, Fundamentals, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4</td>
<td>Lecture / 📐</td>
<td>6</td>
<td>Grade to a third</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4</td>
<td>Lecture / 📐</td>
<td>6</td>
<td>Grade to a third</td>
<td>Heinrich</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4</td>
<td>Lecture / 📐</td>
<td>6</td>
<td>Grade to a third</td>
<td>Melnikov</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026111</td>
<td>Theoretical Particle Physics I</td>
<td>4</td>
<td>Lecture / 📐</td>
<td>6</td>
<td>Grade to a third</td>
<td>Mühlleitner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💻 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites

none
5.271 Course: Theoretical Particle Physics II, with Exercises [T-PHYS-102552]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner

Organisation: KIT Department of Physics

Part of: M-PHYS-102046 - Theoretical Particle Physics II, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>12</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Week Term</th>
<th>Course Code</th>
<th>Course Title</th>
<th>Weekly Sessions</th>
<th>Type</th>
<th>Organisation</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4026011</td>
<td>Theoretische Teilchenphysik II</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Heinrich</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4026012</td>
<td>Übungen zu Theoretische Teilchenphysik II</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Heinrich, Agarwal</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026011</td>
<td>Theoretische Teilchenphysik II</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026012</td>
<td>Übungen zu Theoretische Teilchenphysik II</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Mühlleitner, NN</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026011</td>
<td>Theoretical Particle Physics II</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Melnikov</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026012</td>
<td>Exercises to Theoretical Particle Physics II</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Melnikov, Pikelner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☑ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.272 Course: Theoretical Particle Physics II, with Exercises (Minor) [T-PHYS-102548]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner

Organisation: KIT Department of Physics

Part of: M-PHYS-102044 - Theoretical Particle Physics II, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>12</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course ID</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4026011</td>
<td>Theoretische Teilchenphysik II</td>
<td>4</td>
<td>Lecture</td>
<td>Heinrich</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4026012</td>
<td>Übungen zu Theoretische Teilchenphysik II</td>
<td>2</td>
<td>Practice</td>
<td>Heinrich, Agarwal</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026011</td>
<td>Theoretische Teilchenphysik II</td>
<td>4</td>
<td>Lecture</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026012</td>
<td>Übungen zu Theoretische Teilchenphysik II</td>
<td>2</td>
<td>Practice</td>
<td>Mühlleitner, NN</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026011</td>
<td>Theoretical Particle Physics II</td>
<td>4</td>
<td>Lecture</td>
<td>Melnikov</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026012</td>
<td>Exercises to Theoretical Particle Physics II</td>
<td>2</td>
<td>Practice</td>
<td>Melnikov, Pikelner</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites

none
5.273 Course: Theoretical Particle Physics II, without Exercises [T-PHYS-102554]

Responsible: Prof. Dr. Gudrun Heinrich
Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner

Organisation: KIT Department of Physics

Part of: M-PHYS-102048 - Theoretical Particle Physics II, without Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lecture Code</th>
<th>Course Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4026011</td>
<td>Theoretische Teilchenphysik II</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Heinrich</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4026011</td>
<td>Theoretische Teilchenphysik II</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4026011</td>
<td>Theoretical Particle Physics II</td>
<td>4</td>
<td>Lecture / Online</td>
<td>Melnikov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Prerequisites
none
5.274 Course: Theoretical Quantum Optics [T-PHYS-110303]

