Modulhandbuch
Physik Master 2015 (Master of Science)
SPO 2015
Wintersemester 2019/20
Stand 09.10.2019
Inhaltsverzeichnis

1. Masterstudiengang Physik ... 13
 1.1. Qualifikationsziele .. 13
 1.1.1. Qualifikationsziele des Studiengangs ... 13
 1.1.2. Qualifikationsziele der einzelnen Fächer ... 13
 1.1.2.1. Physikalisches Schwerpunkt-, Ergänzungs- und Nebenfach ... 13
 1.1.2.2. Nichtphysikalisches Wahlpflichtfach .. 14
 1.1.2.3. Fortgeschrittenenpraktikum .. 14
 1.1.2.4. Hauptseminar ... 14
 1.1.2.5. additive überfachliche Qualifikationen ... 14
 1.1.2.6. Einführung in die wissenschaftliche Arbeiten und Spezialisierungsphase ... 14
 1.1.2.7. Masterarbeit ... 14
 1.1.3. Leistungspunkte-System ... 14
 1.2. Studienplan für den Masterstudiengang Physik .. 14
 1.2.1. Einleitung ... 14
 1.2.2. Lehrveranstaltungen ... 15
 1.2.3. Anmeldung zu Leistungsüberprüfungen und Fachprüfungen ... 16
 1.2.4. Notenbildung ... 16
 1.2.5. Organisation der Fächer ... 16
 1.3. Graphische Darstellung des Studienplans ... 17

2. Tabellarische Übersicht über die Zuordnung der Module .. 18

3. Module ... 28
 3.1. Advanced Topics in Flavour Physics - M-PHYS-104090 .. 28
 3.2. Allgemeine Relativitätstheorie - M-PHYS-102319 .. 29
 3.3. Allgemeine Relativitätstheorie (NF) - M-PHYS-102320 .. 30
 3.4. Allgemeine Relativitätstheorie II - M-PHYS-103333 .. 31
 3.5. Allgemeine Relativitätstheorie II (NF) - M-PHYS-103334 .. 32
 3.6. Array Processing - M-PHYS-102366 .. 33
 3.7. Array Processing (NF) - M-PHYS-102656 .. 34
 3.8. Astroteilchenphysik I - M-PHYS-102075 ... 35
 3.9. Astroteilchenphysik I (NF) - M-PHYS-102076 .. 37
 3.10. Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen - M-PHYS-102526 .. 38
 3.11. Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF) - M-PHYS-103185 40
 3.13. Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen (NF) - M-PHYS-102084 44
 3.15. Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF) - M-PHYS-103184 47
 3.16. Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen - M-PHYS-102078 48
 3.17. Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF) - M-PHYS-102082 49
 3.18. Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen - M-PHYS-102527 50
 3.19. Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF) - M-PHYS-103186 52
 3.20. Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen - M-PHYS-102081 54
 3.21. Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF) - M-PHYS-102086 56
 3.22. Beschleunigerphysik, mit erw. Übungen - M-PHYS-104869 .. 58
 3.23. Beschleunigerphysik, mit erw. Übungen (NF) - M-PHYS-104870 ... 60
 3.25. Beschleunigerphysik, ohne erw. Übungen (NF) - M-PHYS-104872 ... 64
 3.27. Computational Condensed Matter Physics (NF) - M-PHYS-104863 .. 68
 3.28. Computational Photonics, with ext. Exercises - M-PHYS-101933 ... 69
 3.29. Computational Photonics, with ext. Exercises (NF) - M-PHYS-103090 .. 71
 3.30. Computational Photonics, without ext. Exercises - M-PHYS-103089 .. 72
 3.31. Computational Photonics, without ext. Exercises (NF) - M-PHYS-103193 .. 74
 3.33. Critical and Fluctuation Phenomena in Condensed-Matter Physics (NF) - M-PHYS-105140 76
 3.34. Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen - M-PHYS-102121 77
 3.35. Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF) - M-PHYS-102122 78
 3.36. Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen - M-PHYS-102119 79
| 3.37. Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF) - M-PHYS-102120 | 80 |
| 3.38. Dunkle Materie - Theoretische Aspekte - M-PHYS-102981 | 81 |
| 3.39. Dunkle Materie - Theoretische Aspekte (NF) - M-PHYS-103187 | 82 |
| 3.40. Effektive Feldtheorien - M-PHYS-103328 | 83 |
| 3.41. Effektive Feldtheorien (NF) - M-PHYS-103329 | 84 |
| 3.42. Einführung in das wissenschaftliche Arbeiten - M-PHYS-101397 | 85 |
| 3.43. Einführung in die Flavourphysik, Grundlagen - M-PHYS-102987 | 86 |
| 3.44. Einführung in die Flavourphysik, Grundlagen (NF) - M-PHYS-103189 | 87 |
| 3.45. Einführung in die Flavourphysik, Grundlagen und Vertiefungen - M-PHYS-102986 | 88 |
| 3.46. Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF) - M-PHYS-103188 | 89 |
| 3.47. Einführung in die Kosmologie - M-PHYS-102175 | 90 |
| 3.48. Einführung in die Kosmologie (NF) - M-PHYS-102176 | 91 |
| 3.49. Einführung in die Supersymmetrie - M-PHYS-104091 | 92 |
| 3.50. Einführung in die Theoretische Kosmologie - M-PHYS-104855 | 93 |
| 3.51. Einführung in die Theoretische Kosmologie (NF) - M-PHYS-104856 | 94 |
| 3.52. Einführung in die Theoretische Teilchenphysik, mit erw. Übungen - M-PHYS-102221 | 95 |
| 3.53. Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF) - M-PHYS-102424 | 96 |
| 3.54. Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen - M-PHYS-102425 | 97 |
| 3.55. Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF) - M-PHYS-102426 | 98 |
| 3.56. Einführung in die Vulkanologie, benotet - M-PHYS-101866 | 99 |
| 3.57. Einführung in die Vulkanologie, unbenotet - M-PHYS-101944 | 100 |
| 3.58. Elektronenmikroskopie I, mit Übungen - M-PHYS-102989 | 101 |
| 3.59. Elektronenmikroskopie I, mit Übungen (NF) - M-PHYS-102991 | 102 |
| 3.60. Elektronenmikroskopie I, ohne Übungen - M-PHYS-102990 | 103 |
| 3.61. Elektronenmikroskopie I, ohne Übungen (NF) - M-PHYS-102992 | 104 |
| 3.62. Elektronenmikroskopie II, mit Übungen - M-PHYS-102227 | 105 |
| 3.63. Elektronenmikroskopie II, mit Übungen (NF) - M-PHYS-103172 | 106 |
| 3.64. Elektronenmikroskopie II, ohne Übungen - M-PHYS-102844 | 107 |
| 3.65. Elektronenmikroskopie II, ohne Übungen (NF) - M-PHYS-103173 | 108 |
| 3.66. Elektronenoptik, mit Übungen - M-PHYS-102321 | 109 |
| 3.67. Elektronenoptik, mit Übungen (NF) - M-PHYS-103174 | 110 |
| 3.68. Elektronenoptik, ohne Übungen - M-PHYS-102845 | 111 |
| 3.69. Elektronenoptik, ohne Übungen (NF) - M-PHYS-103175 | 112 |
| 3.70. Elektronik für Physiker - M-PHYS-102184 | 113 |
| 3.71. Elektronik für Physiker (NF) - M-PHYS-102185 | 114 |
| 3.72. Elektronik für Physiker: Analogelektronik - M-PHYS-102179 | 115 |
| 3.73. Elektronik für Physiker: Analogelektronik (NF) - M-PHYS-102180 | 116 |
| 3.74. Elektronik für Physiker: Digitalelektronik - M-PHYS-102182 | 117 |
| 3.75. Elektronik für Physiker: Digitalelektronik (NF) - M-PHYS-102183 | 118 |
| 3.76. Elektronische Eigenschaften von Festkörpern I, mit Übungen - M-PHYS-102098 | 119 |
| 3.77. Elektronische Eigenschaften von Festkörpern I, mit Übungen (NF) - M-PHYS-102087 | 120 |
| 3.78. Elektronische Eigenschaften von Festkörpern I, ohne Übungen - M-PHYS-102090 | 121 |
| 3.79. Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF) - M-PHYS-102088 | 122 |
| 3.80. Elektronische Eigenschaften von Festkörpern II, mit Übungen - M-PHYS-102108 | 123 |
| 3.81. Elektronische Eigenschaften von Festkörpern II, mit Übungen (NF) - M-PHYS-102106 | 124 |
| 3.82. Elektronische Eigenschaften von Festkörpern II, ohne Übungen - M-PHYS-102109 | 125 |
| 3.83. Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF) - M-PHYS-102107 | 126 |
| 3.84. Elektronische Eigenschaften von Nanostrukturen - M-PHYS-102291 | 127 |
| 3.85. Elektronische Eigenschaften von Nanostrukturen (NF) - M-PHYS-102292 | 128 |
| 3.86. Experimentelle Biophysik II, mit Seminar - M-PHYS-102165 | 129 |
| 3.87. Experimentelle Biophysik II, mit Seminar (NF) - M-PHYS-102166 | 130 |
| 3.88. Experimentelle Biophysik II, ohne Seminar - M-PHYS-102167 | 131 |
| 3.89. Experimentelle Biophysik II, ohne Seminar (NF) - M-PHYS-102168 | 132 |
| 3.90. Extended Higgs Sectors Beyond the Standard Model - M-PHYS-104542 | 133 |
| 3.91. Extended Higgs Sectors Beyond the Standard Model (NF) - M-PHYS-104543 | 134 |
| 3.92. Festkörperspektroskopie, mit Übungen - M-PHYS-105074 | 135 |
| 3.93. Field Theories of Condensed Matter: Conformal Field Theory - M-PHYS-104548 | 136 |
| 3.94. Flavour Physics in the Standard Model and beyond - M-PHYS-105064 | 137 |
| 3.95. Full-waveform inversion, benotet - M-PHYS-105235 | 138 |
| 3.96. Full-waveform Inversion, unbenotet - M-PHYS-104522 | 139 |
3.98. Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, unbenotet - M-PHYS-101953 149
3.100. Geophysikalische Erkundung von Vulcanfeldern, unbenotet - M-PHYS-101874 .. 151
3.101. Geophysikalische Tiefenforschung an Vulkanen am Beispiel des Vogelsbergs, benotet - M-PHYS-101952 152
3.102. Geophysikalische Tiefenforschung an Vulkanen am Beispiel des Vogelsbergs, unbenotet - M-PHYS-101872 ... 154
3.103. Grundlagen der Nanotechnologie I - M-PHYS-102097 ... 155
3.104. Grundlagen der Nanotechnologie I (NF) - M-PHYS-102096 .. 156
3.105. Grundlagen der Nanotechnologie II - M-PHYS-102100 .. 157
3.106. Grundlagen der Nanotechnologie II (NF) - M-PHYS-102099 .. 158
3.107. Hadronische Wechselwirkungen - M-PHYS-105063 ... 159
3.108. Halbleiterphysik, mit Übungen - M-PHYS-102131 ... 160
3.109. Halbleiterphysik, mit Übungen (NF) - M-PHYS-102130 ... 162
3.110. Halbleiterphysik, ohne Übungen - M-PHYS-102301 ... 163
3.111. Halbleiterphysik, ohne Übungen (NF) - M-PHYS-102300 ... 165
3.112. Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik - M-PHYS-102207 166
3.113. Hauptseminar im Themenfeld Experimentelle Teilchenphysik - M-PHYS-102206 168
3.115. Hauptseminar im Themenfeld Nanophysik - M-PHYS-102204 ... 172
3.116. Hauptseminar im Themenfeld Optik und Photonik - M-PHYS-102205 .. 174
3.117. Hauptseminar im Themenfeld Theoretische Teilchenphysik - M-PHYS-102208 176
3.119. Hydrodynamik - M-PHYS-104864 ... 180
3.120. Hydrodynamik (NF) - M-PHYS-104865 ... 181
3.121. Induced Seismicity, benotet - M-PHYS-101959 ... 182
3.122. Induced Seismicity, unbenotet - M-PHYS-101878 .. 183
3.123. Inversion & Tomographie - M-PHYS-102368 ... 184
3.124. Inversion & Tomographie (NF) - M-PHYS-102658 ... 185
3.125. Masterarbeit - M-PHYS-102068 ... 186
3.127. Messmethoden und Techniken in der Experimentalphysik, mit erw. Übungen (NF) - M-PHYS-102519 ... 189
3.128. Messmethoden und Techniken in der Experimentalphysik, ohne erw. Übungen - M-PHYS-102518 190
3.129. Messmethoden und Techniken in der Experimentalphysik, ohne erw. Übungen (NF) - M-PHYS-103194 ... 192
3.130. Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum - M-PHYS-103091 193
3.131. Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF) - M-PHYS-103170 195
3.132. Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum - M-PHYS-102229 197
3.133. Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum (NF) - M-PHYS-103169 199
3.135. Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation (NF) - M-PHYS-103171 202
3.137. Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum (NF) - M-PHYS-102847 205
3.139. Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum (NF) - M-PHYS-102323 209
3.140. Moderne Methoden der Datenanalyse, mit erw. Übungen - M-PHYS-102127 .. 211
3.141. Moderne Methoden der Datenanalyse, mit erw. Übungen (NF) - M-PHYS-102128 212
3.142. Moderne Methoden der Datenanalyse, ohne erw. Übungen - M-PHYS-102125 .. 213
3.143. Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF) - M-PHYS-102126 214
3.144. Molekulare Elektronik - M-PHYS-104540 .. 215
3.145. Molekulare Elektronik (NF) - M-PHYS-104541 .. 216
3.146. Molekülspektroskopie - M-PHYS-102337 ... 217
3.147. Monte Carlo Ereignisgeneratoren - M-PHYS-104860 .. 218
3.148. Monte Carlo Ereignisgeneratoren (NF) - M-PHYS-104861 ... 219
3.149. Nanomagnetism, Quantummagnetism and Spin Bath Physics - M-PHYS-103782 220
3.150. Nanomagnetism, Quantummagnetism and Spin Bath Physics (NF) - M-PHYS-103783 221
3.151. Nanomaterials, mit Übungen - M-PHYS-105068 .. 222
3.152. Nanomaterials, mit Übungen (NF) - M-PHYS-105069 ... 224
<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101396</td>
<td>Spezialisierungsphase</td>
</tr>
<tr>
<td>M-PHYS-105071</td>
<td>Nanomaterials, ohne Übungen</td>
</tr>
<tr>
<td>M-PHYS-102146</td>
<td>Nano-Optics</td>
</tr>
<tr>
<td>M-PHYS-102147</td>
<td>Nano-Optics (NF)</td>
</tr>
<tr>
<td>M-PHYS-101833</td>
<td>Naturgefahren und Risiken</td>
</tr>
<tr>
<td>M-PHYS-102192</td>
<td>NeutrinoPhysik - Theoretische Aspekte</td>
</tr>
<tr>
<td>M-PHYS-102330</td>
<td>NeutrinoPhysik - Theoretische Aspekte (NF)</td>
</tr>
<tr>
<td>M-ETIT-100430</td>
<td>Nonlinear Optics</td>
</tr>
<tr>
<td>M-PHYS-102134</td>
<td>Oberflächenphysik, mit Übungen</td>
</tr>
<tr>
<td>M-PHYS-102136</td>
<td>Oberflächenphysik, mit Übungen (NF)</td>
</tr>
<tr>
<td>M-PHYS-102133</td>
<td>Oberflächenphysik, ohne Übungen</td>
</tr>
<tr>
<td>M-PHYS-102135</td>
<td>Oberflächenphysik, ohne Übungen (NF)</td>
</tr>
<tr>
<td>M-ETIT-100513</td>
<td>Photovoltaik</td>
</tr>
<tr>
<td>M-PHYS-101960</td>
<td>Physik der Lithosphäre, benotet</td>
</tr>
<tr>
<td>M-PHYS-101875</td>
<td>Physik der Lithosphäre, unbenotet</td>
</tr>
<tr>
<td>M-PHYS-104866</td>
<td>Physik der Quanteninformation</td>
</tr>
<tr>
<td>M-PHYS-104867</td>
<td>Physik der Quanteninformation (NF)</td>
</tr>
<tr>
<td>M-PHYS-102358</td>
<td>Physik seismischer Messinstrumente</td>
</tr>
<tr>
<td>M-PHYS-102653</td>
<td>Physik seismischer Messinstrumente (NF)</td>
</tr>
<tr>
<td>M-PHYS-101395</td>
<td>Physikalisches Fortgeschrittenenpraktikum</td>
</tr>
<tr>
<td>M-PHYS-102091</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 1 TL</td>
</tr>
<tr>
<td>M-PHYS-103129</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 2 T Len</td>
</tr>
<tr>
<td>M-PHYS-103130</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 T Len</td>
</tr>
<tr>
<td>M-PHYS-103131</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 T Len</td>
</tr>
<tr>
<td>M-PHYS-104873</td>
<td>Precision Tests of the Standard Model at low Energies</td>
</tr>
<tr>
<td>M-PHYS-103326</td>
<td>QCD und Colliderphysik, mit Übungen</td>
</tr>
<tr>
<td>M-PHYS-103327</td>
<td>QCD und Colliderphysik, mit Übungen (NF)</td>
</tr>
<tr>
<td>M-PHYS-103325</td>
<td>Quanntenoptik auf der Nanoskala</td>
</tr>
<tr>
<td>M-PHYS-103330</td>
<td>Quanntenoptik auf der Nanoskala (NF)</td>
</tr>
<tr>
<td>M-PHYS-104092</td>
<td>Quanntenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen</td>
</tr>
<tr>
<td>M-PHYS-104093</td>
<td>Quanntenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen (NF)</td>
</tr>
<tr>
<td>M-PHYS-104094</td>
<td>Quanntenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen</td>
</tr>
<tr>
<td>M-PHYS-104095</td>
<td>Quanntenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen (NF)</td>
</tr>
<tr>
<td>M-PHYS-103092</td>
<td>Quantum Machines: Design and Implementation in Solid State Devices</td>
</tr>
<tr>
<td>M-PHYS-103176</td>
<td>Quantum Machines: Design and Implementation in Solid State Devices (NF)</td>
</tr>
<tr>
<td>M-PHYS-104097</td>
<td>Quantum Physics in One Dimension</td>
</tr>
<tr>
<td>M-PHYS-104098</td>
<td>Quantum Physics in One Dimension (NF)</td>
</tr>
<tr>
<td>M-PHYS-102364</td>
<td>Reflexionsseismisches Processing</td>
</tr>
<tr>
<td>M-PHYS-102654</td>
<td>Reflexionsseismisches Processing (NF)</td>
</tr>
<tr>
<td>M-PHYS-104186</td>
<td>Seismic Data Processing with final report (graded)</td>
</tr>
<tr>
<td>M-PHYS-104188</td>
<td>Seismic Data Processing with final report (ungraded)</td>
</tr>
<tr>
<td>M-PHYS-105225</td>
<td>Seismology</td>
</tr>
<tr>
<td>M-PHYS-105226</td>
<td>Seismology (NF)</td>
</tr>
<tr>
<td>M-PHYS-104578</td>
<td>Selected Topics in Meteorology (Minor, ungraded)</td>
</tr>
<tr>
<td>M-PHYS-104577</td>
<td>Selected Topics in Meteorology (Second Major, graded)</td>
</tr>
<tr>
<td>M-PHYS-102553</td>
<td>Simulation nanoskaliger Systeme, mit Seminar</td>
</tr>
<tr>
<td>M-PHYS-103192</td>
<td>Simulation nanoskaliger Systeme, mit Seminar (NF)</td>
</tr>
<tr>
<td>M-PHYS-102331</td>
<td>Simulation nanoskaliger Systeme, ohne Seminar</td>
</tr>
<tr>
<td>M-PHYS-103191</td>
<td>Simulation nanoskaliger Systeme, ohne Seminar (NF)</td>
</tr>
<tr>
<td>M-PHYS-104857</td>
<td>Solid State Quantum Technologies</td>
</tr>
<tr>
<td>M-PHYS-104858</td>
<td>Solid State Quantum Technologies (NF)</td>
</tr>
<tr>
<td>M-PHYS-102144</td>
<td>Solid-State Optics, mit Übungen</td>
</tr>
<tr>
<td>M-PHYS-102145</td>
<td>Solid-State Optics, mit Übungen (NF)</td>
</tr>
<tr>
<td>M-PHYS-102408</td>
<td>Solid-State Optics, ohne Übungen</td>
</tr>
<tr>
<td>M-PHYS-102409</td>
<td>Solid-State Optics, ohne Übungen (NF)</td>
</tr>
<tr>
<td>M-PHYS-101396</td>
<td>Spezialisierungphase</td>
</tr>
<tr>
<td>M-PHYS-102293</td>
<td>Spintransport in Nanostrukturen</td>
</tr>
<tr>
<td>M-PHYS-102191</td>
<td>Supraleiter-Nanostrukturen</td>
</tr>
<tr>
<td>M-PHYS-104723</td>
<td>Supraleiter-Nanostrukturen (NF)</td>
</tr>
<tr>
<td>M-PHYS-102317</td>
<td>Symmetrien und Gruppen</td>
</tr>
<tr>
<td>M-PHYS-102318</td>
<td>Symmetrien und Gruppen (NF)</td>
</tr>
</tbody>
</table>

Physik Master 2015 (Master of Science)
Modulhandbuch mit Stand vom 09.10.2019
Inhaltsverzeichnis