Responsible: Prof. Dr. Anja Metelmann
Prof. Dr. Carsten Rockstuhl
Organisation: KIT Department of Physics
Part of: M-PHYS-105094 - Theoretical Quantum Optics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Year</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT</td>
<td>21/22</td>
<td>4023011</td>
<td>Theoretical Quantum Optics</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Rockstuhl</td>
</tr>
<tr>
<td>WT</td>
<td>21/22</td>
<td>4023012</td>
<td>Exercises to Theoretical Quantum Optics</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Rockstuhl, Holzer</td>
</tr>
<tr>
<td>WT</td>
<td>22/23</td>
<td>4023011</td>
<td>Theoretical Quantum Optics</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Metelmann</td>
</tr>
<tr>
<td>WT</td>
<td>22/23</td>
<td>4023012</td>
<td>Exercises to Theoretical Quantum Optics</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Metelmann, Böhling</td>
</tr>
<tr>
<td>WT</td>
<td>23/24</td>
<td>4023011</td>
<td>Theoretical Quantum Optics</td>
<td>2</td>
<td>Lecture / 📚</td>
<td>Metelmann</td>
</tr>
<tr>
<td>WT</td>
<td>23/24</td>
<td>4023012</td>
<td>Exercises to Theoretical Quantum Optics</td>
<td>1</td>
<td>Practice / 📚</td>
<td>Metelmann, Orr</td>
</tr>
</tbody>
</table>

Legend: 📚 Online, 🧩 Blended (On-Site/Online), 📚 On-Site, X Cancelled
5.275 Course: Theoretical Quantum Optics (Minor) [T-PHYS-110884]

Responsible: Prof. Dr. Anja Metelmann
Prof. Dr. Carsten Rockstuhl

Organisation: KIT Department of Physics

Part of: M-PHYS-105395 - Theoretical Quantum Optics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4023011</td>
<td>Theoretical Quantum Optics</td>
<td>2</td>
<td>Lecture</td>
<td>Rockstuhl</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4023012</td>
<td>Exercises to Theoretical Quantum Optics</td>
<td>1</td>
<td>Practice</td>
<td>Rockstuhl, Holzer</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4023011</td>
<td>Theoretical Quantum Optics</td>
<td>2</td>
<td>Lecture</td>
<td>Metelmann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4023012</td>
<td>Exercises to Theoretical Quantum Optics</td>
<td>1</td>
<td>Practice</td>
<td>Metelmann, Böhling</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4023011</td>
<td>Theoretical Quantum Optics</td>
<td>2</td>
<td>Lecture</td>
<td>Metelmann</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4023012</td>
<td>Exercises to Theoretical Quantum Optics</td>
<td>1</td>
<td>Practice</td>
<td>Metelmann, Orr</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💭 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled
Course: Theory and Applications of Quantum Machines [T-PHYS-112018]

Responsible: Prof. Dr. Anja Metelmann
Organisation: KIT Department of Physics
Part of: M-PHYS-105942 - Theory and Applications of Quantum Machines

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 4024181</td>
<td>Theory and Applications of Quantum Machines</td>
<td>2 SWS</td>
<td></td>
<td>Metelmann</td>
</tr>
<tr>
<td>ST 2022 4024182</td>
<td>Exercises to Theory and Applications of Quantum Machines</td>
<td>2 SWS</td>
<td></td>
<td>Metelmann</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🛠 Blended (On-Site/Online), 🗣 On-Site, ⌚ Cancelled
5.277 Course: Theory and Applications of Quantum Machines (Minor) [T-PHYS-112019]

Responsible: Prof. Dr. Anja Metelmann
Organisation: KIT Department of Physics
Part of: M-PHYS-105943 - Theory and Applications of Quantum Machines (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Type</th>
<th>Completed coursework</th>
<th>Professor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 4024181 Theory and Applications of Quantum Machines</td>
<td>2 SWS</td>
<td>Lecture / 🗣</td>
<td>Theory and Applications of Quantum Machines</td>
<td>Metelmann</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4024182 Exercises to Theory and Applications of Quantum Machines</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Exercises to Theory and Applications of Quantum Machines</td>
<td>Metelmann</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ☑️ Cancelled

Physics Master (Master of Science)
Module Handbook as of 20/10/2023
Course: Theory of Magnetism II [T-PHYS-105961]

Responsible: PD Dr. Boris Narozhnyy

Organisation: KIT Department of Physics

Part of: M-PHYS-102985 - Theory of Magnetism II

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grade</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4024171</td>
<td>Theory of Magnetism II</td>
<td>4 SWS</td>
<td>Narozhnyy, Gorny</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🌕 Blended (On-Site/Online), 🗂 On-Site, ✗ Cancelled
5.279 Course: Theory of Magnetism, with Exercises [T-PHYS-110869]

Responsible: Prof. Dr. Markus Garst

Organisation: KIT Department of Physics

Part of: M-PHYS-105381 - Theory of Magnetism, with Exercises

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4023041</td>
<td>Theory of Magnetism</td>
<td>3</td>
<td>Lecture / 🗣️</td>
<td></td>
<td></td>
<td></td>
<td>Garst, Kravchuk</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4023042</td>
<td>Exercises to Theory of Magnetism</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td></td>
<td></td>
<td></td>
<td>Garst, Kravchuk</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, ☕ Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled
5.280 Course: Theory of Magnetism, with Exercises (Minor) [T-PHYS-110873]

Responsible: Prof. Dr. Markus Garst

Organisation: KIT Department of Physics

Part of: M-PHYS-105385 - Theory of Magnetism, with Exercises (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Theory of Magnetism</td>
<td>3 SWS</td>
<td>Lecture /</td>
<td>Garst, Kravchuk</td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Exercises to Theory of Magnetism</td>
<td>1 SWS</td>
<td>Practice /</td>
<td>Garst, Kravchuk</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 💻 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.281 Course: Theory of Seismic Waves [T-PHYS-104736]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: M-PHYS-102367 - Theory of Seismic Waves

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

ST 2021	4060221	Theory of Seismic Waves	2 SWS	Lecture / 🖥	Bohlen, Hertweck
ST 2021	4060222	Exercises to Theory of Seismic Waves	1 SWS	Practice / 🖥	Bohlen, Hertweck
ST 2022	4060221	Theory of Seismic Waves	2 SWS	Lecture / 🗣	Bohlen, Hertweck
ST 2022	4060222	Exercises to Theory of Seismic Waves	1 SWS	Practice / 🗣	Bohlen, Hertweck
ST 2023	4060221	Theory of Seismic Waves	2 SWS	Lecture / 🗣	Bohlen, Hertweck
ST 2023	4060222	Exercises to Theory of Seismic Waves	1 SWS	Practice / 🗣	Hertweck, Bohlen

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.282 Course: Theory of Seismic Waves (Minor) [T-PHYS-105571]

Responsible: Prof. Dr. Thomas Bohlen

Organisation: KIT Department of Physics

Part of: M-PHYS-102657 - Theory of Seismic Waves (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>6</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4060221</td>
<td>Theory of Seismic Waves</td>
<td>2</td>
<td>Lecture / 🛥️</td>
<td></td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2021 4060222</td>
<td>Exercises to Theory of Seismic Waves</td>
<td>1</td>
<td>Practice / 🛥️</td>
<td></td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2022 4060221</td>
<td>Theory of Seismic Waves</td>
<td>2</td>
<td>Lecture / 🛥️</td>
<td></td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2022 4060222</td>
<td>Exercises to Theory of Seismic Waves</td>
<td>1</td>
<td>Practice / 🛥️</td>
<td></td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2023 4060221</td>
<td>Theory of Seismic Waves</td>
<td>2</td>
<td>Lecture / 🛥️</td>
<td></td>
<td></td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>ST 2023 4060222</td>
<td>Exercises to Theory of Seismic Waves</td>
<td>1</td>
<td>Practice / 🛥️</td>
<td></td>
<td></td>
<td>Hertweck, Bohlen</td>
</tr>
</tbody>
</table>

Legend: 🛥️ Online, 🛥️ Blended (On-Site/Online), 🛏️ On-Site, ✗ Cancelled
5.283 Course: Theory of Strongly Correlated Electron Systems [T-PHYS-112245]

Responsible: PD Dr. Robert Eder
Organisation: KIT Department of Physics
Part of: M-PHYS-106056 - Theory of Strongly Correlated Electron Systems