3.213. Symmetrien, Gruppen und erweiterte Eichtheorien - M-PHYS-102315 .. 295
3.214. Symmetrien, Gruppen und erweiterte Eichtheorien (NF) - M-PHYS-102316 .. 296
3.215. Teilchenphysik I - M-PHYS-102114 ... 297
3.216. Teilchenphysik I (NF) - M-PHYS-102115 .. 299
3.217. Teilchenphysik II - Flavour-Physik, mit erw. Übungen - M-PHYS-102422 .. 301
3.218. Teilchenphysik II - Flavour-Physik, mit erw. Übungen (NF) - M-PHYS-103183 ... 302
3.219. Teilchenphysik II - Flavour-Physik, ohne erw. Übungen - M-PHYS-102154 .. 303
3.220. Teilchenphysik II - Flavour-Physik, ohne erw. Übungen (NF) - M-PHYS-102155 ... 304
3.221. Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen - M-PHYS-104088 305
3.222. Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF) - M-PHYS-104089 307
3.223. Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen - M-PHYS-104086 309
3.224. Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF) - M-PHYS-104087 311
3.228. Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen (NF) - M-PHYS-104082 316
3.229. The ABC of DFT - M-PHYS-102984 .. 317
3.230. Theoretical Nanooptics - M-PHYS-102295 .. 318
3.231. Theoretical Nanooptics (NF) - M-PHYS-103177 .. 319
3.232. Theoretical Optics - M-PHYS-102277 .. 320
3.233. Theoretical Optics (NF) - M-PHYS-102279 .. 321
3.234. Theoretical Quantum Optics - M-PHYS-105094 .. 322
3.235. Theoretische molekulare Biophysik, mit Seminar - M-PHYS-102169 .. 324
3.236. Theoretische molekulare Biophysik, mit Seminar (NF) - M-PHYS-102170 ... 325
3.237. Theoretische molekulare Biophysik, ohne Seminar - M-PHYS-102171 .. 326
3.238. Theoretische molekulare Biophysik, ohne Seminar (NF) - M-PHYS-102172 .. 327
3.239. Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen - M-PHYS-102033 328
3.240. Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) - M-PHYS-102037 329
3.242. Theoretische Teilchenphysik I, Grundlagen, mit Übungen - M-PHYS-102034 331
3.243. Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) - M-PHYS-102038 332
3.244. Theoretische Teilchenphysik I, Grundlagen, ohne Übungen - M-PHYS-102036 333
3.245. Theoretische Teilchenphysik II, ohne Übungen - M-PHYS-102048 .. 334
3.246. Theoretische Teilchenphysik II, mit Übungen - M-PHYS-102046 ... 335
3.247. Theoretische Teilchenphysik II, mit Übungen (NF) - M-PHYS-102044 .. 336
3.248. Theorie der Kondensierten Materie I, Grundlagen - M-PHYS-102054 .. 337
3.249. Theorie der Kondensierten Materie I, Grundlagen (NF) - M-PHYS-102052 ... 338
3.252. Theorie der Kondensierten Materie II: Vielteilchentheorie, ausgewählte Themen - M-PHYS-103331 341
3.254. Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) - M-PHYS-102314 344
3.256. Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) - M-PHYS-102312 348
3.257. Theorie seismischer Wellen - M-PHYS-102367 .. 350
3.258. Theorie seismischer Wellen (NF) - M-PHYS-102657 .. 351
3.259. Überfachliche Qualifikationen - M-PHYS-101394 .. 352
4. Teilleistungen .. 353

4.2. Advanced Topics in Flavour Physics - T-PHYS-108476 .. 354
4.3. Allgemeine Relativitätstheorie - T-PHYS-102395 ... 355
4.4. Allgemeine Relativitätstheorie (NF) - T-PHYS-102446 .. 356
4.5. Allgemeine Relativitätstheorie II - T-PHYS-106678 .. 357
4.6. Allgemeine Relativitätstheorie II (NF) - T-PHYS-106679 .. 358
4.7. Array Processing - T-PHYS-104733 .. 359
4.8. Array Processing (NF) - T-PHYS-105570 .. 360
4.9. Astroteilchenphysik I - T-PHYS-102432 .. 361
4.10. Astroteilchenphysik I (NF) - T-PHYS-104379 .. 362
4.11. Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen - T-PHYS-105109 363
4.12. Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF) - T-PHYS-106318 364
4.13. Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen - T-PHYS-102383
4.15. Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen - T-PHYS-105108
4.16. Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF) - T-PHYS-106317
4.17. Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen - T-PHYS-102382
4.18. Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF) - T-PHYS-104380
4.19. Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen - T-PHYS-105110
4.20. Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF) - T-PHYS-106319
4.21. Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen - T-PHYS-102498
4.22. Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF) - T-PHYS-104383
4.23. Atmospheric Aerosols - T-PHYS-108938
4.25. Beschleunigerphysik, mit erw. Übungen - T-PHYS-109904
4.26. Beschleunigerphysik, mit erw. Übungen (NF) - T-PHYS-109903
4.27. Beschleunigerphysik, ohne erw. Übungen - T-PHYS-109905
4.28. Beschleunigerphysik, ohne erw. Übungen (NF) - T-PHYS-109906
4.29. Climate Modeling & Dynamics with ICON - T-PHYS-108928
4.30. Cloud Physics - T-PHYS-107694
4.31. Computational Condensed Matter Physics - T-PHYS-109895
4.32. Computational Condensed Matter Physics (NF) - T-PHYS-109894
4.33. Computational Photonics, with ext. Exercises - T-PHYS-103633
4.34. Computational Photonics, with ext. Exercises (NF) - T-PHYS-106132
4.35. Computational Photonics, without ext. Exercises - T-PHYS-106131
4.36. Computational Photonics, without ext. Exercises (NF) - T-PHYS-106326
4.38. Critical and Fluctuation Phenomena in Condensed-Matter Physics (NF) - T-PHYS-110391
4.40. Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF) - T-PHYS-102431
4.41. Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen - T-PHYS-104453
4.42. Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF) - T-PHYS-104454
4.43. Dunkle Materie - Theoretische Aspekte - T-PHYS-105957
4.44. Dunkle Materie - Theoretische Aspekte (NF) - T-PHYS-106320
4.45. Effektive Feldtheorien - T-PHYS-106672
4.46. Effektive Feldtheorien (NF) - T-PHYS-106673
4.47. Einführung in die wissenschaftliche Arbeiten - T-PHYS-102480
4.48. Einführung in die Flavourphysik, Grundlagen - T-PHYS-105963
4.49. Einführung in die Flavourphysik, Grundlagen (NF) - T-PHYS-106322
4.50. Einführung in die Flavourphysik, Grundlagen und Vertiefungen - T-PHYS-105962
4.51. Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF) - T-PHYS-106321
4.52. Einführung in die Kosmologie - T-PHYS-102384
4.53. Einführung in die Kosmologie (NF) - T-PHYS-102433
4.54. Einführung in die Supersymmetrie - T-PHYS-108477
4.55. Einführung in die Theoretische Kosmologie - T-PHYS-109887
4.56. Einführung in die Theoretische Kosmologie (NF) - T-PHYS-109888
4.57. Einführung in die Theoretische Teilchenphysik - T-PHYS-104536
4.58. Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF) - T-PHYS-104791
4.59. Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen - T-PHYS-104792
4.60. Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF) - T-PHYS-104793
4.61. Einführung in die Vulkanologie, Prüfung - T-PHYS-103644
4.62. Einführung in die Vulkanologie, Studienleistung - T-PHYS-103553
4.63. Elektronenmikroskopie I, mit Übungen - T-PHYS-105965
4.64. Elektronenmikroskopie I, mit Übungen (NF) - T-PHYS-105968
4.65. Elektronenmikroskopie I, ohne Übungen - T-PHYS-105967
4.66. Elektronenmikroskopie I, ohne Übungen (NF) - T-PHYS-105969
4.67. Elektronenmikroskopie II, mit Übungen - T-PHYS-102349
4.68. Elektronenmikroskopie II, mit Übungen (NF) - T-PHYS-106306
4.69. Elektronenmikroskopie II, ohne Übungen - T-PHYS-105817
4.70. Elektronenmikroskopie II, ohne Übungen (NF) - T-PHYS-106307
4.71. Elektronenoptik, mit Übungen - T-PHYS-102362
4.72. Elektronenoptik, mit Übungen (NF) - T-PHYS-106308
Inhaltsverzeichnis

4.73. Elektronenoptik, ohne Übungen - T-PHYS-105818 ... 425
4.74. Elektronenoptik, ohne Übungen (NF) - T-PHYS-106309 .. 426
4.75. Elektronik für Physiker - T-PHYS-104479 .. 427
4.76. Elektronik für Physiker (NF) - T-PHYS-104480 ... 428
4.77. Elektronik für Physiker: Analogelektronik - T-PHYS-104475 .. 429
4.78. Elektronik für Physiker: Analogelektronik (NF) - T-PHYS-104476 430
4.79. Elektronik für Physiker: Digitalelektronik - T-PHYS-104477 ... 431
4.80. Elektronik für Physiker: Digitalelektronik (NF) - T-PHYS-104478 432
4.82. Elektronische Eigenschaften von Festkörpern I, mit Übungen (NF) - T-PHYS-102575 434
4.84. Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF) - T-PHYS-102576 436
4.85. Elektronische Eigenschaften von Festkörpern II, mit Übungen - T-PHYS-104422 437
4.86. Elektronische Eigenschaften von Festkörpern II, mit Übungen (NF) - T-PHYS-104420 438
4.88. Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF) - T-PHYS-104421 440
4.89. Elektronische Eigenschaften von Nanostrukturen - T-PHYS-102534 441
4.90. Elektronische Eigenschaften von Nanostrukturen (NF) - T-PHYS-102535 442
4.91. Energetics - T-PHYS-107695 .. 443
4.93. Exam on Selected Topics in Meteorology (Second Major) - T-PHYS-109380 445
4.94. Experimentelle Biophysik II, mit Seminar - T-PHYS-102532 .. 447
4.95. Experimentelle Biophysik II, mit Seminar (NF) - T-PHYS-102533 448
4.96. Experimentelle Biophysik II, ohne Seminar - T-PHYS-104471 .. 449
4.97. Experimentelle Biophysik II, ohne Seminar (NF) - T-PHYS-104472 450
4.98. Extended Higgs Sectors Beyond the Standard Model - T-PHYS-109307 451
4.99. Extended Higgs Sectors Beyond the Standard Model (NF) - T-PHYS-109308 452
4.100. Festkörperspektroskopie, mit Übungen - T-PHYS-110292 .. 453
4.101. Field Theories of Condensed Matter: Conformal Field Theory - T-PHYS-109320 454
4.102. Flavour Physics in the Standard Model and beyond - T-PHYS-110281 455
4.103. Full-waveform inversion - T-PHYS-109272 .. 456
4.104. Full-waveform inversion (graded) - T-PHYS-110614 ... 457
4.105. Geological Hazards and Risk - T-PHYS-103525 .. 458
4.106. Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Prüfung - T-PHYS-103674 ... 459
4.107. Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Studienleistung - T-PHYS-103572 ... 460
4.108. Geophysikalische Erkundung von Vulkanfeldern, Prüfung - T-PHYS-103672 461
4.110. Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Prüfung - T-PHYS-103673 ... 463
4.111. Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung - T-PHYS-103571 ... 464
4.112. Grundlagen der Nanotechnologie I - T-PHYS-102529 .. 465
4.113. Grundlagen der Nanotechnologie I (NF) - T-PHYS-102528 ... 466
4.114. Grundlagen der Nanotechnologie II - T-PHYS-102531 ... 467
4.115. Grundlagen der Nanotechnologie II (NF) - T-PHYS-102530 ... 468
4.116. Hadronische Wechselwirkungen - T-PHYS-110279 .. 469
4.117. Halbleiterphysik, mit Übungen - T-PHYS-102343 ... 470
4.118. Halbleiterphysik, mit Übungen (NF) - T-PHYS-102301 .. 471
4.119. Halbleiterphysik, ohne Übungen - T-PHYS-104590 .. 472
4.120. Halbleiterphysik, ohne Übungen (NF) - T-PHYS-104589 .. 473
4.121. Hauptseminar: Aktuelle Experimente der Quantenphysik - T-PHYS-109971 474
4.122. Hauptseminar: Astroteilchenphysik - T-PHYS-110293 .. 475
4.123. Hauptseminar: Astroteilchenphysik - Das Universum bei höchsten Energien - T-PHYS-104550 476
4.126. Hauptseminar: Basisgrößen und Basisinvarianten - T-PHYS-106524 479
4.128. Hauptseminar: Big Data Science in- und außerhalb der Physik - T-PHYS-106287 481
4.129. Hauptseminar: Biophysik der Sinneswahrnehmungen - T-PHYS-104573 482
4.130. Hauptseminar: Elektronenmikroskopie und deren Anwendung in der Festkörperforschung - T-PHYS-105794 483
4.131. Hauptseminar: Elektronenmikroskopie und Elektronenoptik - T-PHYS-108436 484
4.132. Hauptseminar: Elektronenoptik - T-PHYS-104523 ... 485
4.133. Hauptseminar: Elementare Quanteneffekte der Kondensierten Materie - T-PHYS-104538 486
4.135. Hauptseminar: Experimentelle Methoden der Teilchenphysik - T-PHYS-104547 488
4.137. Hauptseminar: Experimentelle und Theoretische Grundlagen der Elementarteilchenphysik - T-PHYS-104537 ... 490
4.138. Hauptseminar: Experimentelle und Theoretische Methoden der Colliderphysik - T-PHYS-109976 491
4.139. Hauptseminar: Experimentelle und Theoretische Methoden der Teilchenphysik - T-PHYS-106525 492
4.141. Hauptseminar: Flavourphysik - T-PHYS-109973 ... 494
4.142. Hauptseminar: Forschung mit Photonen - Festkörperforschung, Strukturaufklärung und Bildgebung - T-
PHYS-105795
4.143. Hauptseminar: From the Smallest to the Largest Scales - Understanding the Matter Content of the Universe - 496
T-PHYS-109975
4.144. Hauptseminar: General Relativity - T-PHYS-106126 .. 497
4.145. Hauptseminar: General Relativity II - T-PHYS-109974 .. 498
4.146. Hauptseminar: Halbleiter-Nanostrukturen - T-PHYS-104540 .. 499
4.147. Hauptseminar: Hunting New Physics in the Higgs Sector - T-PHYS-104522 500
4.149. Hauptseminar: Konzepte und Bauelemente des Quantencomputers - T-PHYS-104574 502
4.150. Hauptseminar: Konzepte und Physik des Quantencomputers - T-PHYS-105792 503
4.151. Hauptseminar: LICHToptische Nanoskopie - T-PHYS-104560 .. 504
4.152. Hauptseminar: Magnetismus - T-PHYS-106125 ... 505
4.155. Hauptseminar: Miracles in Quantum Field Theory - T-PHYS-107567 508
4.156. Hauptseminar: Models and Searches for Lorentz Violation - T-PHYS-104575 509
4.158. Hauptseminar: Nanoelektronik und Quantentransport - T-PHYS-104542 511
4.159. Hauptseminar: Neutronen- und Röntgenstrahlung in der Festkörperfysik - T-PHYS-109977 512
4.163. Hauptseminar: Physics beyond the Standard Model at the LHC and ee Colliders - T-PHYS-106127 516
4.164. Hauptseminar: Physik tiefer Temperaturen - T-PHYS-104549 .. 517
4.165. Hauptseminar: Plasmonik - T-PHYS-105788 ... 518
4.166. Hauptseminar: Quanteneffekte in Dünnen Schichten - T-PHYS-108876 519
4.167. Hauptseminar: Quantenoptik - T-PHYS-106523 ... 520
4.169. Hauptseminar: Quantentechnologie (Spins, Tunnelsysteme, NV-Zentren, Supraleitende Qubits etc.) - 522
T-PHYS-108433
4.170. Hauptseminar: Schlüsselexperimente der Festkörperfysik - T-PHYS-105790 523
4.171. Hauptseminar: Spezielle Relativitätstheorie - T-PHYS-105793 .. 524
4.172. Hauptseminar: Standardmodell der Teilchenphysik: Experiment und Theorie - T-PHYS-108435 525
4.174. Hauptseminar: Teilchenphysik bei höchster Energie am LHC - T-PHYS-107566 527
4.175. Hauptseminar: Teilchenphysik und Experimentelle Methoden - T-PHYS-105791 528
4.177. Hauptseminar: Tieftemperaturphysik - T-PHYS-107564 .. 530
4.178. Hydrodynamik - T-PHYS-109897 ... 531
4.179. Hydrodynamik (NF) - T-PHYS-109896 ... 532
4.180. Induced Seismicity, Prüfung - T-PHYS-103677 ... 533
4.181. Induced Seismicity, Studienleistung - T-PHYS-103575 ... 534
4.182. Integrated Atmospheric Measurements - T-PHYS-109902 .. 535
4.183. Inversion & Tomographie - T-PHYS-104737 ... 536
4.184. Inversion & Tomographie (NF) - T-PHYS-105572 ... 537
4.185. Masterarbeit - T-PHYS-104370 ... 538
4.186. Messmethoden und Techniken der Experimentalphysik, mit erw. Übungen - T-PHYS-102376 539
4.187. Messmethoden und Techniken der Experimentalphysik, mit erw. Übungen (NF) - T-PHYS-105106 540
4.188. Messmethoden und Techniken der Experimentalphysik, ohne erw. Übungen - T-PHYS-105105 .. 541
4.189. Messmethoden und Techniken der Experimentalphysik, ohne erw. Übungen (NF) - T-PHYS-106327 542
4.190. Meteorological Hazards - T-PHYS-109140 .. 543
4.191. Methods of Data Analysis - T-PHYS-109142 ... 544
4.192. Middle Atmosphere in the Climate System - T-PHYS-108931 .. 545
4.194. Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF) - T-PHYS-106304 547
4.196. Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum (NF) - T-PHYS-106303 549
4.198. Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation (NF) - T-PHYS-106305 551
4.203. Moderne Methoden der Datenanalyse, mit erw. Übungen - T-PHYS-102495 ... 556
4.204. Moderne Methoden der Datenanalyse, mit erw. Übungen (NF) - T-PHYS-102496 .. 557
4.205. Moderne Methoden der Datenanalyse, ohne erw. Übungen - T-PHYS-102494 ... 558
4.206. Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF) - T-PHYS-102497 ... 559
4.207. Molekulare Elektronik - T-PHYS-109305 ... 560
4.208. Molekulare Elektronik (NF) - T-PHYS-109306 .. 561
4.209. Molekülspektroskopie - T-CHEMBIO-104639 .. 562
4.211. Monte Carlo Ereignisgeneratoren (NF) - T-PHYS-109893 .. 564
4.212. Nanomagnetism, Quantummagnetism and Spin Bath Physics - T-PHYS-107626 .. 565
4.213. Nanomagnetism, Quantummagnetism and Spin Bath Physics (NF) - T-PHYS-107627 566
4.214. Nanomaterials, mit Übungen - T-PHYS-110285 .. 567
4.215. Nanomaterials, mit Übungen (NF) - T-PHYS-110286 .. 568
4.216. Nanomaterials, ohne Übungen - T-PHYS-110288 .. 569
4.217. Nano-Optics - T-PHYS-102282 ... 570
4.218. Nano-Optics (NF) - T-PHYS-102360 ... 571
4.219. Neutrinophysik - theoretische Aspekte - T-PHYS-104514 ... 572
4.220. Neutrinophysik - Theoretische Aspekte (NF) - T-PHYS-104637 ... 573
4.221. Nonlinear Optics - T-ETIT-101906 ... 574
4.222. Oberflächenphysik, mit Übungen - T-PHYS-102512 .. 575
4.223. Oberflächenphysik, mit Übungen (NF) - T-PHYS-102510 .. 576
4.224. Oberflächenphysik, ohne Übungen - T-PHYS-102513 .. 577
4.225. Oberflächenphysik, ohne Übungen (NF) - T-PHYS-102511 .. 578
4.227. Photovoltaik - T-ETIT-101939 ... 580
4.228. Physics of Planetary Atmospheres - T-PHYS-109177 .. 581
4.229. Physik der Lithosphäre, Prüfung - T-PHYS-103678 .. 582
4.230. Physik der Lithosphäre, Studienleistung - T-PHYS-103574 .. 583
4.231. Physik der Quanteninformation - T-PHYS-109898 .. 584
4.232. Physik der Quanteninformation (NF) - T-PHYS-109900 .. 585
4.233. Physik seismischer Messinstrumente - T-PHYS-104727 .. 586
4.234. Physik seismischer Messinstrumente (NF) - T-PHYS-105567 .. 587
4.235. Physikalisches Fortgeschrittenenpraktikum - T-PHYS-102479 .. 588
4.236. Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 1 TL, 8 LP ben - T-PHYS-104384 589
4.238. Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL, 2 LP ben - T-PHYS-106221 591
4.239. Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL, 3 LP ben - T-PHYS-106225 592
4.240. Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL, 3 LP ben - T-PHYS-106223 593
4.244. Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben - T-PHYS-106228 ..597
4.245. Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben - T-PHYS-106227 ..598
4.247. Platzhalter Überfachliche Qualifikation 2 LP - benotet - T-PHYS-104675 ..599
4.247. Platzhalter Überfachliche Qualifikation 2 LP - unbenotet - T-PHYS-104677 ..600
4.249. QCD und Colliderphysik, mit Übungen - T-PHYS-106670 ..602
4.250. QCD und Colliderphysik, mit Übungen (NF) - T-PHYS-106671 ..603
4.251. Quantenoptik auf der Nanoskala - T-PHYS-106669 ..604
4.252. Quantenoptik auf der Nanoskala (NF) - T-PHYS-106679 ..605
4.254. Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen (NF) - T-PHYS-108479 ..607
4.255. Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen - T-PHYS-108480 ..608
4.256. Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen (NF) - T-PHYS-108481 ..609
4.258. Quantum Machines: Design and Implementation in Solid State Devices (NF) - T-PHYS-106310 ..611
4.259. Quantum Physics in One Dimension - T-PHYS-108482 ..612
4.260. Quantum Physics in One Dimension (NF) - T-PHYS-108483 ..613
4.261. Reflexionsseismisches Processing - T-PHYS-104735 ..614
4.262. Reflexionsseismisches Processing (NF) - T-PHYS-105568 ..615
4.263. Remote Sensing of Atmospheric State Variables - T-PHYS-109133 ..616
4.264. Seismic Data Processing, coursework - T-PHYS-108668 ..617
4.265. Seismic Data Processing, final report (graded) - T-PHYS-108656 ..618
4.266. Seismic Data Processing, final report (ungraded) - T-PHYS-108657 ..619
4.267. Seismology - T-PHYS-110603 ..620
4.268. Seismology (NF) - T-PHYS-110604 ..621
4.269. Seminar on IPCC Assessment Report - T-PHYS-107692 ..622
4.270. Simulation nanoskaliger Systeme, mit Seminar - T-PHYS-105131 ..623
4.271. Simulation nanoskaliger Systeme, mit Seminar (NF) - T-PHYS-106325 ..624
4.272. Simulation nanoskaliger Systeme, ohne Seminar - T-PHYS-102504 ..625
4.273. Simulation nanoskaliger Systeme, ohne Seminar (NF) - T-PHYS-106324 ..626
4.274. Solid State Quantum Technologies - T-PHYS-109890 ..627
4.275. Solid State Quantum Technologies - T-PHYS-109889 ..628
4.276. Solid-State Optics, mit Übungen - T-PHYS-102279 ..629
4.277. Solid-State Optics, mit Übungen (NF) - T-PHYS-102346 ..630
4.278. Solid-State Optics, ohne Übungen - T-PHYS-104773 ..631
4.279. Solid-State Optics, ohne Übungen (NF) - T-PHYS-104774 ..632
4.280. Spezialisierungsphase - T-PHYS-102481 ..633
4.281. Spintransport in Nanostrukturen - T-PHYS-104586 ..634
4.282. Success Control on Selected Topics in Meteorology (Minor) - T-PHYS-109379 ..635
4.283. Supraleiter-Nanostrukturen - T-PHYS-104513 ..636
4.284. Supraleiter-Nanostrukturen (NF) - T-PHYS-109621 ..637
4.286. Symmetrien und Gruppen (NF) - T-PHYS-104597 ..639
4.287. Symmetrien, Gruppen und erweiterte Eichtheorien - T-PHYS-102393 ..640
4.288. Symmetrien, Gruppen und erweiterte Eichtheorien (NF) - T-PHYS-102444 ..641
4.289. Teilchenphysik I - T-PHYS-102369 ..642
4.290. Teilchenphysik I (NF) - T-PHYS-102488 ..643
4.291. Teilchenphysik II - Flavour-Physik, mit erw. Übungen - T-PHYS-104783 ..644
4.292. Teilchenphysik II - Flavour-Physik, mit erw. Übungen (NF) - T-PHYS-106316 ..645
4.293. Teilchenphysik II - Flavour-Physik, ohne erw. Übungen - T-PHYS-102371 ..646
4.294. Teilchenphysik II - Flavour-Physik, ohne erw. Übungen (NF) - T-PHYS-102424 ..647
4.295. Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen - T-PHYS-108474 ..648
4.296. Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF) - T-PHYS-108475 ..649
4.297. Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen - T-PHYS-108472 ..650
4.298. Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF) - T-PHYS-108473 ..651
4.300. Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen (NF) - T-PHYS-108471 ..653
4.302. Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen (NF) - T-PHYS-108469 ..655
4.303. The ABC of DFT - T-PHYS-105960 ..656
Inhaltsverzeichnis