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4024071</td>
<td>Theory of Strongly Correlated Electron Systems</td>
<td>4 SWS</td>
<td>Lecture / 🗣</td>
<td>Irregular</td>
<td>1</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4024072</td>
<td>Exercises to Theory of Strongly Correlated Electron Systems</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🍰 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.284 Course: Topology in Condensed Matter Physics: Fundamentals and Advanced Topics [T-PHYS-113258]

Responsible: PD Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Organisation: KIT Department of Physics

Part of: M-PHYS-106586 - Topology in Condensed Matter Physics: Fundamentals and Advanced Topics

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 23/24</th>
<th>4024081</th>
<th>Topology in Condensed Matter Physics</th>
<th>3 SWS</th>
<th>Lecture / 🗣</th>
<th>Gornyi, Mirlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24</td>
<td>4024082</td>
<td>Exercises to Topology in Condensed Matter Physics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Gornyi, Mirlin, Poboiko</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.285 Course: Topology in Condensed Matter Physics: Fundamentals and Advanced Topics (Minor) [T-PHYS-113259]

Responsible: PD Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Organisation: KIT Department of Physics

Part of: M-PHYS-106587 - Topology in Condensed Matter Physics: Fundamentals and Advanced Topics (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 4024081</td>
<td>Topology in Condensed Matter Physics</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Gornyi, Mirlin</td>
</tr>
<tr>
<td>WT 23/24 4024082</td>
<td>Exercises to Topology in Condensed Matter Physics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Gornyi, Mirlin, Poboiko</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.286 Course: Topology in Condensed Matter Physics: Fundamentals and Selected Topics [T-PHYS-113260]

Responsible:
- PD Dr. Igor Gornyi
- Prof. Dr. Alexander Mirlin

Organisation:
- KIT Department of Physics
- Part of: M-PHYS-106588 - Topology in Condensed Matter Physics: Fundamentals and Selected Topics

### Type	Credits	Grading scale	Version
Oral examination | 2 | Grade to a third | 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 23/24 4024081</td>
<td>Topology in Condensed Matter Physics</td>
<td>3 SWS</td>
<td>Lecture / 🗣</td>
<td>Gornyi, Mirlin</td>
</tr>
<tr>
<td>WT 23/24 4024082</td>
<td>Exercises to Topology in Condensed Matter Physics</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Gornyi, Mirlin, Poboiko</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.287 Course: Tropical Meteorology [T-PHYS-111411]

Responsible: Prof. Dr. Peter Knippertz

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>4052111</td>
<td>Tropical Meteorology</td>
<td>2</td>
<td>Lecture / Online</td>
<td></td>
<td>Knippertz</td>
</tr>
<tr>
<td>WT 21/22</td>
<td>4052112</td>
<td>Exercises to Tropical Meteorology</td>
<td>1</td>
<td>Practice / Online</td>
<td></td>
<td>Knippertz, Lemburg</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052111</td>
<td>Tropical Meteorology</td>
<td>2</td>
<td>Lecture / Online</td>
<td></td>
<td>Knippertz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052112</td>
<td>Exercises to Tropical Meteorology</td>
<td>1</td>
<td>Practice / Online</td>
<td></td>
<td>Knippertz, Lemburg</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052111</td>
<td>Tropical Meteorology</td>
<td>2</td>
<td>Lecture / Online</td>
<td></td>
<td>Knippertz, Woodhams</td>
</tr>
<tr>
<td>WT 23/24</td>
<td>4052112</td>
<td>Exercises to Tropical Meteorology</td>
<td>1</td>
<td>Practice / Online</td>
<td></td>
<td>Knippertz, Woodhams</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ⚠ Cancelled

Competence Certificate

Students must achieve 50% of the points on the exercise sheets.