4.304. Theoretical Nanooptics - T-PHYS-104587 ... 657
4.305. Theoretical Nanooptics (NF) - T-PHYS-106311 ... 658
4.306. Theoretical Quantum Optics - T-PHYS-110303 ... 659
4.307. Theoretische molekulare Biophysik, mit Seminar - T-PHYS-102365 660
4.308. Theoretische molekulare Biophysik, mit Seminar (NF) - T-PHYS-102420 661
4.309. Theoretische molekulare Biophysik, ohne Seminar - T-PHYS-104473 662
4.310. Theoretische molekulare Biophysik, ohne Seminar (NF) - T-PHYS-104474 663
4.311. Theoretische Optik - T-PHYS-104578 .. 664
4.312. Theoretische Optik - Vorleistung - T-PHYS-102305 .. 665
4.313. Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen - T-PHYS-102544 ... 666
4.314. Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) - T-PHYS-102540 ... 667
4.315. Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen - T-PHYS-102546 ... 668
4.316. Theoretische Teilchenphysik I, Grundlagen, mit Übungen - T-PHYS-102545 669
4.317. Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) - T-PHYS-102541 670
4.318. Theoretische Teilchenphysik I, Grundlagen, ohne Übungen - T-PHYS-102547 671
4.319. Theoretische Teilchenphysik II, mit Übungen - T-PHYS-102552 672
4.320. Theoretische Teilchenphysik II, mit Übungen (NF) - T-PHYS-102548 673
4.321. Theoretische Teilchenphysik II, ohne Übungen - T-PHYS-102554 674
4.322. Theorie der Kondensierten Materie I, Grundlagen - T-PHYS-102559 675
4.323. Theorie der Kondensierten Materie I, Grundlagen (NF) - T-PHYS-102557 676
4.324. Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen - T-PHYS-102558 ... 677
4.325. Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen (NF) - T-PHYS-102556 ... 678
4.326. Theorie der Kondensierten Materie II: Vielteilchentheorie, ausgewählte Themen - T-PHYS-106676 ... 679
4.327. Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen - T-PHYS-104591 ... 680
4.328. Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) - T-PHYS-104592 ... 681
4.330. Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) - T-PHYS-102562 683
4.331. Theorie seismischer Wellen - T-PHYS-104736 .. 684
4.332. Theorie seismischer Wellen (NF) - T-PHYS-105571 ... 685
4.333. Tropical Meteorology - T-PHYS-107693 ... 686
4.334. Turbulent Diffusion - T-PHYS-108610 ... 687
1 Masterstudiengang Physik

1.1 Qualifikationsziele

1.1.1 Qualifikationsziele des Studiengangs

Am KIT wird besonderer Wert auf eine forschungsnähe Lehre gelegt. Im Masterbereich haben die Studierenden eine große Wahlmöglichkeit, sich nach Ihren Interessen zu spezialisieren und engen Kontakt zur Forschung im Hochschulbereich sowie im Großforschungsbereich zu gelangen.

Die Kombination des Bachelor- und Masterstudiengangs ist äquivalent zum früheren Diplomstudiengang. Die Definition der allgemeinen Qualifikationsziele auf Studiengangsebene des Bachelor und Masters in Physik wird in der „Konferenz der Fachbereiche Physik“ deutschsprachig und mit Rücksicht auf die nationale Lehr- und Forschungslandschaft koordiniert, um einen Wechsel während des Studiums innerhalb Deutschlands zu ermöglichen und ein international definiertes Berufsfeld zu sichern.

1.1.2 Qualifikationsziele der einzelnen Fächer

1.1.2.1 Physikalisches Schwerpunkt-, Ergänzungs- und Nebenfach

1.1.2.2 Nichtphysikalisches Wahlpflichtfach
Das nichtphysikalische Wahlpflichtfach mathematischer, naturwissenschaftlicher oder ingenieurwissenschaftlicher Richtung kann aus den Veranstaltungen anderer Fakultäten gewählt werden. Hier werden fachliche Kompetenzen aus benachbarten Disziplinen erlernt, auch um vielfältige Möglichkeiten auf dem Arbeitsmarkt zu eröffnen.

1.1.2.3 Fortgeschrittenenpraktikum
Im Fortgeschrittenenpraktikum werden moderne experimentelle Methoden und Techniken erlernt. Die Studierenden beherrschen fortgeschrittene Fähigkeiten bei Versuchsaufbau, Messung und Auswertung der Messdaten.

1.1.2.4 Hauptseminar
Die Studierenden eignen sich Präsentationstechniken anhand eines eigenen Vortrags sowie der Vorträge der anderen Teilnehmer an. Sie erlernen das selbstständige Sammeln von wissenschaftlichem Material, die korrekte Zitationstechnik, die Auswahl des Stoffes unter didaktischen Gesichtspunkten, die Gliederung des Vortrages, die ansprechende Gestaltung mithilfe moderner Präsentationsmedien, die eigentliche Präsentation und die Beantwortung von Fragen aus dem Publikum.

1.1.2.5 Additive überfachliche Qualifikationen
Die Studierenden erwerben Kompetenzen jenseits der fachlichen Expertise. Module in den Bereichen Wissenschaftliches Englisch, Patentrecht, Projektmanagement, Tutorenprogramme, Wissenschaftliches Schreiben oder Wissenschaft in der Öffentlichkeit werden durch das House of Competence (HoC) und das Sprachenzentrum regelmäßig angeboten.

1.1.2.6 Einführung in das wissenschaftliche Arbeiten und Spezialisierungsphase
Im Fach „Einführung in das wissenschaftliche Arbeiten“ erlernen die Studierenden grundlegende Arbeitsmethoden, die für erfolgreiche wissenschaftliche Forschung erforderlich sind. Die Arbeitsmethoden selbst sind dabei unabhängig vom jeweiligen Spezialgebiet, werden aber anhand einer konkreten Aufgabenstellung (Thema der Masterarbeit) geübt und erlernt. Die Studierenden werden dabei vom zukünftigen Betreuer bzw. von der zukünftigen Betreuerin der Masterarbeit angeleitet. Außerdem besuchen die Studierenden begleitet zu Ihrem Studium Seminare und Kolloquien aus dem Angebot der Physik und verschaffen sich so einen Überblick über aktuelle Forschungsthemen. Dabei lernen sie durch Teilnahme an Fachvorträge zu Spezialthemen, die nicht ihrem Spezialisierungsgebiet angehören, und durch geeignete Fragen an den Vortragenden ihre Kenntnisse zu erweitern.

1.1.2.7 Masterarbeit

1.1.3 Leistungspunkte-System
Die Leistungspunkte werden auf Modulebene einzeln definiert. Dabei entspricht einem ECTS- (European Credit Transfer System) oder Leistungspunkt ca. 30 Stunden Zeitaufwand. Der Zeitaufwand ist im einzelnen aufgeschlüsselt nach reiner Präsenz-, Vor- und Nachbereitungszeit für Vorlesungen, Übungen und Tutorien sowie die Vorbereitung auf eventuell dazugehörige Prüfungen.

1.2 Studienplan für den Masterstudiengang Physik

1.2.1 Einleitung

1.2.2 Lehrveranstaltungen

a) Physikalisches Schwerpunkt-, Ergänzungs- und Nebenfach

Im Zentrum des Masterstudiums stehen eine Vertiefung und Spezialisierung der in einem Bachelorstudium erworbenen Grundkenntnisse und Methoden bei gleichzeitiger Wahrung der fachlichen Breite. Das Masterstudium kann weitgehend nach individuellen Neigungen und Fähigkeiten ausgerichtet werden. Dazu bietet die Fakultät eine Auswahl von sieben physikalischen Themenfeldern an, welche die Forschungsaktivitäten der Fakultät widerspiegeln. Die für die entsprechenden Veranstaltungen hauptsächlich verantwortlichen Institute werden im Folgenden in Klammern aufgeführt. Über aktuelle Forschungsschwerpunkte informieren die Internetseiten der einzelnen Institute.

Die Fachnoten werden wie folgt gebildet: Nachdem in den entsprechenden Modulen die zugehörigen ECTS-Punkte durch die vereinbarten Erfolgskontrollen erworben worden sind, erfolgt im Fall des Schwerpunktstheorien eine mündliche Einzelprüfung, bei der die Fachnote festgelegt wird. Das Hauptseminar (4 ECTS-Punkte, s.u.) kann zum Erfüllen der für das Schwerpunktstheorien benötigten 20 ECTS-Punkte verwendet werden, aber nicht Inhalt der mündlichen Prüfung. Im Fall des Ergänzungsfachs kann die Note mit Hilfe von Erfolgskontrollen wie beispielsweise mündlichen Prüfungen (Einzel- oder Gruppenprüfungen), kurzen Vorträgen (vorlesungsbegleitend oder blockartig am Ende des Semesters), kurzen schriftlichen Ausarbeitungen begrenzter Themen oder Klausuren ermittelt werden. Bei dem physikalischen Nebenfach erfolgt keine Benotung. Als Erfolgskontrollen sind neben den bereits aufgeführten auch die erfolgreiche Beteiligung an vorlesungsbegleitenden Übungen geeignet. Die Vorlesungen werden im experimentellen Bereich durch ein Praktikum in moderner Physik ergänzt.

b) Hauptseminar

c) Nichtphysikalisches Wahlpflichtfach

d) Additive überfachliche Qualifikationen

Neben den integrativen überfachlichen Qualifikationen müssen additive überfachliche Qualifikationen im Umfang von 4 ECTS-Punkten erworben werden. Derzeit werden alle vom HoC und vom Sprachenzentrum angebotenen Veranstaltungen als additive überfachliche Qualifikationen genehmigt. Hiervon abweichende Module müssen vom Prüfungsausschuss explizit genehmigt werden.

e) Einführung in das wissenschaftliche Arbeiten, Spezialisierungsphase und Masterarbeit

1.2.3 Anmeldung zu Leistungsüberprüfungen und Fachprüfungen
Zentrale online-Anmeldungen sind derzeit nicht möglich. Prüfungsanmeldungen erfolgen im Prüfungsssekretariat der KIT-Fakultät für Physik.
Die erfolgreiche Teilnahme an Lehrveranstaltungen wird bei Bedarf über Bescheinigungen bestätigt, die der Dozent ausstellt.

1.2.4 Notenbildung
Die Gesamtnote der Masterprüfung errechnet sich aus einem mit Leistungspunkten gewichteten Notendurchschnitt des Schwerpunktfaches (20 ECTS-Punkte), des physikalischen Ergänzungsfaches (14 ECTS-Punkte), des nichtphysikalischen Wahlpflichtfachs (8 ECTS-Punkte) und der Masterarbeit (30 ECTS-Punkte).

1.2.5 Organisation der Fächer
- Schwerpunktfach (SF) 20 ECTS-Punkte
- Ergänzungsfach (EF) 14 ECTS-Punkte
- Nebenfach (NF) 8 ECTS-Punkte
- Nichtphysikalisches Wahlpflichtfach (WPF) 8 ECTS-Punkte
Das Schwerpunktfach (SF), das Ergänzungsfach (EF) sowie das Nebenfach (NF) werden aus den Veranstaltungen der Fakultät für Physik zusammengestellt. Es gibt einige wenige Ausnahmen, die in der nachstehenden Liste mit extern gekennzeichnet sind.
Grundsätzlich gilt, dass die Studierenden sich erst im Laufe oder nach Abschluss des zweiten Semesters für die Aufteilung der besuchten Veranstaltungen in SF, EF und NF entscheiden müssen. Es müssen aber die nachfolgend aufgeführten, allgemeingültigen Regeln beachtet werden.

Schwerpunktfach (SF)
Themenfelder Bereich A: Experimentelle Physik
- Kondensierte Materie
- Nanophysik
- Optik und Photonik
- Experimentelle Teilchenphysik
- Experimentelle Astroteilchenphysik

Themenfelder Bereich B: Theoretische Physik
- Theoretische Teilchenphysik
- Theorie der Kondensierten Materie

Bei den Schwerpunktfächern gibt es Veranstaltungen, die verpflichtend sind. Diese Pflichtveranstaltungen können dann durch die anderen für dieses Schwerpunktfach aufgeführten Veranstaltungen ergänzt werden.

Ergänzungsfach (EF)

Nebenfach (NF)
Das Nebenfach besteht in der Regel aus einzelnen Veranstaltungen aus einem der Themenbereiche, z. B. Halbleiterphysik, Theoretische Teilchenphysik I etc.

Allgemeingültige Regeln für die Auswahl der Fächer und Modulkombinationen:
- Die Prüfenden im SF, EF, NF und WPF müssen verschiedene sein.
- Mindestens ein Fach muss aus dem Bereich der Theoretischen Physik bzw. aus der Experimentellen Physik stammen. Falls nur ein einziges experimentelles Themenfeld gewählt wurde, ist es nicht möglich, die notwendigen ECTS-Punkte durch die in diesem Themenfeld gelisteten Theorie-Vorlesungen zu erwerben.
- Aus anderen Fakultäten stammende und stark physiknahe Vorlesungen (z.B. nichtlineare Optik) können nach Genehmigung durch den Prüfungsausschuss zu einem Fach kombiniert werden.
- Geophysik oder Meteorologie können als EF oder NF (festgelegte Veranstaltungen) gewählt werden. Leistungen, die im Bachelorstudium als Teil des nichtphysikalischen Wahlpflichtfaches erbracht worden sind, können nicht ein weiteres Mal im Masterstudium verwendet werden.
Für das nichtphysikalische Wahlpflichtfach (WPF) wird eine Positivliste erarbeitet, alle anderen Veranstaltungen sind zustimmungspflichtig.
Die Regeln für die vorgeschriebenen Veranstaltungen der einzelnen Themenfelder müssen für das EF und SF individuell erfüllt sein.

1.3 Graphische Darstellung des Studienplans

<table>
<thead>
<tr>
<th>Sem</th>
<th>Physikalisches Schwerpunktfach und Masterarbeit</th>
<th>Physikalisches Ergänzungsfach</th>
<th>Physikalisches Nebenfach</th>
<th>Praktika</th>
<th>Nichtphys. Wahlpf.fach</th>
<th>Überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>8</td>
<td>8</td>
<td></td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>6</td>
<td></td>
<td></td>
<td>8</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>Spezialisierungsphase</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Einf. wiss. Arbeiten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15</td>
</tr>
<tr>
<td>4</td>
<td>Masterarbeit</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>30</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Summe: 120

* Das Physikalische Nebenfach, das Fortgeschrittenenpraktikum, das Nichtphysikalische Wahlpflichtfach sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.
Bereich A: Experimentelle Physik

Kondensierte Materie

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elektronische Eigenschaften von Festkörpern I (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Properties of Solids I (with/without exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronische Eigenschaften von Festkörpern II (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electronic Properties of Solids II (with/without exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Halbleiterphysik (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics of Semiconductors (with/without exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronenmikroskopie I (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Electron Microscopy I (with/without exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oberflächenphysik (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Physics of Solid State Surfaces (with/without exercises)</td>
<td>v4u1/v4u0</td>
<td></td>
<td></td>
<td>10/8</td>
<td>A</td>
<td></td>
</tr>
<tr>
<td>Solid-State Optics (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid-State Optics (with/without exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

weitere Veranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Festkörperspektroskopie (mit Übungen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid-State Spectroscopy (with Exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Machines: Design and Implementation in Solid State Devices</td>
<td>v2u2</td>
<td></td>
<td>8</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Quantum Machines: Design and Implementation in Solid State Devices</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid State Quantum Technologies</td>
<td>v2u2</td>
<td></td>
<td>8</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Nanomagnetism, Quantummagnetism and Spin Bath Physics</td>
<td>v2</td>
<td></td>
<td>4</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Nanomagnetism, Quantummagnetism and Spin Bath Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Supraleiter-Nanostrukturen</td>
<td>v2u1</td>
<td></td>
<td>6</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Superconducting Nanostructures</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Spintransport in Nanostrukturen</td>
<td>v2u1</td>
<td></td>
<td>6</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Nanomaterials (mit/ohne Übungen)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nanomaterials (with/without Exercises)</td>
<td>v2u2/v2u0</td>
<td></td>
<td>8/4</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Elektronenmikroskopie II (mit/ohne Übungen)</td>
<td>v2u2/v2u0</td>
<td></td>
<td>8/4</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Bescheunigerphysik II: Synchrotronstrahlungsquellen **</td>
<td>v2u1</td>
<td></td>
<td>6</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Physics of Accelerators II: Sources of Synchrotron Radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Beschleunigerphysik (mit/ohne erw. Übungen)</td>
<td>v4u1/v4u0</td>
<td></td>
<td>8/6</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Accelerator Physics (with/without ext. exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering (mit/ohne Praktikum)</td>
<td>v2u2p2/v2u2</td>
<td></td>
<td>10/8</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering (with/without lab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td>v2u2</td>
<td></td>
<td>8</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molekulare Elektronik</td>
<td>v2u1</td>
<td></td>
<td>6</td>
<td></td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Molecular Electronics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ab WS 16/17 nur noch als v4u0
** nur bis WS 18/19

Schwerpunktfach (SF):
Vorgeschriebene Veranstaltungen sind A oder C: „Elektronische Eigenschaften von Festkörpern I“ oder „Halbleiterphysik“

Ergänzungsfach (EF):
Vorgeschriebene Veranstaltungen: mindestens eine der Veranstaltungen A, B, C, D, E

Nebenfach (NF):
Alle Veranstaltungen, bei denen die Spalte NF mit ✓ markiert ist, können verwendet werden
Nanophysik

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Nanotechnologie I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Nanotechnology I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundlagen der Nanotechnologie II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Basics of Nanotechnology II</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronische Eigenschaften von Festkörpern I (mit/ohne Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>v2</td>
<td>4</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>Electronic Properties of Solids I (with/without exercises)</td>
<td>✓</td>
<td>WS</td>
<td>v4u1/v4u0</td>
<td>10/8</td>
<td>C</td>
<td>✓</td>
</tr>
<tr>
<td>Elektronische Eigenschaften von Festkörpern II (mit/ohne Übungen)</td>
<td></td>
<td>SS</td>
<td>v2u2/v2u0</td>
<td>8/4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Electronic Properties of Solids II (with/without exercises)</td>
<td></td>
<td>SS</td>
<td>v4u1/v4u0</td>
<td>10/8</td>
<td>D</td>
<td>✓</td>
</tr>
<tr>
<td>Halbleiterphysik (mit/ohne Übungen)</td>
<td></td>
<td>SS</td>
<td>v2u2/v2u0</td>
<td>8/4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Physics of Semiconductors (with/without exercises)</td>
<td></td>
<td>SS</td>
<td>v4u1/v4u0</td>
<td>10/8</td>
<td>E</td>
<td>✓</td>
</tr>
<tr>
<td>Oberflächenphysik (mit/ohne Übungen)</td>
<td></td>
<td>SS</td>
<td>v2u2/v2u0</td>
<td>8/4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Physics of Solid State Surfaces (with/without exercises)</td>
<td></td>
<td>SS</td>
<td>v4u1/v4u0</td>
<td>10/8</td>
<td>E</td>
<td>✓</td>
</tr>
</tbody>
</table>

weitere Veranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentelle Biophysik II (mit/ohne Seminar)</td>
<td></td>
<td>SS</td>
<td>v4u2s2/v4u2</td>
<td>14/12</td>
<td>F</td>
<td>✓</td>
</tr>
<tr>
<td>Experimental Biophysics II (with/without seminar)</td>
<td></td>
<td>SS</td>
<td>v4u2s2/v4u2</td>
<td>14/12</td>
<td>F</td>
<td>✓</td>
</tr>
<tr>
<td>Elektronenmikroskopie II (mit/ohne Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>v2u2/v2u0</td>
<td>8/4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Electron Microscopy II (with/without exercises)</td>
<td>✓</td>
<td>WS</td>
<td>v2u1/v2u0</td>
<td>8/4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering (mit/ohne Praktikum)</td>
<td>✓</td>
<td>WS</td>
<td>v2u2p2/v2u2</td>
<td>10/8</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering (with/without lab)</td>
<td>✓</td>
<td>WS</td>
<td>v2u2p2/v2u2</td>
<td>10/8</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td>✓</td>
<td>WS</td>
<td>v2u2</td>
<td>8</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td>✓</td>
<td>WS</td>
<td>v2u2</td>
<td>8</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Elektronische Eigenschaften von Nanostrukturen</td>
<td></td>
<td>v3u1</td>
<td>8</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Electronic Properties of Nanostructures</td>
<td></td>
<td>v3u1</td>
<td>8</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Supraleiter-Nanostrukturen</td>
<td>✓</td>
<td>v2u1</td>
<td>6</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Supercconducting Nanostructures</td>
<td>✓</td>
<td>v2u1</td>
<td>6</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Simulation nanoskaliger Systeme (mit/ohne Seminar)</td>
<td></td>
<td>v2u1s2/v2u1</td>
<td>8/6 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation of Nanoscale Systems (with/without seminar)</td>
<td></td>
<td>v2u1s2/v2u1</td>
<td>8/6 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Nanoptics</td>
<td>✓</td>
<td>v2u1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical Nanoptics</td>
<td>✓</td>
<td>v2u1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spintransport in Nanostrukturen</td>
<td></td>
<td>v2u1</td>
<td>6</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Spin Transport in Nanostructures</td>
<td></td>
<td>v2u1</td>
<td>6</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Nanomaterials (mit/ohne Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>v2u2v2u0</td>
<td>8/4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Nanomaterials (with/without Exercises)</td>
<td>✓</td>
<td>WS</td>
<td>v2u2v2u0</td>
<td>8/4</td>
<td></td>
<td>✓</td>
</tr>
<tr>
<td>Theoretische molekulare Biophysik (mit/ohne Seminar)</td>
<td>✓</td>
<td>v2u1s2/v2u1</td>
<td>8/6 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Molecular Biophysics (with/without seminar)</td>
<td>✓</td>
<td>v2u1s2/v2u1</td>
<td>8/6 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Optics</td>
<td></td>
<td>v2u1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical Optics</td>
<td></td>
<td>v2u1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Physik der Quanteninformation</td>
<td></td>
<td>v2u1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Physics of Quantum Information</td>
<td></td>
<td>v2u1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical Quantum Optics</td>
<td>✓</td>
<td>v2u1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Theoretical Quantum Optics</td>
<td>✓</td>
<td>v2u1</td>
<td>6 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quantum Machines: Design and Implementation in Solid State Devices</td>
<td></td>
<td>v2u2</td>
<td>8</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quantum Machines: Design and Implementation in Solid State Devices</td>
<td></td>
<td>v2u2</td>
<td>8</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quantenoptik auf der Nanoskala</td>
<td></td>
<td>v2</td>
<td>4</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quantum Optics at the Nano Scale</td>
<td></td>
<td>v2</td>
<td>4</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen (mit/ohne Übungen)</td>
<td></td>
<td>v3u1v3u0</td>
<td>8/6</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Quantum Optics at the Nano Scale: Basics and Applications (with/without exercises)</td>
<td></td>
<td>v3u1v3u0</td>
<td>8/6</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Solid State Quantum Technologies</td>
<td></td>
<td>v2u2</td>
<td>8</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Solid State Quantum Technologies</td>
<td></td>
<td>v2u2</td>
<td>8</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Computational Photonics (with/without ext. exercises)</td>
<td></td>
<td>v2u2v2u1</td>
<td>8/6 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Photonics (with/without exercises)</td>
<td></td>
<td>v2u2v2u1</td>
<td>8/6 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Condensed Matter Physics</td>
<td></td>
<td>v4u2</td>
<td>12 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Computational Condensed Matter Physics</td>
<td></td>
<td>v4u2</td>
<td>12 (T)</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Molekulare Elektronik</td>
<td></td>
<td>v2u1</td>
<td>6</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>Molecular Electronics</td>
<td></td>
<td>v2u1</td>
<td>6</td>
<td></td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

* ab WS 16/17 nur noch als v2u1
** Identisch zu „Quantum Optics“ (angeboten bis WS 18/19)
(T) Theorievorlesung – nicht geeignet, wenn „Nanophysik“ das einzige experimentelle Fach ist.
Schwerpunktfach (SF):
Vorgeschriebene Veranstaltungen sind
- A und B: „Grundlagen der Nanotechnologie I“ und „Grundlagen der Nanotechnologie II“
- sowie eine Veranstaltung aus C, D, E, F

Ergänzungsfach (EF):
Vorgeschriebene Veranstaltungen sind A und B: „Grundlagen der Nanotechnologie I“ und „Grundlagen der Nanotechnologie II“

Nebenfach (NF):
Alle Veranstaltungen, bei denen die Spalte NF mit ✓ markiert ist, können verwendet werden
Optik und Photonik

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solid-State Optics (mit/ohne Übungen) **</td>
<td>✓</td>
<td>WS</td>
<td>v4u1/v4u0*</td>
<td>10/8*</td>
<td>A ☑</td>
<td>✓</td>
</tr>
<tr>
<td>Solid-State Optics (with/without exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nano-Optics **</td>
<td>✓</td>
<td>WS</td>
<td>v3u1</td>
<td>8</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>Theoretical Optics</td>
<td>✓</td>
<td>SS</td>
<td>v2u1</td>
<td>6 (T)</td>
<td>B ☑</td>
<td></td>
</tr>
<tr>
<td>Theoretical Optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Nanooptics</td>
<td>✓</td>
<td>SS</td>
<td>v2u1</td>
<td>6 (T)</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>Molekülspektroskopie (extern)</td>
<td>✓</td>
<td>WS</td>
<td>v2u1</td>
<td>6 Ext.</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>Molecular Spectroscopy (extern)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonlinear Optics (extern)</td>
<td></td>
<td>SS</td>
<td>v2u2</td>
<td>6 Ext.</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>Photovoltaik (extern)</td>
<td></td>
<td>SS</td>
<td>v4</td>
<td>6 Ext.</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>weitere Veranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering (mit/ohne Praktikum)**</td>
<td>✓</td>
<td>WS</td>
<td>v2u2p2/v2u2</td>
<td>10/8</td>
<td>C</td>
<td>☑</td>
</tr>
<tr>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering (with/without lab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography (mit/ohne Praktikum)**</td>
<td>SS</td>
<td>v2u2p2/v2u2</td>
<td>10/8</td>
<td>D</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography (with/without lab)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Experimentelle Biophysik II (mit/ohne Seminar)**</td>
<td>SS</td>
<td>v4u2s2/v4u2</td>
<td>14/12</td>
<td>E</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>Experimental Biophysics II (with/without seminar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Quantum Optics **</td>
<td>✓</td>
<td>v2u1</td>
<td>6 (T)</td>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Quantum Optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Photonics (with/without ext. exercises)</td>
<td>☑</td>
<td>v2u2/v2u1</td>
<td>8/6 (T)</td>
<td>G</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Photonics (with/without ext. exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantenoptik auf der Nanoskala</td>
<td>v2</td>
<td>4</td>
<td>H</td>
<td>☑</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Optics at the Nano Scale</td>
<td>☑</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen (mit/ohne Übungen)</td>
<td>✓</td>
<td>v3u1/v3u0</td>
<td>8/6</td>
<td>I</td>
<td>☑</td>
<td></td>
</tr>
<tr>
<td>Quantum Optics at the Nano Scale: Basics and Applications (with/without exercises)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* ab WS 16/17 nur noch als v4u0
** Identisch zu „Quantum Optics“ (angeboten bis WS 18/19)
(T): Theorievorlesung – nicht geeignet, wenn „Optik und Photonik“ das einzige experimentelle Fach ist.

Schwerpunktfach (SF):
Vorgeschriebene Veranstaltungen sind **A und B**: „Solid-State Optics“ und „Theoretical Optics“

Ergänzungsfach (EF):
- **Maximal eine** Veranstaltung aus dem externen Angebot („Ext.“)
- **Maximal eine** Veranstaltung aus den weiteren Veranstaltungen (C-I)

Nebenfach (NF):
Alle Veranstaltungen, bei denen die Spalte NF mit ☑ markiert ist, können verwendet werden.
Experimentelle Teilchenphysik

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teilchenphysik I</td>
<td>✓</td>
<td>WS</td>
<td>v3p2</td>
<td>8</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>Modern Methods of Data Analysis (mit/ohne erw. Übungen)*</td>
<td></td>
<td>SS</td>
<td>v2p2</td>
<td>8/6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Messtechnik und Techniken der Experimentalphysik (mit/ohne erw. Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>v2p2</td>
<td>6</td>
<td>C</td>
<td>✓</td>
</tr>
<tr>
<td>Detektoren für Teilchen- und Astroteilchenphysik (mit/ohne erw. Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>v2p2</td>
<td>6</td>
<td>D</td>
<td>✓</td>
</tr>
<tr>
<td>Messtechnik und Techniken der Experimentalphysik (mit/ohne erw. Übungen)</td>
<td></td>
<td>SS</td>
<td>v2u1</td>
<td>8/6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Messtechnik und Techniken der Experimentalphysik (mit/ohne erw. Übungen)</td>
<td></td>
<td>SS</td>
<td>v2u1</td>
<td>8/6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>weitere Veranstaltungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadronische Wechselwirkungen</td>
<td>✓</td>
<td>v2</td>
<td>4</td>
<td>(T)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* nur anrechenbar, wenn nicht gleichzeitig „Methods of Data Analysis“ aus Meteorologie im EF/NF „Meteorologie“ verwendet wird.
(T) Theorievorlesung – nicht geeignet, wenn „Experimentelle Teilchenphysik“ das einzige experimentelle Fach ist.

Schwerpunktfach (SF):
Vorgeschriebene Veranstaltungen sind
- A („Teilchenphysik I“)
- und eine aus E, F, G („Teilchenphysik II“)

Ergänzungsfach (EF):
Vorgeschrieben ist die Veranstaltung A („Teilchenphysik I“)

Nebenfach (NF):
Alle Veranstaltungen, bei denen die Spalte NF mit ✓ markiert ist, können verwendet werden

Zusätzliche Einschränkung:
Es kann entweder B („Elektronik für Physiker“) oder eine aus C oder D („Analogelektronik“ oder „Digitalelektronik“) als Bestandteil des SF, EF oder NF gewählt werden
Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astroteilchenphysik I
 Astroparticle Physics I</td>
<td>✓</td>
<td>WS</td>
<td>v3u1</td>
<td>8</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>Einführung in die Kosmologie
 Introduction to Cosmology</td>
<td>✓</td>
<td>WS</td>
<td>v2u1</td>
<td>6</td>
<td>B</td>
<td>✓</td>
</tr>
<tr>
<td>Moderne Methoden der Datenanalyse (mit/ohne erw. Übungen)*
 Modern Methods of Data Analysis (with/without ext. exercises)</td>
<td>SS</td>
<td>v2p4/v2p2</td>
<td>8/6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Elektronik für Physiker
 Electronics for Physicists</td>
<td>✓</td>
<td>WS</td>
<td>v4p4</td>
<td>10</td>
<td>C</td>
<td>✓</td>
</tr>
<tr>
<td>Elektronik für Physiker: Analogelektronik
 Electronics for Physicists: Analog Electronics</td>
<td>✓</td>
<td>WS</td>
<td>v2p2</td>
<td>6</td>
<td>D</td>
<td>✓</td>
</tr>
<tr>
<td>Elektronik für Physiker: Digitalelektronik
 Electronics for Physicists: Digital Electronics</td>
<td>✓</td>
<td>WS</td>
<td>v2p2</td>
<td>6</td>
<td>E</td>
<td>✓</td>
</tr>
<tr>
<td>Beschleunigerphysik (mit/ohne erw. Übungen)
 Accelerator Physics (with/without ext. exercises)</td>
<td>✓</td>
<td>WS</td>
<td>v4u1/v4u0</td>
<td>8/6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Messmethoden und Techniken der Experimentalphysik (mit/ohne erw. Übungen)
 Measurement Methods and Techniques in Experimental Physics (with/without ext. exercises)</td>
<td>SS</td>
<td>v2u1p2/v2u1</td>
<td>8/6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Detektoren für Teilchen- und Astroteilchenphysik (mit/ohne erw. Übungen)
 Detectors for Particle and Astroparticle Physics (with/without ext. exercises)</td>
<td>✓</td>
<td>WS</td>
<td>v2p4v2p2</td>
<td>8/6</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

weitere Veranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Astroteilchenphysik II – Kosmische Strahlung (mit/ohne erw. Übungen)
 Astroparticle Physics II – Cosmic Rays (with/without ext. exercises)</td>
<td>✓</td>
<td>WS</td>
<td>v2u2/v2u1</td>
<td>8/6</td>
<td>F</td>
<td>✓</td>
</tr>
<tr>
<td>Astroteilchenphysik II - Gammapräzession (mit/ohne erw. Übungen)
 Astroparticle Physics II – Gamma Rays (with/without ext. exercises)</td>
<td>SS</td>
<td>v2u2/v2u1</td>
<td>8/6</td>
<td>G</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Astroteilchenphysik II – Teilchen und Sterne (mit/ohne erw. Übungen)
 Astroparticle Physics II – Particles and Stars (with/without ext. exercises)</td>
<td>SS</td>
<td>v2u2v2u1</td>
<td>8/6</td>
<td>H</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Neutrinophysik – Theoretische Aspekte
 Neutrino Physics – Theoretical Aspects</td>
<td>✓</td>
<td>v2u2</td>
<td>8 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunkle Materie – Theoretische Aspekte
 Dark Matter – Theoretical Issues</td>
<td>v2u1</td>
<td>6 (T)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allgemeine Relativitätstheorie
 General Relativity</td>
<td>v3u2</td>
<td>10 (T)</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadronische Wechselwirkungen
 Hadronic Interactions</td>
<td>✓</td>
<td>v2</td>
<td>4 (T)</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* nur anrechenbar, wenn nicht gleichzeitig „Methods of Data Analysis“ aus Meteorologie im EF/NF „Meteorologie“ verwendet wird.

(T) Theorievorlesung – nicht geeignet, wenn „Experimentelle Astroteilchenphysik“ das einzige experimentelle Fach ist.

Schwerpunktfach (SF):
Vorgeschriebene Veranstaltungen sind
- **A oder B**: „Astroteilchenphysik I“ oder „Einführung in die Kosmologie“
- **kombiniert mit einer** Veranstaltung aus F, G, H („Astroteilchenphysik II“)

Ergänzungsfach (EF):
Vorgeschrieben sind die Veranstaltungen **A oder B**: „Astroteilchenphysik I“ oder „Einführung in die Kosmologie“

Nebenfach (NF):
Alle Veranstaltungen, bei denen die Spalte NF mit ✓ markiert ist, können verwendet werden

Zusätzliche Einschränkung:
Es kann **entweder C** („Elektronik für Physiker“) oder **eine aus D oder E** („Analogelektronik“ oder „Digitalelektronik“) als Bestandteil des SF, EF oder NF gewählt werden.
Bereich B: Theoretische Physik

Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Theoretische Teilchenphysik (mit/ohne erw. Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>v3u2/v3u1</td>
<td>10/8</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Theoretische Teilchenphysik I, Grundlagen und Vertiefungen (mit/ohne Übungen)</td>
<td>SS</td>
<td>v4u2/v4u0</td>
<td>12/8</td>
<td>A</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Theoretische Teilchenphysik I, Grundlagen (mit/ohne Übung)</td>
<td>SS</td>
<td>v3u1/v3u0</td>
<td>8/6</td>
<td>B</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Theoretische Teilchenphysik II (mit/ohne Übungen)</td>
<td>✓</td>
<td>WS</td>
<td>v4u2/v4u0</td>
<td>12/8</td>
<td>✓</td>
<td></td>
</tr>
</tbody>
</table>

weitere Veranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einführung in die Theoretische Kosmologie</td>
<td>v3u1</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Monte Carlo Ereignisgeneratoren</td>
<td>v2u1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Precision Tests of the Standard Model at low Energies</td>
<td>v2</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einführung in die Flavourphysik, Grundlagen und Vertiefungen</td>
<td>v4u2</td>
<td>12</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Advanced Topics in Flavour Physics</td>
<td>v3u2</td>
<td>10</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Flavour Physics in the Standard Model and beyond</td>
<td>v2</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extended Higgs Sectors Beyond the Standard Model</td>
<td>v3u2</td>
<td>10</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>QCD und Colliderphysik mit Übungen</td>
<td>v3u1</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Einführung in die Supersymmetrie</td>
<td>v2u1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetrien, Gruppen und erweiterte Eichtheorien</td>
<td>v4u2</td>
<td>12</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Symmetrien und Gruppen</td>
<td>v3u1</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Allgemeine Relativitätstheorie</td>
<td>v3u2</td>
<td>10</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hadronische Wechselwirkungen</td>
<td>v2</td>
<td>4</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Neutrinophysics – Theoretische Aspekte</td>
<td>v2u2</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dunkle Materie – Theoretische Aspekte</td>
<td>v2u1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Effektive Feldtheorien</td>
<td>v2u2</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Schwerpunktfach (SF):

Vorgeschriebene Veranstaltungen sind A oder B („Theoretische Teilchenphysik I“) mit 8 oder 12 ECTS-Punkten
Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theorie der kondensierten Materie I, Grundlagen und Vertiefungen</td>
<td>✓</td>
<td>WS</td>
<td>v4u2</td>
<td>12</td>
<td>A</td>
<td>✓</td>
</tr>
<tr>
<td>Condensed Matter Theory I, Fundamentals and Advanced Topics</td>
<td>✓</td>
<td>WS</td>
<td>v3u1</td>
<td>8</td>
<td>B</td>
<td>✓</td>
</tr>
<tr>
<td>Theorie der kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen</td>
<td>SS</td>
<td>v4u2</td>
<td>12</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condensed Matter Theory II: Many-Body Theory, Fundamentals and Advanced Topics</td>
<td>SS</td>
<td>v3u1</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theorie der kondensierten Materie II: Vielteilchentheorie, ausgewählte Themen *</td>
<td>SS</td>
<td>v1</td>
<td>2</td>
<td>nur EF</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Condensed Matter Theory II: Many-Body Theory, selected topics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Identisch zu „Quantum Optics“ (angeboten bis WS 18/19)

weitere Veranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS</th>
<th>SF/EF</th>
<th>NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik der Quanteninformation</td>
<td></td>
<td></td>
<td>v2u1</td>
<td>6</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Physics of Quantum Information</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computational Condensed Matter Physics</td>
<td></td>
<td></td>
<td>v4u2</td>
<td>12</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Computational Condensed Matter Physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Theories of Condensed Matter: Conformal Field Theory</td>
<td></td>
<td></td>
<td>v3u1</td>
<td>8</td>
<td>✓</td>
<td></td>
</tr>
<tr>
<td>Field Theories of Condensed Matter: Conformal Field Theory</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretische molekulare Biophysik (mit/ohne Seminar)</td>
<td>✓</td>
<td>v2u1s2/v2u1</td>
<td>8/6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Molecular Biophysics (with/without seminar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Physics in One Dimension</td>
<td>v3u1</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantum Physics in One Dimension</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation nanoskaliger Systeme (mit/ohne Seminar)</td>
<td>v2u1s2/v2u1</td>
<td>8/6</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Simulation of Nanoscale Systems (with/without seminar)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Nanooptics</td>
<td>✓</td>
<td>v2u1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Nanooptics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The ABC of DFT</td>
<td>v2u1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>The ABC of DFT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Quantum Optics **</td>
<td>✓</td>
<td>v2u1</td>
<td>6</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Theoretical Quantum Optics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrodynamik</td>
<td>v3u1</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrodynamics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical and fluctuation phenomena in condensed-matter physics</td>
<td>✓</td>
<td>v4</td>
<td>8</td>
<td>✓</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Critical and fluctuation phenomena in condensed-matter physics</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Nur im Ergänzungsfach möglich um bspw. in Kombination mit „Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen“ 14 ECTS-Punkte zu erreichen.
** Identisch zu „Quantum Optics“ (angeboten bis WS 18/19)

Schwerpunktfach (SF):

Vorgeschriebene Veranstaltungen sind **A oder B** („Theorie der kondensierten Materie I“) mit **8 oder 12 ECTS-Punkten**
Bereich C: Veranstaltungen der Geophysik und Meteorologie

Geeignet für das physikalische Ergänzungs- (EF) oder Nebenfach (NF)

Geophysik

Die folgenden Lehrveranstaltungen sind Bestandteil des Masterstudiengangs Geophysik und werden im jährlichen Turnus in englischer Sprache angeboten:

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS EF</th>
<th>ECTS NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Physik seismischer Messinstrumente</td>
<td>✓</td>
<td>WS</td>
<td>v2u1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Reflexionseisemisches Processing / Seisms</td>
<td>✓</td>
<td>WS</td>
<td>v2u2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Theorie seismischer Wellen</td>
<td></td>
<td>SS</td>
<td>v2u1</td>
<td>6</td>
<td>6</td>
</tr>
<tr>
<td>Seismology</td>
<td>✓</td>
<td>WS</td>
<td>v2u2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Inversion und Tomographie</td>
<td></td>
<td>SS</td>
<td>v2u2</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>Einführung in die Vulkanologie</td>
<td></td>
<td>SS</td>
<td>v1u1</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>Naturgefahren und Risiken</td>
<td>✓</td>
<td>WS</td>
<td>v2u2</td>
<td>8</td>
<td>-</td>
</tr>
</tbody>
</table>

Die folgenden Lehrveranstaltungen sind Bestandteil des Wahlbereichs des Masterstudiengangs Geophysik und werden in unregelmäßigen Abständen in englischer Sprache angeboten:

<table>
<thead>
<tr>
<th>weitere Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
<th>ECTS EF</th>
<th>ECTS NF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full-waveform inversion</td>
<td></td>
<td>v2u1</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>Physik der Lithosphäre</td>
<td></td>
<td>v2u1</td>
<td>3</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td>Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs*</td>
<td></td>
<td>v2u1</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geophysikalische Erkundung von Vulkanfeldern*</td>
<td></td>
<td>v2u2</td>
<td>4</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane*</td>
<td></td>
<td>v2u3</td>
<td>6</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>Induced Seismicity</td>
<td></td>
<td>v1u2</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Seismic Data Processing</td>
<td></td>
<td>v1u2</td>
<td>6</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

* Voraussetzung für dieses Modul ist die erfolgreiche Teilnahme an „Einführung in die Vulkanologie“
Meteorologie

Die folgenden Lehrveranstaltungen sind Bestandteil des englischsprachigen Masterstudiengangs Meteorologie und werden im jährlichen Turnus in angeboten. Unten stehende Veranstaltungen können im Modul „Selected Topics in Meteorology (Second Major, graded)“ zum Ergänzungsfach (14 ECTS-Punkte) und im Modul „Selected Topics in Meteorology (Minor, ungraded)“ zum Nebenfach (8 ECTS-Punkte) kombiniert werden. Die Kriterien für den Erwerb der Leistungspunkte sind:

Ergänzungsfach (benotet): Die Erfolgskontrolle geschieht durch eine mündliche Gesamtprüfung („Prüfung über meteorologische Spezialgebiete / Exam on Selected Topics in Meteorology“). Voraussetzung zur Zulassung zur Prüfung ist das Bestehen der Studienleistung. Ob diese mündlich, schriftlich oder anderer Art ist, hängt von der jeweiligen Veranstaltung ab. Informationen darüber finden Sie im Modulhandbuch Master Meteorology WS 19/20. Die Leistungspunkte werden durch die mündliche Prüfung erworben. Untenstehende Veranstaltungen sind so zu kombinieren, dass die Regel $2 \cdot (\text{Vorlesungsstunden} + \text{Übungsstunden}) \geq 14$ erfüllt ist.