Prerequisites

None

Recommendation

None

Annotation

None
5.288 Course: Turbulent Diffusion [T-PHYS-111427]

Responsible: Prof. Dr. Corinna Hoose
Dr. Gholamali Hoshyaripour

Organisation: KIT Department of Physics

Part of:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2021</th>
<th>4052081</th>
<th>Turbulent Diffusion</th>
<th>2 SWS</th>
<th>Lecture / 🖥</th>
<th>Hoshyaripour, Hoose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
<td>Hoshyaripour, Hoose, Bruckert</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4052081</td>
<td>Turbulent Diffusion</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Hoshyaripour, Hoose</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Hoshyaripour, Hoose, Bruckert</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4052081</td>
<td>Turbulent Diffusion</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Hoshyaripour, Hoose</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td>Hoshyaripour, Hoose, Chopra</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Competence Certificate

There are 7 exercises with 100 points in total. To pass the prerequisite students must:

- Obtain at least 50 points from exercises.
- Present and explain at least one of the ICON-ART exercises in the class.

Prerequisites

None

Recommendation

None

Annotation

None
5.289 Course: Wildcard Non-Physics Elective, Module with 1 Brick, 8 CP graded [T-PHYS-104384]

Organisation: KIT Department of Physics

Part of: M-PHYS-102091 - Wildcard Non-Physics Elective, Module with 1 Brick

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>8</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.290 Course: Wildcard Non-Physics Elective, Module with 2 Bricks, 4 CP graded [T-PHYS-106221]

Organisation: KIT Department of Physics
Part of: M-PHYS-103129 - Wildcard Non-Physics Elective, Module with 2 Bricks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.291 Course: Wildcard Non-Physics Elective, Module with 2 Bricks, 4 CP graded [T-PHYS-106222]

Organisation: KIT Department of Physics
Part of: M-PHYS-103129 - Wildcard Non-Physics Elective, Module with 2 Bricks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.292 Course: Wildcard Non-Physics Elective, Module with 3 Bricks, 2 CP graded [T-PHYS-106225]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>KIT Department of Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-PHYS-103130 - Wildcard Non-Physics Elective, Module with 3 Bricks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.293 Course: Wildcard Non-Physics Elective, Module with 3 Bricks, 3 CP graded [T-PHYS-106224]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>KIT Department of Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-PHYS-103130 - Wildcard Non-Physics Elective, Module with 3 Bricks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.294 Course: Wildcard Non-Physics Elective, Module with 3 Bricks, 3 CP graded [T-PHYS-106223]

Organisation: KIT Department of Physics
Part of: M-PHYS-103130 - Wildcard Non-Physics Elective, Module with 3 Bricks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.295 Course: Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded [T-PHYS-106228]

Organisation: KIT Department of Physics
Part of: M-PHYS-103131 - Wildcard Non-Physics Elective, Module with 4 Bricks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.296 Course: Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded [T-PHYS-106229]

Organisation: KIT Department of Physics
Part of: M-PHYS-103131 - Wildcard Non-Physics Elective, Module with 4 Bricks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
5.297 Course: Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded [T-PHYS-106226]

Organisation: KIT Department of Physics
Part of: M-PHYS-103131 - Wildcard Non-Physics Elective, Module with 4 Bricks

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

none
5.298 Course: Wildcard Non-Physics Elective, Module with 4 Bricks, 2 CP graded [T-PHYS-106227]