Studierende, die vor dem SS 19 mit Vorlesungen aus dem Bereich Meteorologie begonnen haben mit dem Ziel, diese für das EF oder NF zu verwenden, finden die dann geltenden Regeln im Modulhandbuch WS 18/19.

<table>
<thead>
<tr>
<th>Veranstaltungen</th>
<th>WS19/20</th>
<th>Reg.</th>
<th>SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Meteorological Hazards</td>
<td></td>
<td>v2</td>
<td></td>
</tr>
<tr>
<td>Remote Sensing of Atmospheric State Variables</td>
<td>SS</td>
<td>v2u1</td>
<td></td>
</tr>
<tr>
<td>Turbulent Diffusion</td>
<td>SS</td>
<td>v2u1</td>
<td></td>
</tr>
<tr>
<td>Advanced Numerical Weather Prediction</td>
<td>SS</td>
<td>v2</td>
<td></td>
</tr>
<tr>
<td>Energy Meteorology</td>
<td>SS</td>
<td>v2</td>
<td></td>
</tr>
<tr>
<td>Integrated Atmospheric Measurements</td>
<td>SS</td>
<td>v2</td>
<td></td>
</tr>
<tr>
<td>Methods of Data Analysis*</td>
<td>SS</td>
<td>v2u1</td>
<td></td>
</tr>
<tr>
<td>Climate Modeling & Dynamics with ICON</td>
<td>✓</td>
<td>WS</td>
<td>v2u1</td>
</tr>
<tr>
<td>Energetics</td>
<td>✓</td>
<td>WS</td>
<td>v2</td>
</tr>
<tr>
<td>Cloud Physics</td>
<td>✓</td>
<td>WS</td>
<td>v2u1</td>
</tr>
<tr>
<td>Atmospheric Radiation</td>
<td>✓</td>
<td>WS</td>
<td>v2</td>
</tr>
<tr>
<td>Atmospheric Aerosols</td>
<td>✓</td>
<td>WS</td>
<td>v2u1</td>
</tr>
<tr>
<td>Middle Atmosphere in the Climate System</td>
<td>✓</td>
<td>WS</td>
<td>v2</td>
</tr>
<tr>
<td>Tropical Meteorology</td>
<td>✓</td>
<td>WS</td>
<td>v2u1</td>
</tr>
<tr>
<td>Seminar on IPCC Assessment Report</td>
<td>✓</td>
<td>WS</td>
<td>s2</td>
</tr>
<tr>
<td>Ocean-Atmosphere Interactions</td>
<td>✓</td>
<td>WS</td>
<td>v2</td>
</tr>
<tr>
<td>Physics of Planetary Atmospheres</td>
<td>✓</td>
<td>WS</td>
<td>v2u2</td>
</tr>
</tbody>
</table>

* nur anrechenbar, wenn nicht gleichzeitig „Moderne Methoden der Datenanalyse“ aus ETP oder ATP im SF/EF/NF verwendet wird.
3 Module

3.1 Modul: Advanced Topics in Flavour Physics [M-PHYS-104090]

Verantwortung: Dr. Monika Blanke
 Prof. Dr. Ulrich Nierste

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
 Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte: 4

Turnus: Unregelmäßig

Dauer: 1 Semester

Sprache: Englisch

Level: 4

Version: 1

Pflichtbestandteile

| T-PHYS-108476 | Advanced Topics in Flavour Physics | 4 LP | Blanke, Nierste |

Qualifikationsziele
Vertiefen der Methodik der Theoretischen Flavourphysik, Verständnis der Phänomenologie des Flavour-Sektors in und jenseits des Standardmodells

Voraussetzungen
keine

Inhalt
Flavour violation in theories beyond the Standard Model, Minimal Flavour Violation, new sources of flavour and CP violation, selected “hot topics” in rare meson decays.

Empfehlungen
Empfehlungen: Gutes Verständnis des Standardmodells der Teilchenphysik, insbesondere der starken und schwachen Wechselwirkung sowie des Yukawa-Sektors.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (1 ECTS = 30 Stunden, Aufteilung nach Präsenzzeit = SWS*15 Wochen, Nachbereitung etc. Rest)

Literatur
Wird in der Vorlesung genannt.
3.2 Modul: Allgemeine Relativitätstheorie [M-PHYS-102319]

Verantwortung: Prof. Dr. Frans Klinkhamer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte: 10
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-102395 Allgemeine Relativitätstheorie 10 LP Klinkhamer

Qualifikationsziele
The main goal is to broaden the student's intelectual horizon by learning and thinking about one of the great achievements of humanity, the discovery of the dynamic nature of spacetime.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102320 - Allgemeine Relativitätstheorie (NF) darf nicht begonnen worden sein.

Inhalt
This lecture consists of three parts. The first part reviews the basic ideas of Special Relativity. The second part introduces the main concepts and techniques of General Relativity. The third part discusses cosmological models.

Empfehlungen
A basic understanding of classical mechanics, classical electrodynamics, and quantum mechanics.

Arbeitsaufwand
Approximately 300 hours, consisting of 75 hours for direct presence and further time for literature study, preparation of exercise problems or tasks, and possibly preparation for the final oral exam.

Literatur
3.3 Modul: Allgemeine Relativitätstheorie (NF) [M-PHYS-102320]

Verantwortung: Prof. Dr. Frans Klinkhamer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik
Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile
T-PHYS-102446 Allgemeine Relativitätstheorie (NF) 10 LP Klinkhamer

Qualifikationsziele
The main goal is to broaden the student's intellectual horizon by learning and thinking about one of the great achievements of humanity, the discovery of the dynamic nature of spacetime.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102319 - Allgemeine Relativitätstheorie darf nicht begonnen worden sein.

Inhalt
This lecture consists of three parts. The first part reviews the basic ideas of Special Relativity. The second part introduces the main concepts and techniques of General Relativity. The third part discusses cosmological models.

Empfehlungen
A basic understanding of classical mechanics, classical electrodynamics, and quantum mechanics.

Arbeitsaufwand
Approximately 300 hours, consisting of 75 hours for direct presence and further time for literature study, preparation of exercise problems or tasks, and possibly preparation for the final oral exam.

Literatur
3.4 Modul: Allgemeine Relativitätstheorie II [M-PHYS-103333]

Verantwortung: Prof. Dr. Frans Klinkhamer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106678</td>
</tr>
</tbody>
</table>

Qualifikationsziele
The main goal is to broaden the student's intellectual horizon.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103334 - Allgemeine Relativitätstheorie II (NF) darf nicht begonnen worden sein.

Inhalt
Follow-up of GR I (ART I).

Empfehlungen
GR I (ART I)

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (75 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (225 Stunden).

Literatur
3.5 Modul: Allgemeine Relativitätstheorie II (NF) [M-PHYS-103334]

Verantwortung: Prof. Dr. Frans Klinkhamer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Qualifikationsziele
The main goal is to broaden the student's intellectual horizon.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103333 - Allgemeine Relativitätstheorie II darf nicht begonnen worden sein.

Inhalt
Follow-up of GR I (ART I).

Empfehlungen
GR I (ART I)

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (75 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (225 Stunden).

Literatur
3.6 Modul: Array Processing [M-PHYS-102366]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik (EV bis 30.09.2019)

Leistungspunkte: 4
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Grundmodul</th>
<th>Inhaltsbezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104733</td>
<td>Array Processing</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102656 - Array Processing (NF) darf nicht begonnen worden sein.

Inhalt

- Grundlagen der Seismogrammanalyse (Erzeugung von Seismogrammen, Seismogramm-Analyse im Zeitbereich/ Frequenzbereich)
- Seismologische Array-Technik

Lehr- und Lernformen

V+Ü, 2 SWS
3.7 Modul: Array Processing (NF) [M-PHYS-102656]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik (EV bis 30.09.2019)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-105570 | Array Processing (NF) | 4 LP | Ritter |

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102366 - Array Processing darf nicht begonnen worden sein.

Inhalt

- Grundlagen der Seismogrammanalyse (Erzeugung von Seismogrammen, Seismogramm-Analyse im Zeitbereich/ Frequenzbereich)
- Seismologische Array-Technik

Lehr- und Lernformen

V+Ü, 2 SWS
3.8 Modul: Astroteilchenphysik I [M-PHYS-102075]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Pflicht Experimentelle Astroteilchenphysik)
Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Pflicht Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

- **Leistungspunkte:** 8
- **Turnus:** Jedes Wintersemester
- **Dauer:** 1 Semester
- **Sprache:** Deutsch
- **Level:** 4
- **Version:** 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnumerik</th>
<th>Titel</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102432</td>
<td>Astroteilchenphysik I</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Die Studierenden sollen eingeführt werden in die Grundbegriffe der Astroteilchen-physik. Die Vorlesung vermittelt sowohl die theoretischen Konzepte wie auch die experimentellen Methoden dieses neuen dynamischen Arbeitsfeldes an der Schnitt-stelle von Elementarteilchenphysik, Kosmologie und Astrophysik. Die Studierenden lernen anhand konkreter Fallbeispiele aus der aktuellen Forschung die Konzepte zu verstehen und werden befähigt, die erlernten Methoden eigenständig anzuwenden. **Methodenkompetenzerwerb:**
- Verständnis der Grundlagen der experimentellen Astroteilchenphysik
- Erkennung von methodischen Querverbindungen zur Elementarteilchen-physik, Astrophysik und Kosmologie
- Erwerb der Fähigkeit, ein aktuelles Forschungsthema eigenständig sowie im Team darzustellen
- Erwerb der Fähigkeit, die Konzepte und experimentellen Methoden in der Masterarbeit umzusetzen

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102076 - Astroteilchenphysik I (NF) darf nicht begonnen worden sein.

Inhalt

Die Vorlesung ist Grundlage von weiteren Vorlesungen zu diesem Thema (Astro-teilchenphysik II).

Empfehlungen
Grundlagenkenntnisse aus Vorlesung „Kerne und Teilchen“

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen(180)

Lehr- und Lernformen
4022011 Vorlesung2 SWS; G. Drexlin, K. Valerius
4022012 Übung2 SWS; G. Drexlin, K. Valerius
Literatur

- Donald Perkins, Particle Astrophysics (Oxford University Press, 2. Auflage, 2009)
- Claus Grupen, Astroparticle Physics (Springer, 2005)
3.9 Modul: Astroteilchenphysik I (NF) [M-PHYS-102076]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte 8
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modulname</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104379</td>
<td>Astroteilchenphysik I (NF)</td>
<td>8</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Die Studierenden sollen eingeführt werden in die Grundbegriffe der Astroteilchen-physik. Die Vorlesung vermittelt sowohl die theoretischen Konzepte wie auch die experimentellen Methoden dieses neuen dynamischen Arbeitsfeldes an der Schnitt-stelle von Elementarteilchenphysik, Kosmologie und Astrophysik. Die Studierenden lernen anhand konkreter Fallbeispiele aus der aktuellen Forschung die Konzepte zu verstehen und werden befähigt, die erlernten Methoden eigenständig anzuwenden. Methodenkompetenzerwerb:

- Verständnis der Grundlagen der experimentellen Astroteilchenphysik
- Erkenntnis von methodischen Querverbindungen zur Elementarteilchen-physik, Astrophysik und Kosmologie
- Erwerb der Fähigkeit, ein aktuelles Forschungsthema eigenständig sowie im Team darzustellen
- Erwerb der Fähigkeit, die Konzepte und experimentellen Methoden in der Masterarbeit umzusetzen

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102075 - Astroteilchenphysik I darf nicht begonnen worden sein.

Inhalt

Die Vorlesung ist Grundlage von weiteren Vorlesungen zu diesem Thema (Astroteilchenphysik II).

Empfehlungen
Grundlagenkenntnisse aus Vorlesung „Kerne und Teilchen“

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen(180)

Lehr- und Lernformen
4022011 Vorlesung 2 SWS; G. Drexlin, K. Valerius
4022012 Übung 2 SWS; G. Drexlin, K. Valerius

Literatur
- Donald Perkins, Particle Astrophysics (Oxford University Press, 2. Auflage, 2009)
- Claus Grupen, Astroparticle Physics (Springer, 2005)
3.10 Modul: Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen [M-PHYS-102526]

Verantwortung: Prof. Dr. Guido Drexlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-105109</td>
<td>Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen</td>
<td>8</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Nach erfolgreicher Teilnahme an diesem Modul verfügt der/die Studierende über ein vertieftes Fach- und Überblickswissen auf dem Feld der hochenergetischen Astroteilchenphysik. Er/sie versteht die wichtigsten Entstehungsprozesse von Gammastrahlung und Neutrinos, ist in der Lage beobachteten Energiespektren astrophysikalischer Objekte zu interpretieren und verfügt über grundlegende Kenntnisse der Astrophysik galaktischer und extragalaktischer Quellen hochenergetischer Teilchen.

Voraussetzungen

keine, die Vorlesung ist komplementär zum Modul Astroteilchenphysik I angelegt und kann unabhängig davon gehört werden

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102084 - Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102080 - Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103185 - Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Grundlagenkenntnisse der Physik der Teilchen und Kerne sowie experimenteller Methoden in diesem Bereich werden vorausgesetzt.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)

Physik Master 2015 (Master of Science)
Modulhandbuch mit Stand vom 09.10.2019
Literatur

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (Cambridge)
- M.S. Longair: High Energy Astrophysics (Cambridge)
- H. Bradt: Astrophysics Processes (Cambridge)

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.11 Modul: Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF) [M-PHYS-103185]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte: 8
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-106318 Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF) 8 LP Engel

Qualifikationsziele
Nach erfolgreicher Teilnahme an diesem Modul verfügt der/die Studierende über ein vertieftes Fach- und Überblickswissen auf dem Feld der hochenergetischen Astroteilchenphysik. Er/sie versteht die wichtigsten Entstehungsprozesse von Gammastrahlung und Neutrinos, ist in der Lage beobachtete Energiespektren astrophysikalischer Objekte zu interpretieren und verfügt über grundlegende Kenntnisse der Astrophysik galaktischer und extragalaktischer Quellen hochenergetischer Teilchen.

Voraussetzungen
keine, die Vorlesung ist komplementär zum Modul Astroteilchenphysik I angelegt und kann unabhängig davon gehört werden

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102084 - Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102080 - Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102526 - Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Grundlagenkenntnisse der Physik der Teilchen und Kerne sowie experimenteller Methoden in diesem Bereich werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)
Literatur

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (Cambridge)
- M.S. Longair: High Energy Astrophysics (Cambridge)
- H. Bradt: Astrophysics Processes (Cambridge)

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.12 Modul: Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen [M-PHYS-102080]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102383 | Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen | 6 LP | Engel |

Qualifikationsziele

Nach erfolgreicher Teilnahme an diesem Modul verfügt der/die Studierende über ein vertieftes Fach- und Überblickswissen auf dem Feld der hochenergetischen Astroteilchenphysik. Er/sie versteht die wichtigsten Entstehungsprozesse von Gammastrahlung und Neutrinos, ist in der Lage beobachteten Energiespektren astrophysikalischer Objekte zu interpretieren und verfügt über grundlegende Kenntnisse der Astrophysik galaktischer und extragalaktischer Quellen hochenergetischer Teilchen.

Voraussetzungen

keine, die Vorlesung ist komplementär zum Modul Astroteilchenphysik I angelegt und kann unabhängig davon gehört werden

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102084 - Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102526 - Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103185 - Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Grundlagenkenntnisse der Physik der Teilchen und Kerne sowie experimenteller Methoden in diesem Bereich werden vorausgesetzt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)
Literatur

• T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (Cambridge)
• M.S. Longair: High Energy Astrophysics (Cambridge)
• H. Bradt: Astrophysics Processes (Cambridge)
• C.D. Dermer, G. Menon: High Energy Radiation from Black Holes (Princeton)

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.13 Modul: Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen (NF) [M-PHYS-102084]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104382 | Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen (NF) | 6 LP | Engel |

Qualifikationsziele

Nach erfolgreicher Teilnahme an diesem Modul verfügt der/die Studierende über ein vertieftes Fach- und Überblickswissen auf dem Feld der hochenergetischen Astroteilchenphysik. Er/sie versteht die wichtigsten Entstehungsprozesse von Gammastrahlung und Neutrinos, ist in der Lage beobachteten Energiespektrum astrophysikalischer Objekte zu interpretieren und verfügt über grundlegende Kenntnisse der Astrophysik galaktischer und extragalaktischer Quellen hochenergetischer Teilchen.

Voraussetzungen

keine, die Vorlesung ist komplementär zum Modul Astroteilchenphysik I angelegt und kann unabhängig davon gehört werden.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102080 - Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102526 - Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103185 - Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Grundlagenkenntnisse der Physik der Teilchen und Kerne sowie experimenteller Methoden in diesem Bereich werden vorausgesetzt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)
Literatur

- T.K. Gaisser, R. Engel, E.Resconi: Cosmic Rays and Particle Physics (Cambridge)
- M.S. Longair: High Energy Astrophysics (Cambridge)
- H. Bradt: Astrophysics Processes (Cambridge)

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.14 Modul: Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen [M-PHYS-102525]

Verantwortung: Prof. Dr. Ralph Engel
Dr. Markus Roth

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-105108 | Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen | 8 LP | Engel, Roth |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102082 - Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102078 - Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103184 - Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Die Vorlesung wird als Tafelanschrieb und mit vorher ausgehändigtem Bildmaterial gehalten. Besonderer Wert wird auf die explizite Ableitung der wesentlichen Zusammenhänge gelegt. Die Themen umfassen astrophysikalische Energie- und Größenskalen; Eigenschaften kosmischer Strahlung; direkte und indirekte Messung kosmischer Strahlung; Beschleunigung geladener Teilchen; Galaxien und galaktische Magnetfelder; galaktische und extra-galaktische Ausbreitung kosmischer Strahlung; Quellen kosmischer Strahlung; Teilchenphysik und Suche nach exotischen Phänomenen mit kosmischer Strahlung; hochenergetische Neutrinos. Zusammen mit „Astroteilchenphysik II: Gamma-Strahlung“ im folgenden Semester ergeben die beiden Vorlesungen ein abgeschlossenes Bild hochenergetischer Teilchen mit ihren zugrundeliegenden Erzeugungs- und Transportprozessen im Universum. Die Themenspektren beider Vorlesungen sind so angelegt, dass sie auch einzeln gehört werden können.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung und Vorbereitung der Übungen (180)

Literatur

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (2nd Ed.)
- P. Schneider: Einführung in die Extragalaktische Astronomie und Kosmologie
- M. Longair: High Energy Astrophysics
- Thierry Courvoisier: High Energy Astrophysics
- Bradley W. Carroll and Dale Ostlie: An Introduction to Modern Astrophysics
3.15 Modul: Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF) [M-PHYS-103184]

Verantwortung: Prof. Dr. Ralph Engel
Dr. Markus Roth

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte: 8

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-106317 | Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF) | 8 LP | Engel, Roth |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102082 - Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102078 - Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen darf nicht begonnen worden sein.

Inhalt

Die Vorlesung wird als Tafelanschrieb und mit vorher ausgehändigtem Bildmaterial gehalten. Besonderer Wert wird auf die explizite Ableitung der wesentlichen Zusammenhänge gelegt. Die Themen umfassen astrophysikalische Energie- und Größenskalen; Eigenschaften kosmischer Strahlung; direkte und indirekte Messung kosmischer Strahlung; Beschleunigung geladener Teilchen; Galaxien und galaktische Magnetfelder; galaktische und extra-galaktische Ausbreitung kosmischer Strahlung; Quellen kosmischer Strahlung; Teilchenphysik und Suche nach exotischen Phänomenen mit kosmischer Strahlung; hochenergetische Neutrinos. Zusammen mit „Astroteilchenphysik II: Gamma-Strahlung“ im folgenden Semester ergeben die beiden Vorlesungen ein abgeschlossenes Bild hochenergetischer Teilchen mit ihren zugrundeliegenden Erzeugungs- und Transportprozessen im Universum. Die Themenspektren beider Vorlesungen sind so angelegt, dass sie auch einzeln gehört werden können.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung und Vorbereitung der Übungen (180)

Literatur

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (2nd Ed.)
- P. Schneider: Einführung in die Extragalaktische Astronomie und Kosmologie
- M. Longair: High Energy Astrophysic
- Thierry Courvoisier: High Energy Astrophysics
- Bradley W. Carroll and Dale Ostlie: An Introduction to Modern Astrophysics
3.16 Modul: Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen [M-PHYS-102078]

Verantwortung: Prof. Dr. Ralph Engel
Dr. Markus Roth

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>LP</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102382</td>
<td>Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen</td>
<td>6</td>
<td>Engel, Roth</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102082 - Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103184 - Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Die Vorlesung wird als Tafelanschrieb und mit vorher ausgehändigtem Bildmaterial gehalten. Besonderer Wert wird auf die explizite Ableitung der wesentlichen Zusammenhänge gelegt. Die Themen umfassen astrophysikalische Energie- und Größenskalen; Eigenschaften kosmischer Strahlung; direkte und indirekte Messung kosmischer Strahlung; Beschleunigung geladener Teilchen; Galaxien und galaktische Magnetfelder; galaktische und extra-galaktische Ausbreitung kosmischer Strahlung; Quellen kosmischer Strahlung; Teilchenphysik und Suche nach exotischen Phänomenen mit kosmischer Strahlung; hochenergetische Neutrinos. Zusammen mit „Astroteilchenphysik II: Gamma-Strahlung“ im folgenden Semester ergeben die beiden Vorlesungen ein abgeschlossenes Bild hochenergetischer Teilchen mit ihren zugrundeliegenden Erzeugungs- und Transportprozessen im Universum. Die Themenspektren beider Vorlesungen sind so angelegt, dass sie auch einzeln gehört werden können.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung und Vorbereitung der Übungen (135)

Literatur
- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (2nd Ed.)
- P. Schneider: Einführung in die Extragalaktische Astronomie und Kosmologie
- M. Longair: High Energy Astrophysics
- Thierry Courvoisier: High Energy Astrophysics
- Bradley W. Carroll and Dale Ostlie: An Introduction to Modern Astrophysics
3.17 Modul: Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF) [M-PHYS-102082]

| Verantwortung | Prof. Dr. Ralph Engel
Markus Roth |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von</td>
<td>Physikalisches Nebenfach / Experimentelle Astroteilchenphysik</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104380 | Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF) | 6 LP | Engel, Roth |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102078 - Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103184 - Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Die Vorlesung wird als Tafelanschrieb und mit vorher ausgehändigtem Bildmaterial gehalten. Besonderer Wert wird auf die explizite Ableitung der wesentlichen Zusammenhänge gelegt. Die Themen umfassen astrophysikalische Energie- und Größenskalen; Eigenschaften kosmischer Strahlung; direkte und indirekte Messung kosmischer Strahlung; Beschleunigung geladener Teilchen; Galaxien und galaktische Magnetfelder; galaktische und für die Galaxisen ausbreitung kosmischer Strahlung; Quellen kosmischer Strahlung; Teilchenphysik und Suche nach exotischen Phänomenen mit kosmischer Strahlung; hochenergetische Neutrinos. Zusammen mit „Astroteilchenphysik II: Gamma-Strahlung“ im folgenden Semester ergeben die beiden Vorlesungen ein abgeschlossenes Bild hochenergetischer Teilchen mit ihren zugrundeliegenden Erzeugungs- und Transportprozessen im Universum. Die Themenspektren beider Vorlesungen sind so angelegt, dass sie auch einzeln gehört werden können.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung und Vorbereitung der Übungen (135)

Literatur

- T.K. Gaisser, R. Engel, E. Resconi: Cosmic Rays and Particle Physics (2nd Ed.)
- P. Schneider: Einführung in die Extragalaktische Astronomie und Kosmologie
- M. Longair: High Energy Astrophysics
- Thierry Courvoisier: High Energy Astrophysics
- Bradley W. Carroll and Dale Ostlie: An Introduction to Modern Astrophysics
3.18 Modul: Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen [M-PHYS-102527]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile
| T-PHYS-105110 | Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen | 8 LP | Drexlin, Valerius |

Qualifikationsziele
- Methodenkompetenzerwerb: Vertiefung in zwei Schlüsselgebieten der experimentellen Astroteilchenphysik: stellare Astrophysik und Neutrino-Physik, dabei insbesondere Erkenntnis der Querverbindungen zur Elementarteilchenphysik und Kosmologie
- Fähigkeit zur Synthese wissenschaftlicher Resultate, eigenständige Einarbeitung in aktuelle Forschungsresultate, Fähigkeit zur eigenständigen Problemlösung

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102086 - Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102081 - Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103186 - Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Die Vorlesung gibt, aufbauend auf den einführenden Vorlesungen Astroteilchenphysik I und Kosmologie, einen vertieften Einblick in zwei Schlüsselgebiete der modernen experimentellen Astroteilchenphysik.

Die Vorlesung legt einen Schwerpunkt auf eine eingehende Darstellung von grundlegenden physikalischen Prozessen und experimentellen Methoden der Astroteilchenphysik.

Empfehlungen
Grundlagenkenntnisse der Physik der Teilchen und Kerne sowie von grundlegenden experimentellen Methoden in diesem Bereich werden vorausgesetzt.

Physik Master 2015 (Master of Science)
Modulhandbuch mit Stand vom 09.10.2019
Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Lehr- und Lernformen
4022111 Vorlesung 2 SWS; G. Drexlin, K. Valerius
4022112 Übung 1 SWS; G. Drexlin, Groh

Literatur
- Donald Perkins, Particle Astrophysics (Oxford University Press)
- Kai Zuber, Neutrino physics (Routledge Chapman & Hall), 2nd Edition
- H.V. Klapdor-Kleingrothaus & Kai Zuber, Teilchenastrophysik (Teubner)

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.19 Modul: Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF) [M-PHYS-103186]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte: 8
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-106319 Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF) 8 LP Drexlin, Valerius

Qualifikationsziele
- Methodenkompetenzerwerb: Vertiefung in zwei Schlüsselgebieten der experimentellen Astroteilchenphysik: stellare Astrophysik und Neutrinophysik, dabei insbesondere Erkenntnis der Querverbindungen zur Elementarteilchenphysik und Kosmologie
- Fähigkeit zur Synthese wissenschaftlicher Resultate, eigenständige Einarbeitung in aktuelle Forschungsresultate, Fähigkeit zur eigenständigen Problemlösung

Voraussetzungen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102086 - Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102081 - Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen darf nicht begonnen worden sein.

Inhalt
Die Vorlesung gibt, aufbauend auf den einführenden Vorlesungen Astroteilchenphysik I und Kosmologie, einen vertieften Einblick in zwei Schlüsselgebiete der modernen experimentellen Astroteilchenphysik.

Die Vorlesung legt einen Schwerpunkt auf eine eingehende Darstellung von grundlegenden physikalischen Prozessen und experimentellen Methoden der Astroteilchenphysik.

Empfehlungen
Grundlagenkenntnisse der Physik der Teilchen und Kerne sowie von grundlegenden experimentellen Methoden in diesem Bereich werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen
Lehr- und Lernformen
4022111 Vorlesung 2 SWS; G. Drexlin, K. Valerius
4022112 Übung 1 SWS; G. Drexlin, Groh

Literatur

- Donald Perkins, Particle Astrophysics (Oxford University Press)
- Kai Zuber, Neutrino physics (Routledge Chapman & Hall), 2nd Edition
- H.V. Klapdor-Kleingrothaus & Kai Zuber, Teilchenastrophysik (Teubner)

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.20 Modul: Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen [M-PHYS-102081]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>LP</th>
<th>Modul: Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen</th>
<th>Drexlin, Valerius</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>T-PHYS-102498</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele

- Methodenkompetenzerwerb: Vertiefung in zwei Schlüsselgebieten der experimentellen Astroteilchenphysik: stellare Astrophysik und Neutrinophysik, dabei insbesondere Erkenntnis der Querverbindungen zur Elementarteilchenphysik und Kosmologie
- Fähigkeit zur Synthese wissenschaftlicher Resultate, eigenständige Einarbeitung in aktuelle Forschungsresultate, Fähigkeit zur eigenständigen Problemlösung

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102086 - Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102527 - Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103186 - Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Die Vorlesung gibt, aufbauend auf den einführnden Vorlesungen Astroteilchenphysik I und Kosmologie, einen vertieften Einblick in zwei Schlüsselgebiete der modernen experimentellen Astroteilchenphysik.

Die Vorlesung legt einen Schwerpunkt auf eine eingehende Darstellung von grundlegenden physikalischen Prozessen und experimentellen Methoden der Astroteilchenphysik.

Empfehlungen

Grundlagenkenntnisse der Physik der Teilchen und Kerne sowie von grundlegenden experimentellen Methoden in diesem Bereich werden vorausgesetzt.
Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen.

Lehr- und Lernformen

4022111 Vorlesung 2 SWS; G. Drexlin, K. Valerius
4022112 Übung 1 SWS; G. Drexlin, Groh

Literatur

- Donald Perkins, Particle Astrophysics (Oxford University Press)
- Kai Zuber, Neutrino physics (Routledge Chapman & Hall), 2nd Edition
- H.V. Klapdor-Kleingrothaus & Kai Zuber, Teilchenastrophysik (Teubner)

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.21 Modul: Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF) [M-PHYS-102086]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104383 | Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF) | 6 LP | Drexlin, Valerius |

Qualifikationsziele

- Methodenkompetenzerwerb: Vertiefung in zwei Schlüsselgebieten der experimentellen Astroteilchenphysik: stellare Astrophysik und Neutrinophysik, dabei insbesondere Erkenntnis der Querverbindungen zur Elementarteilchenphysik und Kosmologie
- Fähigkeit zur Synthese wissenschaftlicher Resultate, eigenständige Einarbeitung in aktuelle Forschungsresultate, Fähigkeit zur eigenständigen Problemlösung

Voraussetzungen

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102081 - Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102527 - Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103186 - Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Die Vorlesung gibt, aufbauend auf den einführenden Vorlesungen Astroteilchenphysik I und Kosmologie, einen vertieften Einblick in zwei Schlüsselgebiete der modernen experimentellen Astroteilchenphysik.

Die Vorlesung legt einen Schwerpunkt auf eine eingehende Darstellung von grundlegenden physikalischen Prozessen und experimentellen Methoden der Astroteilchenphysik.

Empfehlungen

Grundlagenkenntnisse der Physik der Teilchen und Kerne sowie von grundlegenden experimentellen Methoden in diesem Bereich werden vorausgesetzt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen
Lehr- und Lernformen
4022111 Vorlesung 2 SWS; G. Drexlin, K. Valerius
4022112 Übung 1 SWS; G. Drexlin, Groh

Literatur

- Donald Perkins, Particle Astrophysics (Oxford University Press)
- Kai Zuber, Neutrino physics (Routledge Chapman & Hall), 2nd Edition
- H.V. Klapdor-Kleingrothaus & Kai Zuber, Teilchenastrophysik (Teubner)

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.22 Modul: Beschleunigerphysik, mit erw. Übungen [M-PHYS-104869]

Verantwortung: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-109904 | Beschleunigerphysik, mit erw. Übungen | 8 LP | Bernhard, Müller |

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104870 - Beschleunigerphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-104871 - Beschleunigerphysik, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104872 - Beschleunigerphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
Inhalt

- Grundtypen von Beschleunigern (u.a. elektrostatische Beschleuniger, Linacs, Kreisbeschleuniger, Speicherringe & Collider)
- Physik der Synchrotronstrahlung, Wiggler und Undulatoren (Elektrodynamik bewegter Punktladungen, Eigenschaften der normalen Synchrotronstrahlung und Undulatorstrahlung)
- Strahloptik und Strahldynamik (z.B. Magnetische Linsen, Strahleigenschaften, transversale & longitudinale Schwingung und Dämpfung, Vielteilchensysteme)
- Magnettechnologie für Beschleuniger und Synchrotronstrahlungsquellen
- Messung und Kontrolle von Strahlparametern
- Freie-Elektronen-Laser
- Performance-Grenzen von Beschleunigern (z.B. Ultra-kurze Elektronenpulse, hochintensive Protonenstrahlen, Strahl-Strahl-Wechselwirkungen bei Collidern)
- Neue Technologien, aktuelle & zukünftige Projekte

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Vor- und Nachbereitung der Vorlesung, der integrierten Übungen und Prüfungsvorbereitung (120 Stunden), Vorbereitung und Durchführung der praktischen Übungen, Auswertungen und Erstellung von Messprotokollen (60 Stunden).

Literatur

- E.J.N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Accelerator Physics 1&2, Springer, 1993
3.23 Modul: Beschleunigerphysik, mit erw. Übungen (NF) [M-PHYS-104870]

Verantwortung: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Nebenfach / Kondensierte Materie
- Physikalisches Nebenfach / Experimentelle Teilchenphysik
- Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-109903 | Beschleunigerphysik, mit erw. Übungen (NF) | 8 LP | Bernhard, Müller |

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104869 - Beschleunigerphysik, mit erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-104871 - Beschleunigerphysik, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104872 - Beschleunigerphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

- Grundtypen von Beschleunigern (u.a. elektrostatische Beschleuniger, Linacs, Kreisbeschleuniger, Speicherringe & Collider)
- Physik der Synchrotronstrahlung, Wiggler und Undulatoren (Elektrodynamik bewegter Punktladungen, Eigenschaften der normalen Synchrotronstrahlung und Undulatorstrahlung)
- Strahloptik und Strahldynamik (z.B. Magnetische Linsen, Strahleigenschaften, transversale & longitudinale Schwingung und Dämpfung, Vielteilchensysteme)
- Magnetotechnologie für Beschleuniger und Synchrotronstrahlungsquellen
- Messung und Kontrolle von Strahlparametern
- Freie-Elektronen-Laser
- Performance-Grenzen von Beschleunigern (z.B. Ultra-kurze Elektronenpulse, hochintensive Protonenstrahlen, Strahl-Strahl-Wechselwirkungen bei Collidern)
- Neue Technologien, aktuelle & zukünftige Projekte

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Vor- und Nachbereitung der Vorlesung, der integrierten Übungen und Prüfungsvorbereitung (120 Stunden), Vorbereitung und Durchführung der praktischen Übungen, Auswertungen und Erstellung von Messprotokollen (60 Stunden).
Literatur

- E.J.N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Accelerator Physics 1&2, Springer, 1993
3.24 Modul: Beschleunigerphysik, ohne erw. Übungen [M-PHYS-104871]

Verantwortung: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte
- 6

Turnus
- Jedes Wintersemester

Dauer
- 1 Semester

Sprache
- Deutsch

Level
- 4

Version
- 1

Pflichtbestandteile
- T-PHYS-109905 Beschleunigerphysik, ohne erw. Übungen 6 LP Bernhard, Müller

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104869 - Beschleunigerphysik, mit erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-104870 - Beschleunigerphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104872 - Beschleunigerphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
Inhalt

- Grundtypen von Beschleunigern (u.a. elektrostatische Beschleuniger, Linacs, Kreisbeschleuniger, Speicherringe & Collider)
- Physik der Synchrotronstrahlung, Wiggler und Undulatoren (Elektrodynamik bewegter Punktladungen, Eigenschaften der normalen Synchrotronstrahlung und Undulatorstrahlung)
- Strahloptik und Strahldynamik (z.B. Magnetische Linsen, Strahleigenschaften, transversale & longitudinale Schwingung und Dämpfung, Vielteilchensysteme)
- Magnettechnologie für Beschleuniger und Synchrotronstrahlungsquellen
- Messung und Kontrolle von Strahlparametern
- Freie-Elektronen-Laser
- Performance-Grenzen von Beschleunigern (z.B. Ultra-kurze Elektronenpulse, hochintensive Protonenstrahlen, Strahl-Strahl-Wechselwirkungen bei Collidern)
- Neue Technologien, aktuelle & zukünftige Projekte

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (60 Stunden), Vor- und Nachbereitung der Vorlesung, der integrierten Übungen und Prüfungsvorbereitung (120 Stunden)

Literatur

- E.J.N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Accelerator Physics 1&2, Springer, 1993
3.25 Modul: Beschleunigerphysik, ohne erw. Übungen (NF) [M-PHYS-104872]

Verantwortung: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Experimentelle Teilchenphysik
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-109906 Beschleunigerphysik, ohne erw. Übungen (NF) 6 LP Bernhard, Müller

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkte- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104869 - Beschleunigerphysik, mit erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-104870 - Beschleunigerphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104871 - Beschleunigerphysik, ohne erw. Übungen darf nicht begonnen worden sein.

Inhalt
- Grundtypen von Beschleunigern (u.a. elektrostatische Beschleuniger, Linacs, Kreisbeschleuniger, Speicherringe & Collider)
- Physik der Synchrotronstrahlung, Wiggler und Undulatoren (Elektrodynamik bewegter Punktladungen, Eigenschaften der normalen Synchrotronstrahlung und Undulatorstrahlung)
- Strahloptik und Strahldynamik (z.B. Magnetische Linsen, Strahleigenschaften, transversale & longitudinale Schwingung und Dämpfung, Vielteilchensysteme)
- Magnetotechnologie für Beschleuniger und Synchrotronstrahlungsquellen
- Messung und Kontrolle von Strahlparametern
- Freie-Elektronen-Laser
- Performance-Grenzen von Beschleunigern (z.B. Ultra-kurze Elektronenpulse, hochintensive Protonenstrahlen, Strahl-Strahl-Wechselwirkungen bei Collidern)
- Neue Technologien, aktuelle & zukünftige Projekte

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60 Stunden), Vor- und Nachbereitung der Vorlesung, der integrierten Übungen und Prüfungsvorbereitung (120 Stunden)
Literatur

- E.J.N. Wilson: An Introduction to Particle Accelerators, Oxford University Press, 2001
- H. Wiedemann: Particle Acclerator Physics 1&2, Springer, 1993
3.26 Modul: Computational Condensed Matter Physics [M-PHYS-104862]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte 12
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-109895 Computational Condensed Matter Physics 12 LP Wenzel

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104863 - Computational Condensed Matter Physics (NF) darf nicht begonnen worden sein.

Inhalt
- Quantenmechanik von Vielteilchensystemen
- Methoden der Quantenchemie (LCAO, Hartree Fock, Dichtefunktionaltheorie, Elektronenkorrelationen)
- Anwendungen auf Moleküle und Festkörper
- Simulationsverfahren für klassische Vielteilchensysteme (Monte Carlo, Molekulardynamik)
- Anwendungen auf die Strukturbildung in Polymeren, Gläsern und Festkörpern.
- Einführung in Multiskalensimulationen (QM/MM, Mehrstufenverfahren) und Verfahren der künstlichen Intelligenz
- Modellierung des elektronischen Transports

Empfehlungen
Kenntnisse der Quantenmechanik und Festkörpertheorie.

Arbeitsaufwand
360 Stunden bestehend aus Präsenzzeiten (60 Stunden Vorlesung, 30 Stunden Übungen), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (270 Stunden)
Literatur

- Mark Newman: Computational Physics
- Szabo: Modern Quantum Chemistry
- Kurt Binder: Monte Carlo Simulation in Statistical Physics
- Leach: Molecular Modeling
Modul: Computational Condensed Matter Physics (NF) [M-PHYS-104863]

Verantwortung: Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Nebenfach / Nanophysik
- Physikalisches Nebenfach / Theorie der Kondensierten Materie

Leistungspunkte 12

Turnus Unregelmäßig

Dauer 1 Semester

Sprache Deutsch

Level 4

Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109894</td>
<td>12 LP</td>
</tr>
<tr>
<td>Computational Condensed Matter Physics (NF)</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104862 - Computational Condensed Matter Physics darf nicht begonnen worden sein.

Inhalt

- Quantenmechanik von Vielteilchensystemen
- Methoden der Quantenchemie (LCAO, Hartree Fock, Dichtefunktionaltheorie, Elektronenkorrelationen)
- Anwendungen auf Moleküle und Festkörper
- Simulationsverfahren für klassische Vielteilchensysteme (Monte Carlo, Molekulardynamik)
- Anwendungen auf die Strukturbildung in Polymeren, Gläsern und Festkörpern.
- Einführung in Multiskalensimulationen (QM/MM, Mehrstufenverfahren) und Verfahren der künstlichen Intelligenz
- Modellierung des elektronischen Transports

Empfehlungen

Kenntnisse der Quantenmechanik und Festkörpertheorie.

Arbeitsaufwand

360 Stunden bestehend aus Präsenzzeiten (60 Stunden Vorlesung, 30 Stunden Übungen), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (270 Stunden)

Literatur

- Mark Newman: Computational Physics
- Szabo: Modern Quantum Chemistry
- Kurt Binder: Monte Carlo Simulation in Statistical Physics
- Leach: Molecular Modeling
3.28 Modul: Computational Photonics, with ext. Exercises [M-PHYS-101933]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte: 8
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-103633 Computational Photonics, with ext. Exercises 8 LP Rockstuhl

Qualifikationsziele
The students can use a computer to solve optical problems and can use a computer to visualize details of the light matter interaction, know different strategies to solve Maxwell's equations on rigorous grounds, know how spatial symmetries and the arrangement of matter in space can be used to formulate Maxwell's equations such that they are amenable for a numerical solution, can implement programs with a reasonable complexity by themselves, can use a computer to discuss and explore optical phenomena, and are familiar with basic computational strategies that emerge in photonics, but comparably in any other scientific discipline as well.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-103090 - Computational Photonics, with ext. Exercises (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103089 - Computational Photonics, without ext. Exercises darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103193 - Computational Photonics, without ext. Exercises (NF) darf nicht begonnen worden sein.

Inhalt
• Transfer Matrix Method to describe the optical response from stratified media
• Finite Differences to characterize eigenmode in fiber waveguides
• Beam propagation method to describe the evolution of light in the realm of integrated optics
• Grating methods to predict reflection and transmission from periodically arranged material in 1D and 2D
• Mie Theory to describe the scattering of light from individual cylindrical or spherical objects
• Finite-Difference Time-Domain method as a general purpose tool to solve micro- and nanooptical problems
• Multiple Multipole Method as an approach to describe light scattering from single objects with an arbitrary shape
• Greens' Methods to discuss equally the scattering from single objects but embedded in an inhomogeneous background
• Boundary Integral Method to discuss scattering from objects highly efficient using expressions for the fields on the surface

Empfehlungen
Interest in theoretical physics, optics and electrodynamics. Moreover, interest in computational aspects is important.