<table>
<thead>
<tr>
<th>Organisation:</th>
<th>KIT Department of Physics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Part of:</td>
<td>M-PHYS-103131 - Wildcard Non-Physics Elective, Module with 4 Bricks</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
none
Course: X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab [T-PHYS-111156]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of: M-PHYS-105555 - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Semester</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Baumbach, Stankov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Baumbach, Al Hassan, Kalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 21/22</td>
<td>Practical course</td>
<td>1 SWS</td>
<td>Baumbach, Al Hassan, Kalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Baumbach, Stankov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Baumbach, Al Hassan, Kalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Practical course</td>
<td>1 SWS</td>
<td>Baumbach, Al Hassan, Kalt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>Baumbach, Stankov</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Practice</td>
<td>1 SWS</td>
<td>Baumbach, Kamiński</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 23/24</td>
<td>Practical course</td>
<td>1 SWS</td>
<td>Baumbach, Kamiński</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
5.300 Course: X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor) [T-PHYS-111158]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of: M-PHYS-105557 - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, with Exercises and Lab (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>8</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>SWS</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Organisation</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4028061</td>
<td>2</td>
<td>Lecture</td>
<td>2</td>
<td>Lecture</td>
<td>Baumbach, Stankov</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 4028062</td>
<td>1</td>
<td>Practice</td>
<td>1</td>
<td>Practice</td>
<td>Baumbach, Al Hassan, Kalt</td>
<td>1 SWS</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>WT 21/22 4028063</td>
<td>1</td>
<td>Practical course</td>
<td>1</td>
<td>Practical course</td>
<td>Baumbach, Al Hassan, Kalt</td>
<td>1 SWS</td>
<td>Lecture</td>
<td>On-Site</td>
</tr>
<tr>
<td>WT 22/23 4028061</td>
<td>2</td>
<td>Lecture</td>
<td>2</td>
<td>Lecture</td>
<td>Baumbach, Stankov</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 4028062</td>
<td>1</td>
<td>Practice</td>
<td>1</td>
<td>Practice</td>
<td>Baumbach, Al Hassan, Kalt</td>
<td>1 SWS</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>WT 22/23 4028063</td>
<td>1</td>
<td>Practical course</td>
<td>1</td>
<td>Practical course</td>
<td>Baumbach, Al Hassan, Kalt</td>
<td>1 SWS</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4028061</td>
<td>2</td>
<td>Lecture</td>
<td>2</td>
<td>Lecture</td>
<td>Baumbach, Stankov</td>
<td>2 SWS</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4028062</td>
<td>1</td>
<td>Practice</td>
<td>1</td>
<td>Practice</td>
<td>Baumbach, Kamiński</td>
<td>1 SWS</td>
<td>Lecture</td>
<td></td>
</tr>
<tr>
<td>WT 23/24 4028063</td>
<td>1</td>
<td>Practical course</td>
<td>1</td>
<td>Practical course</td>
<td>Baumbach, Kamiński</td>
<td>1 SWS</td>
<td>Lecture</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
<table>
<thead>
<tr>
<th>Course: X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab [T-PHYS-111157]</th>
</tr>
</thead>
</table>
| **Responsible:** Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov |
| **Organisation:** KIT Department of Physics |
| **Part of:** M-PHYS-105556 - X-ray Physics I: Scattering, Diffraction & Spectroscopy on Crystals, thin Films and Nanostructures, without Exercises and without Lab |

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 21/22 4028061</td>
<td>X-ray Physics I: Scattering, Diffraction and Spectroscopy on Crystals, Thin Films and Nanostructures</td>
<td>2 SWS Lecture Baumbach, Stankov</td>
</tr>
<tr>
<td>WT 22/23 4028061</td>
<td>X-ray Physics I: Scattering, Diffraction and Spectroscopy on Crystals, Thin Films and Nanostructures</td>
<td>2 SWS Lecture / On-Site Baumbach, Stankov</td>
</tr>
<tr>
<td>WT 23/24 4028061</td>
<td>X-ray Physics I: Scattering, Diffraction and Spectroscopy on Crystals, Thin Films and Nanostructures</td>
<td>2 SWS Lecture / On-Site Baumbach, Stankov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 📦 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
5.302 Course: X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab [T-PHYS-111159]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of: M-PHYS-105558 - X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Name</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4028131</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography</td>
<td>2</td>
<td>Lecture/🧩</td>
<td>Baumbach, Stankov</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4028132</td>
<td>Übungen zu X-ray Physics II</td>
<td>1</td>
<td>Practice/✍️</td>
<td>Baumbach, Stankov, Bremer, Spiecker</td>
</tr>
<tr>
<td>ST 2021</td>
<td>4028133</td>
<td>Praktikum zu X-ray Physics II</td>
<td>1</td>
<td>Practical course/✍️</td>
<td>Baumbach, Stankov, Bremer, Spiecker</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4028131</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography</td>
<td>2</td>
<td>Lecture/✍️</td>
<td>Baumbach, Stankov</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4028132</td>
<td>Übungen zu X-ray Physics II</td>
<td>1</td>
<td>Practice/✍️</td>
<td>Baumbach, Stankov, Spiecker</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4028133</td>
<td>Praktikum zu X-ray Physics II</td>
<td>1</td>
<td>Practical course/✍️</td>
<td>Baumbach, Stankov, Spiecker</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4028131</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography</td>
<td>2</td>
<td>Lecture/✍️</td>
<td>Baumbach, Stankov</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4028132</td>
<td>Übungen zu X-ray Physics II</td>
<td>1</td>
<td>Practice/✍️</td>
<td>Baumbach, Stankov, Spiecker</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4028133</td>
<td>Praktikum zu X-ray Physics II</td>
<td>1</td>
<td>Practical course/✍️</td>
<td>Baumbach, Stankov, Spiecker</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ✍️ On-Site, 🗑️ Cancelled
Course: X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab (Minor) [T-PHYS-111161]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov
Organisation: KIT Department of Physics
Part of: M-PHYS-105560 - X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, with Exercises and Lab (Minor)