Anmerkungen
Für Studierende der KIT-Fakultät für Informatik gilt: Die Prüfungen in diesem Modul sind über Zulassungen vom ISS (KIT-Fakultät für Informatik) anzumelden. Dafür reicht eine E-Mail mit Matrikeln. und Name der gewünschten Prüfung an Beratung-informatik@informatik.kit.edu aus.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).
Literatur

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Principles of Optics" M. Born and E. Wolf
- "Light Scattering by Small Particles" H. C. van de Hulst

Specific references for the individual topics will be given during the lectures.
The lecture material that will be fully made available online.
3.29 Modul: Computational Photonics, with ext. Exercises (NF) [M-PHYS-103090]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-106132 | Computational Photonics, with ext. Exercises (NF) | 8 LP | Rockstuhl |

Qualifikationsziele

The students can use a computer to solve optical problems and can use a computer to visualize details of the light matter interaction, know different strategies to solve Maxwell’s equations on rigorous grounds, know how spatial symmetries and the arrangement of matter in space can be used to formulate Maxwell’s equations such that they are amenable for a numerical solution, can implement programs with a reasonable complexity by themselves, can use a computer to discuss and explore optical phenomena, and are familiar with basic computational strategies that emerge in photonics, but comparably in any other scientific discipline as well.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103089 - Computational Photonics, without ext. Exercises darf nicht begonnen worden sein.
2. Das Modul M-PHYS-101933 - Computational Photonics, with ext. Exercises darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103193 - Computational Photonics, without ext. Exercises (NF) darf nicht begonnen worden sein.

Inhalt

- Transfer Matrix Method to describe the optical response from stratified media
- Finite Differences to characterize eigenmode in fiber waveguides
- Beam propagation method to describe the evolution of light in the realm of integrated optics
- Grating methods to predict reflection and transmission from periodically arranged material in 1D and 2D
- Mie Theory to describe the scattering of light from individual cylindrical or spherical objects
- Finite-Difference Time-Domain method as a general purpose tool to solve micro- and nanooptical problems
- Multiple Multipole Method as an approach to describe light scattering from single objects with an arbitrary shape
- Greens' Methods to discuss equally the scattering from single objects but embedded in an inhomogeneous background
- Boundary Integral Method to discuss scattering from objects highly efficient using expressions for the fields on the surface

Empfehlungen

Interest in theoretical physics, optics and electrodynamics. Moreover, interest in computational aspects is important.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Literatur

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Principles of Optics" M. Born and E. Wolf
- "Light Scattering by Small Particles" H. C. van de Hulst

Specific references for the individual topics will be given during the lectures. The lecture material that will be fully made available online.
Qualifikationsziele
The students can use a computer to solve optical problems and can use a computer to visualize details of the light matter interaction, know different strategies to solve Maxwell's equations on rigorous grounds, know how spatial symmetries and the arrangement of matter in space can be used to formulate Maxwell's equations such that they are amenable for a numerical solution, can implement programs with a reasonable complexity by themselves, can use a computer to discuss and explore optical phenomena, and are familiar with basic computational strategies that emerge in photonics, but comparably in any other scientific discipline as well.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101933 - Computational Photonics, with ext. Exercises darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103090 - Computational Photonics, with ext. Exercises (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103193 - Computational Photonics, without ext. Exercises (NF) darf nicht begonnen worden sein.

Inhalt
- Transfer Matrix Method to describe the optical response from stratified media
- Finite Differences to characterize eigenmode in fiber waveguides
- Beam propagation method to describe the evolution of light in the realm of integrated optics
- Grating methods to predict reflection and transmission from periodically arranged material in 1D and 2D
- Mie Theory to describe the scattering of light from individual cylindrical or spherical objects
- Finite-Difference Time-Domain method as a general purpose tool to solve micro- and nanooptical problems
- Multiple Multipole Method as an approach to describe light scattering from single objects with an arbitrary shape
- Greens’ Methods to discuss equally the scattering from single objects but embedded in an inhomogeneous background
- Boundary Integral Method to discuss scattering from objects highly efficient using expressions for the fields on the surface

Empfehlungen
Interest in theoretical physics, optics and electrodynamics. Moreover, interest in computational aspects is important.

Anmerkungen
Für Studierende der KIT-Fakultät für Informatik gilt: Die Prüfungen in diesem Modul sind über Zulassungen vom ISS (KIT-Fakultät für Informatik) anzumelden. Dafür reicht eine E-Mail mit Matrikeln. und Name der gewünschten Prüfung an Beratung-informatik@informatik.kit.edu aus.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden).
Literatur

- "Classical Electrodynamics" John David Jackson
- "Theoretical Optics: An Introduction" Hartmann Römer
- "Principles of Optics" M. Born and E. Wolf
- "Light Scattering by Small Particles" H. C. van de Hulst

Specific references for the individual topics will be given during the lectures. The lecture material that will be fully made available online.
Qualifikationsziele
The students can use a computer to solve optical problems and can use a computer to visualize details of the light matter interaction, know different strategies to solve Maxwell’s equations on rigorous grounds, know how spatial symmetries and the arrangement of matter in space can be used to formulate Maxwell’s equations such that they are amenable for a numerical solution, can implement programs with a reasonable complexity by themselves, can use a computer to discuss and explore optical phenomena, and are familiar with basic computational strategies that emerge in photonics, but comparably in any other scientific discipline as well.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101933 - Computational Photonics, with ext. Exercises darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103090 - Computational Photonics, with ext. Exercises (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103089 - Computational Photonics, without ext. Exercises darf nicht begonnen worden sein.

Inhalt
• Transfer Matrix Method to describe the optical response from stratified media
• Finite Differences to characterize eigenmode in fiber waveguides
• Beam propagation method to describe the evolution of light in the realm of integrated optics
• Grating methods to predict reflection and transmission from periodically arranged material in 1D and 2D
• Mie Theory to describe the scattering of light from individual cylindrical or spherical objects
• Finite-Difference Time-Domain method as a general purpose tool to solve micro- and nano-optical problems
• Multiple Multipole Method as an approach to describe light scattering from single objects with an arbitrary shape
• Greens’ Methods to discuss equally the scattering from single objects but embedded in an inhomogeneous background
• Boundary Integral Method to discuss scattering from objects highly efficient using expressions for the fields on the surface

Empfehlungen
Interest in theoretical physics, optics and electrodynamics. Moreover, interest in computational aspects is important.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden).

Literatur
• "Classical Electrodynamics" John David Jackson
• "Theoretical Optics: An Introduction" Hartmann Römer
• "Principles of Optics" M. Born and E. Wolf
• "Light Scattering by Small Particles" H. C. van de Hulst

Specific references for the individual topics will be given during the lectures.
The lecture material that will be fully made available online.

Verantwortung: Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie (EV ab 01.10.2019)

Leistungspunkte 8
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS–110390 | Critical and Fluctuation Phenomena in Condensed-Matter Physics | 8 LP | Gornyi, Mirlin |

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Qualifikationsziele
Vertiefung im Gebiet der Theorie der kondensierten Materie; Erlangen von Wissen über wichtigste Konzepte sowie über theoretische Methoden der Untersuchung von ungeordneten Systemen und kritischen Phänomenen

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt
Voraussichtliche Struktur der Vorlesung (in engl. Sprache):

1. Introduction; Equilibrium phase transitions; Scaling and renormalization group
2. Critical behavior in disordered systems (Harris criterion, strong-disorder RG and Griffiths phases)
3. Classical stochastic systems, Langevin and Fokker-Planck equations, Martin-Siggia-Rose formalism
4. Dynamical critical phenomena; Intrinsically nonequilibrium fluctuation dynamics; Kardar-Parizi-Zhang equation

Empfehlungen

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (180 Stunden).

Literatur

- Kamenev, Field theory of non-equilibrium systems
- Chaikin & Lubensky, Principles of Condensed Matter Physics
- Hohenberg & Halperin, Rev. Mod. Phys. 49, 435 (1977)
3.33 Modul: Critical and Fluctuation Phenomena in Condensed-Matter Physics (NF) [M-PHYS-105140]

Verantwortung: Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theorie der Kondensierten Materie (EV ab 01.10.2019)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-110391 | Critical and Fluctuation Phenomena in Condensed-Matter Physics (NF) | 8 LP | Gornyi, Mirlin |

Erfolgskontrolle(n)

Falls dieses Modul als Nebenfach verwendet wird, werden die Leistungspunkte durch eine Studienleistung (Kurzvorträge im Rahmen der Vorlesung) erworben.

Qualifikationsziele

Vertiefung im Gebiet der Theorie der kondensierten Materie; Erlangen von Wissen über wichtigste Konzepte sowie über theoretische Methoden der Untersuchung von ungeordneten Systemen und kritischen Phänomenen

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt

Voraussichtliche Struktur der Vorlesung (in engl. Sprache):

1. Introduction; Equilibrium phase transitions; Scaling and renormalization group
2. Critical behavior in disordered systems (Harris criterion, strong-disorder RG and Griffiths phases)
3. Classical stochastic systems, Langevin and Fokker-Planck equations, Martin-Siggia-Rose formalism
4. Dynamical critical phenomena; Intrinsically nonequilibrium fluctuation dynamics; Kardar-Parizi-Zhang equation

Empfehlungen

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung (180 Stunden).

Literatur

- Kamenev, *Field theory of non-equilibrium systems*
- Chaikin & Lubensky, *Principles of Condensed Matter Physics*
- Hohenberg & Halperin, Rev. Mod. Phys. 49, 435 (1977)
3.34 Modul: Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen [M-PHYS-102121]

Verantwortung: Dr.-Ing. Frank Hartmann
 Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-102378 | Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen | 8 LP | Husemann, Müller |

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102119 - Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102120 - Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102122 - Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Wechselwirkung von Elektronen, Photonen, Myonen, geladenen und neutralen Hadronen mit Materie; elektronischer Nachweis von Teilchenstrahlung und Messung der deponierten Energie sowie Teilchenidentifikation; gasgefüllte Detektoren, Szintillatoren, Photomultiplier, Siliziumdetektoren, elektromagnetische und hadronische Kalorimeter, Detektorsysteme, Trigger und Datenerfassung, Rekonstruktion physikalischer Objekte in Detektorsystemen, Anwendungen außerhalb der Grundlagenforschung.

Empfehlungen

Literatur
- C. Grupen: Particle Detectors, Cambridge University Press (2011)
- Particle Data Group: The Review of Particle Physics
Modul: Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF) [M-PHYS-102122]

Verantwortung: Dr.-Ing. Frank Hartmann
Prof. Dr. Thomas Müller
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-PHYS-102431</th>
<th>Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF)</th>
<th>8 LP</th>
</tr>
</thead>
</table>

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102119 - Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102120 - Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Wechselwirkung von Elektronen, Photonen, Myonen, geladenen und neutralen Hadronen mit Materie; elektronischer Nachweis von Teilchenstrahlung und Messung der deponierten Energie sowie Teilchenidentifikation; gasgefüllte Detektoren, Szintillatoren, Photomultiplier, Siliziumdetektoren, elektromagnetische und hadronische Kalorimeter, Detektorsysteme, Trigger und Datenerfassung, Rekonstruktion physikalischer Objekte in Detektorsystemen, Anwendungen außerhalb der Grundlagenforschung.

Empfehlungen

Literatur

- C. Grupen: Particle Detectors, Cambridge University Press (2011)
- Particle Data Group: The Review of Particle Physics
Modul: Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen [M-PHYS-102119]

Verantwortung: Dr. Frank Hartmann
Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte: 6

Turnus: Jedes Wintersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 4

Version: 1

Pflichtbestandteile

| T-PHYS-104453 | Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen | 6 LP | Husemann, Müller |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102120 - Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102121 - Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102122 - Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Wechselwirkung von Elektronen, Photonen, Myonen, geladenen und neutralen Hadronen mit Materie; elektronischer Nachweis von Teilchenstrahlung und Messung der deponierten Energie sowie Teilchenidentifikation; gasgefüllte Detektoren, Szintillatoren, Photomultiplier, Siliziumdetektoren, elektromagnetische und hadronische Kalorimeter, Detektorsysteme, Trigger und Datenerfassung, Rekonstruktion physikalischer Objekte in Detektorsystemen, Anwendungen außerhalb der Grundlagenforschung.

Empfehlungen

Literatur

- C. Grupen: Particle Detectors, Cambridge University Press (2011)
- Particle Data Group: The Review of Particle Physics
3.37 Modul: Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF) [M-PHYS-102120]

Verantwortung: Dr.-Ing. Frank Hartmann
Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS-104454 | Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF) | 6 LP | Husemann, Müller |

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102119 - Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102121 - Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102122 - Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Wechselwirkung von Elektronen, Photonen, Myonen, geladenen und neutralen Hadronen mit Materie; elektronischer Nachweis von Teilchenstrahlung und Messung der deponierten Energie sowie Teilchenidentifikation; gasgefüllte Detektoren, Szintillatoren, Photomultiplier, Siliziumdetektoren, elektromagnetische und hadronische Kalorimeter, Detektorsysteme, Trigger und Datenerfassung, Rekonstruktion physikalischer Objekte in Detektorsystemen, Anwendungen außerhalb der Grundlagenforschung.

Empfehlungen

Literatur

- C. Grupen: Particle Detectors, Cambridge University Press (2011)
- Particle Data Group: The Review of Particle Physics
Verantwortung: Prof. Dr. Thomas Schwetz-Mangold
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte
6
Turnus
Unregelmäßig
Dauer
1 Semester
Sprache
Deutsch
Level
4
Version
1

Pflichtbestandteile
T-PHYS-105957 Dunkle Materie - Theoretische Aspekte
6 LP Schwetz-Mangold

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103187 - Dunkle Materie - Theoretische Aspekte (NF) darf nicht begonnen worden sein.

Inhalt

Arbeitsaufwand
180 h bestehend aus Präsenzzeiten (45 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen
4022191 Vorlesung 2 SWS; Schwetz-Mangold
4022192 Übung 1 SWS; Schwetz-Mangold
3.39 Modul: Dunkle Materie - Theoretische Aspekte (NF) [M-PHYS-103187]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Nebenfach / Experimentelle Astroteilchenphysik
- Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-106320 | Dunkle Materie - Theoretische Aspekte (NF) | 6 LP | Schwetz-Mangold |

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul **M-PHYS-102981 - Dunkle Materie - Theoretische Aspekte** darf nicht begonnen worden sein.

Inhalt

Arbeitsaufwand
180 h bestehend aus Präsenzzeiten (45 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen
- 4022191 Vorlesung 2 SWS; Schwetz-Mangold
- 4022192 Übung 1 SWS; Schwetz-Mangold
Qualifikationsziele
These lectures will provide an introduction to effective field theories, an important framework for understanding physical systems that depend on widely different energy scales. After developing the basic concepts, we will use this framework to analyze electromagnetic, weak and strong interactions at low energies.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-103329 - Effektive Feldtheorien (NF) darf nicht begonnen worden sein.

Inhalt
1. Basic concepts of effective field theories (matching calculations, power counting, classification of operators, renormalization group improved perturbation theory);
2. Standard Model at low energies (Euler-Heisenberg Lagrangian, Fermi theory, the Standard Model as an effective field theory, chiral Lagrangian and low-energy hadron physics);
3. Non-relativistic and high-energy effective theories (HQEFT, NRQED/QCD, SCET).

Empfehlungen
Working knowledge of Quantum Field Theory, at least at the level of TTP I.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).

Literatur
Literature will be described at the first lecture.
Qualifikationsziele
These lectures will provide an introduction to effective field theories, an important framework for understanding physical systems that depend on widely different energy scales. After developing the basic concepts, we will use this framework to analyze electromagnetic, weak and strong interactions at low energies.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103328 - Effektive Feldtheorien darf nicht begonnen worden sein.

Inhalt

1. Basic concepts of effective field theories (matching calculations, power counting, classification of operators, renormalization group improved perturbation theory);
2. Standard Model at low energies (Euler-Heisenberg Lagrangian, Fermi theory, the Standard Model as an effective field theory, chiral Lagrangian and low-energy hadron physics);
3. Non-relativistic and high-energy effective theories (HQEFT, NRQED/QCD, SCET).

Empfehlungen
Working knowledge of Quantum Field Theory, at least at the level of TTP I.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).

Literatur
Literature will be described at the first lecture.
3.42 Modul: Einführung in das wissenschaftliche Arbeiten [M-PHYS-101397]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Studiendekan Physik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>Einführung in das wissenschaftliche Arbeiten</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>15</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Jedes Semester</td>
</tr>
<tr>
<td>Dauer</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Level</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102480</td>
<td>Einführung in das wissenschaftliche Arbeiten</td>
<td>15 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Die Studierenden erlernen grundlegende Arbeitsmethoden, die für erfolgreiche wissenschaftliche Forschung erforderlich sind. Die Arbeitsmethoden selbst sind dabei unabhängig vom jeweiligen Spezialgebiet, werden aber anhand einer konkreten Aufgabenstellung (Thema der Masterarbeit) geübt und erlernt.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Der Bereich **Physikalisches Schwerpunktfach** muss erfolgreich abgeschlossen worden sein.
2. Der Bereich **Physikalisches Ergänzungsfach** muss erfolgreich abgeschlossen worden sein.
3. Der Bereich **Physikalisches Nebenfach** muss erfolgreich abgeschlossen worden sein.
4. Der Bereich **Nichtphysikalisches Wahlpflichtfach** muss erfolgreich abgeschlossen worden sein.
5. Der Bereich **Physikalisches Fortgeschrittenenpraktikum** muss erfolgreich abgeschlossen worden sein.
3.43 Modul: Einführung in die Flavourphysik, Grundlagen [M-PHYS-102987]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte: 10
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-105963</td>
<td>Einführung in die Flavourphysik, Grundlagen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls das Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
Erlernten der Methodik der Theoretischen Flavourphysik, Fähigkeit zur Lösung komplexer mathematischer Probleme wie der Berechnung der Zerfallsamplituden von Mesonen, Verständnis der Phänomenologie des Yukawa-Sektors

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102986 - Einführung in die Flavourphysik, Grundlagen und Vertiefungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103188 - Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103189 - Einführung in die Flavourphysik, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Nützlich ist Vorwissen über quantisierte Felder und das Standardmodell der Teilchenphysik, z.B. aus der Vorlesung "Einführung in die Theoretische Teilchenphysik" (4026021). Für an Theorie interessierte Studierende ist es sinnvoll, parallel die Vorlesung "Theoretische Teilchenphysik II" zu besuchen.

Arbeitsaufwand
300 h bestehend aus Präsenzzeiten (75 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen
??? Vorlesung 3 oder 4 SWS; Nierste
??? Übung 2 SWS; Nierste, Schacht

Literatur
Wird in der Vorlesung angegeben.
3.44 Modul: Einführung in die Flavourphysik, Grundlagen (NF) [M-PHYS-103189]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

Leistungspunkte 10
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-106322 Einführung in die Flavourphysik, Grundlagen (NF) 10 LP Nierste

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
Erlernen der Methodik der Theoretischen Flavourphysik, Fähigkeit zur Lösung komplexer mathematischer Probleme wie der Berechnung der Zerfallsamplituden von Mesonen, Verständnis der Phänomenologie des Yukawa-Sektors

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102986 - Einführung in die Flavourphysik, Grundlagen und Vertiefungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103188 - Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102987 - Einführung in die Flavourphysik, Grundlagen darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Nützlich ist Vorwissen über quantisierte Felder und das Standardmodell der Teilchenphysik, z.B. aus der Vorlesung "Einführung in die Theoretische Teilchenphysik" (4026021). Für an Theorie interessierte Studierende ist es sinnvoll, parallel die Vorlesung "Theoretische Teilchenphysik I" zu besuchen.

Arbeitsaufwand
300 h bestehend aus Präsenzzeiten (75 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen
??? Vorlesung 3 oder 4 SWS; Nierste
??? Übung 2 SWS; Nierste, Schacht

Literatur
Wird in der Vorlesung angegeben.
3.45 Modul: Einführung in die Flavourphysik, Grundlagen und Vertiefungen [M-PHYS-102986]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte Turnus Dauer Sprache Level Version
12 Unregelmäßig 1 Semester Deutsch 4 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
Erlernten der Methodik der Theoretischen Flavourphysik, Fähigkeit zur Lösung komplexer mathematischer Probleme wie der Berechnung der Zerfallsamplituden von Mesonen, Verständnis der Phänomenologie des Yukawa-Sektors

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102987 - Einführung in die Flavourphysik, Grundlagen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103188 - Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103189 - Einführung in die Flavourphysik, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Nützlich ist Vorwissen über quantisierte Felder und das Standardmodell der Teilchenphysik, z.B. aus der Vorlesung "Einführung in die Theoretische Teilchenphysik" (4026021). Für an Theorie interessierte Studierende ist es sinnvoll, parallel die Vorlesung "Theoretische Teilchenphysik I" zu besuchen.

Arbeitsaufwand
360 h bestehend aus Präsenzzeiten (90 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen

<table>
<thead>
<tr>
<th>Übung</th>
<th>2 SWS</th>
<th>Nierste, Schacht</th>
</tr>
</thead>
</table>

Literatur
Wird in der Vorlesung angegeben.
3.46 Modul: Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF) [M-PHYS-103188]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

- T-PHYS-106321 Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF) 12 LP Nierste

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Erlernen der Methodik der Theoretischen Flavourphysik, Fähigkeit zur Lösung komplexer mathematischer Probleme wie der Berechnung der Zerfallsamplituden von Mesonen, Verständnis der Phänomenologie des Yukawa-Sektors

Zusammensetzung der Modulnote

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102987 - Einführung in die Flavourphysik, Grundlagen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102986 - Einführung in die Flavourphysik, Grundlagen und Vertiefungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103189 - Einführung in die Flavourphysik, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Nützlich ist Vorwissen über quantisierte Felder und das Standardmodell der Teilchenphysik, z.B. aus der Vorlesung "Einführung in die Theoretische Teilchenphysik" (4026021). Für an Theorie interessierte Studierende ist es sinnvoll, parallel die Vorlesung "Theoretische Teilchenphysik I" zu besuchen.

Arbeitsaufwand

360 h bestehend aus Präsenzzeiten (90 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen

- Vorlesung 3 oder 4 SWS; Nierste
- Übung 2 SWS; Nierste, Schacht

Literatur

Wird in der Vorlesung angegeben.
3.47 Modul: Einführung in die Kosmologie [M-PHYS-102175]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Pflicht Experimentelle Astroteilchenphysik)
Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Pflicht Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-PHYS-102384</th>
<th>Einführung in die Kosmologie</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 LP</td>
<td>Drexlin</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Die Studierenden sollen eingeführt werden in die Grundbegriffe der Kosmologie. Die Vorlesung vermittelt hierbei sowohl die theoretischen Konzepte wie auch einen Überblick über moderne experimentelle Methoden und Beobachtungstechniken. Die Studierenden werden anhand von konkreten Fallbeispielen aus der modernen Kosmologie in die Lage versetzt, die Konzepte zu verstehen und werden befähigt, die erlernten Methoden im Rahmen späterer eigenständiger Forschung anzuwenden.