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>8</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021 4028131</td>
<td>Lecture</td>
<td>2</td>
<td>Lecture / 📞</td>
<td>Baumbach, Stankov</td>
<td></td>
</tr>
<tr>
<td>ST 2021 4028132</td>
<td>Practice</td>
<td>1</td>
<td>Practice / 📞</td>
<td>Baumbach, Stankov, Bremer, Spiecker</td>
<td></td>
</tr>
<tr>
<td>ST 2021 4028133</td>
<td>Practical course / 📞</td>
<td>1</td>
<td>Practical course / 📞</td>
<td>Baumbach, Stankov, Bremer, Spiecker</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4028131</td>
<td>Lecture</td>
<td>2</td>
<td>Lecture / 📞</td>
<td>Baumbach, Stankov</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4028132</td>
<td>Practice</td>
<td>1</td>
<td>Practice / 📞</td>
<td>Baumbach, Stankov, Spiecker</td>
<td></td>
</tr>
<tr>
<td>ST 2022 4028133</td>
<td>Practical course / 📞</td>
<td>1</td>
<td>Practical course / 📞</td>
<td>Baumbach, Stankov, Spiecker</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4028131</td>
<td>Lecture</td>
<td>2</td>
<td>Lecture / 📞</td>
<td>Baumbach, Stankov</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4028132</td>
<td>Practice</td>
<td>1</td>
<td>Practice / 📞</td>
<td>Baumbach, Stankov, Spiecker</td>
<td></td>
</tr>
<tr>
<td>ST 2023 4028133</td>
<td>Practical course / 📞</td>
<td>1</td>
<td>Practical course / 📞</td>
<td>Baumbach, Stankov, Spiecker</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📞 Online, 📣 Blended (On-Site/Online), 📧 On-Site, ❌ Cancelled
T-5.304 Course: X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, without Exercises and without Lab [T-PHYS-111160]

Responsible: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Organisation: KIT Department of Physics

Part of: M-PHYS-105559 - X-ray Physics II: Optical Coherence, Imaging and Computed Tomography, without Exercises and without Lab

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Year</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2021</td>
<td>4028131</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography</td>
<td>2</td>
<td>Lecture / 🖥</td>
<td>Baumbach, Stankov</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4028131</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography</td>
<td>2</td>
<td>Lecture / 🏏</td>
<td>Baumbach, Stankov</td>
</tr>
<tr>
<td>ST 2023</td>
<td>4028131</td>
<td>X-ray Physics II: Optical Coherence, Imaging and Computed Tomography</td>
<td>2</td>
<td>Lecture / 🕹</td>
<td>Baumbach, Stankov</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🏏 Blended (On-Site/Online), 🕹 On-Site, ☑ Cancelled