Methodenkompetenzvererb:
- Verständnis der Grundlagen der Kosmologie
- Erkenntnis von methodischen Querverbindungen zur Elementarteilchen-physik und Astroteilchenphysik
- Erwerb der Fähigkeit, sich in aktuelle Forschungsthemen eigenständig einzuarbeiten als Vorbereitung zur Masterarbeit

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102176 - Einführung in die Kosmologie (NF) darf nicht begonnen worden sein.

Inhalt

Die Vorlesung vermittelt damit ein kohärentes Abbild der modernen Kosmologie und diskutiert grundlegende Fragen auch auf Nachbardisziplinen wie Teilchenphysik und Astrophysik und kann daher mit anderen Vorlesungen aus dem Bereich der Experimentellen Astroteilchenphysik und Experimentellen Teilchenphysik ergänzt werden.

Empfehlungen
Grundlagenkenntnisse aus Vorlesung „Kerne und Teilchen“

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (4S), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)
Literatur
Wird in der Vorlesung genannt.
Modul: Einführung in die Kosmologie (NF) [M-PHYS-102176]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102433 | Einführung in die Kosmologie (NF) | 6 LP | Drexlin |

Qualifikationsziele

Die Studierenden sollen eingeführt werden in die Grundbegriffe der Kosmologie. Die Vorlesung vermittelt hierbei sowohl die theoretischen Konzepte wie auch einen Überblick über moderne experimentelle Methoden und Beobachtungstechniken. Die Studierenden werden anhand von konkreten Fallbeispielen aus der modernen Kosmologie in die Lage versetzt, die Konzepte zu verstehen und werden befähigt, die erlernten Methoden im Rahmen späterer eigenständiger Forschung anzuwenden.

Methodenkompetenzerwerb:

- Verständnis der Grundlagen der Kosmologie
- Erkenntnis von methodischen Querverbindungen zur Elementarteilchen-physik und Astroteilchenphysik
- Erwerb der Fähigkeit, sich in aktuelle Forschungsthemen eigenständig einzuarbeiten als Vorbereitung zur Masterarbeit

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102175 - Einführung in die Kosmologie darf nicht begonnen worden sein.

Inhalt

Die Vorlesung vermittelt damit ein kohärentes Abbild der modernen Kosmologie und diskutiert grundlegende Fragen auch auf Nachbardisziplinen wie Teilchenphysik und Astrophysik und kann daher mit anderen Vorlesungen aus dem Bereich der Experimentellen Astroteilchenphysik und Experimentellen Teilchenphysik ergänzt werden.

Empfehlungen

Grundlagenkenntnisse aus Vorlesung „Kerne und Teilchen“

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)

Literatur

Wird in der Vorlesung genannt.
3.49 Modul: Einführung in die Supersymmetrie [M-PHYS-104091]

Verantwortung: Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte 6
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-108477 Einführung in die Supersymmetrie 6 LP Zeppenfeld

Qualifikationsziele

Voraussetzungen
keine

Inhalt
Superfelder und SUSY-Transformationen; Superpotential und Lagrangedichte supersymmetrischer Modelle; SUSY-Brechung; das minimale supersymmetrische Standard Modell (MSSM); Higgs-Physik im MSSM; Experimentelle Suchen nach Supersymmetrie; Ausblick auf nicht-minimale, supersymmetrische Modelle

Empfehlungen
Empfehlungen: Grundkenntnisse in theoretischer Teilchenphysik und Kenntnisse des Standardmodells der Teilchenphysik sind empfehlenswert.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung, Bearbeitung der Übungen (135 Stunden).

Lehr- und Lernformen
4026161 Vorlesung 2 SWS; D. Zeppenfeld, F. Staub
4026162 Übung 1 SWS; D. Zeppenfeld, F. Staub

Literatur
Wird in der Vorlesung angegeben.
3.50 Modul: Einführung in die Theoretische Kosmologie [M-PHYS-104855]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
- Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte: 8
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-109887 | Einführung in die Theoretische Kosmologie | 8 LP | Schwetz-Mangold

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
Die Studierenden lernen verschiedene Aspekte des Urknallmodells des Universums kennen. Sie verstehen die zugrundeliegenden physikalischen Prinzipien und erlernen die relevanten Methoden der theoretischen Physik, die in der Kosmologie zur Anwendung kommen.

Zusammensetzung der Modulnote
entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104856 - Einführung in die Theoretische Kosmologie (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Grundkenntnisse in Allgemeiner Relativitätstheorie sind empfehlenswert, es werden aber alle benötigten Konzepte eingeführt. Elementare Kenntnisse der Teilchenphysik sind hilfreich.

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten (60 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 h)

Literatur
- S. Dodelson, Modern Cosmology;
- S. Weinberg, Cosmology;
- V. Mukhanov, Physical Foundations of Cosmology;

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.51 Modul: Einführung in die Theoretische Kosmologie (NF) [M-PHYS-104856]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

Leistungspunkte: 8
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-109888 Einführung in die Theoretische Kosmologie (NF) 8 LP Schwetz-Mangold

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
Die Studierenden lernen verschiedene Aspekte des Urknallmodells des Universums kennen. Sie verstehen die zugrundeliegenden physikalischen Prinzipien und erlernen die relevanten Methoden der theoretischen Physik, die in der Kosmologie zur Anwendung kommen.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-104855 - Einführung in die Theoretische Kosmologie darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Grundkenntnisse in Allgemeiner Relativitätstheorie sind empfehlenswert, es werden aber alle benötigten Konzepte eingeführt. Elementare Kenntnisse der Teilchenphysik sind hilfreich.

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten (60 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 h)

Literatur
- S. Dodelson, Modern Cosmology;
- S. Weinberg, Cosmology;
- V. Mukhanov, Physical Foundations of Cosmology;

Weitere Literatur wird in der Vorlesung bekannt gegeben.
3.52 Modul: Einführung in die Theoretische Teilchenphysik, mit erw. Übungen [M-PHYS-102221]

Verantwortung: Dr. Stefan Gieseke
Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte: 10
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Pflichtbestandteile

| Leistungspunkte | T-PHYS-104536 | Einführung in die Theoretische Teilchenphysik, mit erw. Übungen | 10 LP | Mühlleitner, Steinhauser |

Qualifikationsziele
Erste Grundkenntnisse der Themen, Begriffe und des Handwerkszeugs in der Theoretischen Teilchenphysik; Verschaffen eines Überblicks über die Fragestellungen der Theoretischen Teilchenphysik.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102424 - Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102425 - Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102426 - Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Lagrange densities, symmetries and conservation laws, Feynman rules, cross sections, elementary processes in QED, spontaneous symmetry breaking, Higgs mechanism, Standard Model of particle physics, decay rates, Higgs boson phenomenology

Empfehlungen
Grundlagenkenntnisse der Quantenmechanik I und II

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (225)

Literatur
Wird in der Vorlesung genannt.
3.53 Modul: Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF) [M-PHYS-102424]

Verantwortung: Dr. Stefan Gieseke
Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

Leistungspunkte
10

Turnus
Jedes Wintersemester

Dauer
1 Semester

Sprache
Deutsch/Englisch

Level
4

Version
1

Pflichtbestandteile

| T-PHYS-104791 | Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF) | 10 LP | Mühlleitner, Steinhauser |

Qualifikationsziele

Erste Grundkenntnisse der Themen, Begriffe und des Handwerkszeugs in der Theoretischen Teilchenphysik; Verschaffen eines Überblicks über die Fragestellungen der Theoretischen Teilchenphysik.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102221 - Einführung in die Theoretische Teilchenphysik, mit erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102425 - Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102426 - Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Lagrange densities, symmetries and conservation laws, Feynman rules, cross sections, elementary processes in QED, spontaneous symmetry breaking, Higgs mechanism, Standard Model of particle physics, decay rates, Higgs boson phenomenology

Empfehlungen

Grundlagenkenntnisse der Quantenmechanik I und II

Arbeitsaufwand

300 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (225)

Literatur

Wird in der Vorlesung genannt.
3.54 Modul: Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen [M-PHYS-102425]

Verantwortung: Dr. Stefan Gieseke
Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th></th>
<th></th>
<th>8 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104792</td>
<td>Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen</td>
<td>Mühlleitner, Steinhauser</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Erste Grundkenntnisse der Themen, Begriffe und des Handwerkszeugs in der Theoretischen Teilchenphysik; Verschaffen eines Überblicks über die Fragestellungen der Theoretischen Teilchenphysik.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102221 - Einführung in die Theoretische Teilchenphysik, mit erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102424 - Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102426 - Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Lagrange densities, symmetries and conservation laws, Feynman rules, cross sections, elementary processes in QED, spontaneous symmetry breaking, Higgs mechanism, Standard Model of particle physics, decay rates, Higgs boson phenomenology

Empfehlungen
Grundlagenkenntnisse der Quantenmechanik I und II

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)

Lehr- und Lernformen
Will be provided in the first lecture.

Literatur
Wird in der Vorlesung genannt.
3 MODULE

Modul: Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF) [M-PHYS-102426]

Verantwortung: Dr. Stefan Gieseke
Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104793 | Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF) | 8 LP
| Mühleitner, Steinhauser |

Qualifikationsziele

Erste Grundkenntnisse der Themen, Begriffe und des Handwerkszeugs in der Theoretischen Teilchenphysik; Verschaffen eines Überblicks über die Fragestellungen der Theoretischen Teilchenphysik.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102221 - Einführung in die Theoretische Teilchenphysik, mit erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102424 - Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102425 - Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen darf nicht begonnen worden sein.

Inhalt

Lagrange densities, symmetries and conservation laws, Feynman rules, cross sections, elementary processes in QED, spontaneous symmetry breaking, Higgs mechanism, Standard Model of particle physics, decay rates, Higgs boson phenomenology

Empfehlungen

Grundlagenkenntnisse der Quantenmechanik I und II

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)

Literatur

Wird in der Vorlesung genannt.
3.56 Modul: Einführung in die Vulkanologie, benotet [M-PHYS-101866]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>2</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Einführung in die Vulkanologie, Studienleistung</th>
<th>Einführung in die Vulkanologie, Prüfung</th>
<th>3 LP</th>
<th>1 LP</th>
<th>Gottschämmer</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Prerequisite (3 ECTS): Active and regular attendance of lecture and practicals, preparation and follow-up of lectures (at home), assignments, presentation of a volcano in a short (10 – 15 minute) talk with slides. Examination (1 ECTS): Scientific essay about the given presentation, approx. 8-10 pages, submitted electronically. The grade of the module results from grade of the scientific essay.

Qualifikationsziele

The Students know and understand the basic concepts of physical volcanology. They are able to classify volcanoes by their tectonic location, can discriminate between different eruption types and describe different volcanic edifices with respect to their tectonic environment. They understand the concept of volcanic hazard and risk and are able to apply it. They can explain the physics of volcanic monitoring methods and know about their advantages and disadvantages. They gained insight into numerical modelling tools and can name several applications. The students understand the impact of volcanic eruptions on climate and know both, presently as well as historically active volcanoes and their prominent eruptions. The students have gained an overview about active volcanoes and recent eruptions and are able to summarize the main characteristics and scientific achievements about one volcano of their choice in a 10-15 minute talk. They are able to discuss and answer questions related to their subject. They can summarize their research about the volcano of their choice in a scientific essay (8-10 pages).

Zusammensetzung der Modulnote

The grade of the module results from grade of the scientific essay.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101944 - Einführung in die Vulkanologie, unbenotet darf nicht begonnen worden sein.

Inhalt

- Introduction, Overview
- Volcanoes and Plate Tectonics
- Magma and Volcanic Deposits
- Eruption types
- Volcanic Edifices
- Volcanic Hazard and Risk
- Volcano Monitoring
- Volcano Seismology
- Numerical Modelling of Volcanic Products
- Historic Eruptions
- Volcanoes and Climate
Arbeitsaufwand
28 h: Attendance, active participation in lectures and practicals
14 h: Preparation and follow-up of lectures (at home)
18 h: Homework, assignments
30 h: Preparation of presentation
30 h: Scientific essay about given presentation, submitted electronically

Lehr- und Lernformen
4060251 Introduction to Volcanology (V1)
4060252 Exercises to Introduction to Volcanology (Ü1)

Literatur
Literature will be provided by the lecturer.
3.57 Modul: Einführung in die Vulkanologie, unbenotet [M-PHYS-101944]

Verantwortung: Dr. Ellen Gottschämmer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

Leistungspunkte 3

Turnus Jedes Sommersemester

Dauer 1 Semester

Sprache Englisch

Level 4

Version 3

Pflichtbestandteile

| T-PHYS-103553 | Einführung in die Vulkanologie, Studienleistung | 3 LP | Gottschämmer |

Erfolgskontrolle(n)
Active and regular attendance of lecture and practicals, presentation of a volcano in a short (10 – 15 minute) talk with slides.

Qualifikationsziele
The students know and understand the basic concepts of physical volcanology. They are able to classify volcanoes by their tectonic location, can discriminate between different eruption types and describe different volcanic edifices with respect to their tectonic environment. They understand the concept of volcanic hazard and risk and are able to apply it. They can explain the physics of volcanic monitoring methods and know about their advantages and disadvantages. They gained insight into numerical modelling tools and can name several applications. The students understand the impact of volcanic eruptions on climate and know both, presently as well as historically active volcanoes and their prominent eruptions. The students have gained an overview about active volcanoes and recent eruptions and are able to summarize the main characteristics and scientific achievements about one volcano of their choice in a 10–15 minute talk. They are able to discuss and answer questions related to their subject.

Zusammensetzung der Modulnote
The module is not graded.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-101866 - Einführung in die Vulkanologie, benotet darf nicht begonnen worden sein.

Inhalt
- Introduction, Overview
- Volcanoes and Plate Tectonics
- Magma and Volcanic Deposits
- Eruption types
- Volcanic Edifices
- Volcanic Hazard and Risk
- Volcano Monitoring
- Volcano Seismology
- Numerical Modelling of Volcanic Products
- Historic Eruptions
- Volcanoes and Climate

Arbeitsaufwand
28 h: Attendance, active participation in lectures and practicals
14 h: Preparation and follow-up of lectures (at home)
18 h: Homework, assignments
30 h: Preparation of presentation
Lehr- und Lernformen
4060251 Introduction to Volcanology (V1)
4060252 Exercises to Introduction to Volcanology (Ü1)

Literatur
Literature will be provided by the lecturer.
Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Kondensierte Materie
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte: 8
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-105965 Elektronenmikroskopie I, mit Übungen 8 LP Gerthsen

Qualifikationsziele
Aus Analogien zur Lichtmikroskopie sollen die Studierenden Parallelen und Unterschiede zwischen Lichtmikroskopie und Transmissionselektronenmikroskopie (TEM) sowie die Bildentstehung im Transmissionselektronenmikroskop verstehen. Die Studierenden können die Wechselwirkung zwischen hochenergetischen Elektronen und Festkörpern beschreiben und erklären (kinematische Beugungstheorie und deren Grenzen bei der Wechselwirkung zwischen Elektronen und Festkörper, dynamische Beugungstheorie). Anhand theoretischer Konzepte für die dynamische Elektronenbeugung und den Abbildungsprozess sollen TEM Abbildungen interpretiert werden (Welche Kontraste entstehen für perfekte Festkörper und Defekte in Festkörpern?). Durch Anwendungsbeispiele aus der Festkörperphysik und Materialforschung sollen die Studierenden die Einsatzmöglichkeiten und Grenzen der TEM kennenlernen und verstehen.

In den praktischen Übungen werden die theoretischen Konzepte aus der Vorlesung sowie TEM Abbildungsmodi durch Arbeit in kleinen Gruppen visualisiert, geübt und vertieft.

Zusammensetzung der Modulnote

Voraussetzungen
keine, die Vorlesungen Elektronenmikroskopie I und II sind unabhängig voneinander

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102990 - Elektronenmikroskopie I, ohne Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102991 - Elektronenmikroskopie I, mit Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102992 - Elektronenmikroskopie I, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Transmissionselektronenmikroskopie (TEM), hochauflösende TEM, Raster-Transmissionselektronenmikroskopie, kinematische und dynamische Elektronenbeugung im Festkörper, TEM Kontrastentstehung mit Anwendungsbeispielen aus der Material- und Festkörperphysik, Elektronenholographie, Transmissionselektronenmikroskopie mit Phasenplatten

Empfehlungen
Grundkenntnisse Optik, Festkörperphysik, Materialphysik oder Werkstoffkunde, Quantenmechanik

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten: insgesamt 52 h, davon 28 h für Vorlesung (14 Wochen * 2 SWS) und 24 h für die Praktikumsversuche. Die restlichen Stunden dienen der Vorbereitung auf die Versuche, Anfertigung von Praktikumsprotokollen, Nachbereitung des Vorlesungsstoffes und Vorbereitung auf die Prüfung.

Lehr- und Lernformen
4027021 Elektronenmikroskopie I 2 SWS; D. Gerthsen
4027022 Praktische Übungen zu Elektronenmikroskopie I, 2 SWS; D. Gerthsen und Mitarbeiter

Literatur
L. Reimer, H. Kohl, Transmission Electron Microscopy, Springer Verlag
3.59 Modul: Elektronenmikroskopie I, mit Übungen (NF) [M-PHYS-102991]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

Leistungspunkte 8
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS-105968 | Elektronenmikroskopie I, mit Übungen (NF) | 8 LP | Gerthsen |

Qualifikationsziele
Aus Analogien zur Lichtmikroskopie sollen die Studierenden Parallelen und Unterschiede zwischen Lichtmikroskopie und Transmissionselektronenmikroskopie (TEM) sowie die Bildentstehung im Transmissionselektronenmikroskop verstehen. Die Studierenden können die Wechselwirkung zwischen hochenergetischen Elektronen und Festkörpern beschreiben und erklären (kinematische Beugungstheorie und deren Grenzen bei der Wechselwirkung zwischen Elektronen und Festkörpern, dynamische Beugungstheorie). Anhand theoretischer Konzepte für die dynamische Elektronenbeugung und den Abbildungsprozess sollen TEM Abbildungen interpretiert werden (Welche Kontraste entstehen für perfekte Festkörper und Defekte in Festkörpern?). Durch Anwendungsbeispiele aus der Festkörperphysik und Materialforschung sollen die Studierenden die Einsatzmöglichkeiten und Grenzen der TEM kennenlernen und verstehen.

In den praktischen Übungen werden die theoretischen Konzepte aus der Vorlesung sowie TEM Abbildungsmodi durch Arbeit in kleinen Gruppen visualisiert, geübt und vertieft.

Zusammensetzung der Modulnote

Voraussetzungen
keine, die Vorlesungen Elektronenmikroskopie I und II sind unabhängig voneinander

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102989 - Elektronenmikroskopie I, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102990 - Elektronenmikroskopie I, ohne Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102992 - Elektronenmikroskopie I, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Transmissionselektronenmikroskopie (TEM), hochauflösende TEM, Raster-Transmissionselektronenmikroskopie, kinematische und dynamische Elektronenbeugung im Festkörper, TEM Kontrastentstehung mit Anwendungsbeispielen aus der Material- und Festkörperphysik, Elektronenholographie, Transmissionselektronenmikroskopie mit Phasenplatten

Empfehlungen
Grundkenntnisse Optik, Festkörperphysik, Materialphysik oder Werkstoffkunde, Quantenmechanik

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten: insgesamt 52 h, davon 28 h für Vorlesung (14 Wochen * 2 SWS) und 24 h für die Praktikumsversuche. Die restlichen Stunden dienen der Vorbereitung auf die Versuche, Anfertigung von Praktikumsprotokollen, Nachbereitung des Vorlesungsstoffes und Vorbereitung auf die Prüfung.

Lehr- und Lernformen
4027021 Elektronenmikroskopie I 2 SWS; D. Gerthsen
4027022 Praktische Übungen zu Elektronenmikroskopie I, 2 SWS; D. Gerthsen und Mitarbeiter

Literatur
L. Reimer, H. Kohl, Transmission Electron Microscopy, Springer Verlag
Qualifikationsziele
Aus Analogien zur Lichtmikroskopie sollen die Studierenden Parallelen und Unterschiede zwischen Lichtmikroskopie und Transmissionselektronenmikroskopie (TEM) sowie die Bildentstehung im Transmissionselektronenmikroskop verstehen. Die Studierenden können die Wechselwirkung zwischen hochenergetischen Elektronen und Festkörpern beschreiben und erklären (kinematische Beugungstheorie und deren Grenzen bei der Wechselwirkung zwischen Elektronen und Festkörper, dynamische Beugungstheorie). Anhand theoretischer Konzepte für die dynamische Elektronenbeugung und den Abbildungsprozess sollen TEM Abbildungen interpretiert werden (Welche Kontraste entstehen für perfekte Festkörper und Defekte in Festkörpern?). Durch Anwendungsbeispiele aus der Festkörperphysik und Materialforschung sollen die Studierenden die Einsatzmöglichkeiten und Grenzen der TEM kennenlernen und verstehen.

In den praktischen Übungen werden die theoretischen Konzepte aus der Vorlesung sowie TEM Abbildungsmodi durch Arbeit in kleinen Gruppen visualisiert, geübt und vertieft.

Zusammensetzung der Modulnote

Voraussetzungen
keine, die Vorlesungen Elektronenmikroskopie I und II sind unabhängig voneinander

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102989 - Elektronenmikroskopie I, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102991 - Elektronenmikroskopie I, mit Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102992 - Elektronenmikroskopie I, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Transmissionselektronenmikroskopie (TEM), hochauflösende TEM, Raster-Transmissionselektronenmikroskopie, kinematische und dynamische Elektronenbeugung im Festkörper, TEM Kontrastentstehung mit Anwendungsbeispielen aus der Material- und Festkörperphysik, Elektronenholographie, Transmissionselektronenmikroskopie mit Phasenplatten

Empfehlungen
Grundkenntnisse Optik, Festkörperphysik, Materialphysik oder Werkstoffkunde, Quantenmechanik

Arbeitsaufwand
120 h bestehend aus Präsenzzeiten: insgesamt 52 h, davon 28 h für Vorlesung (14 Wochen * 2 SWS). Die restlichen Stunden dienen der Vorbereitung auf die Versuche, Anfertigung von Praktikumsprotokollen, Nachbereitung des Vorlesungsstoffes und Vorbereitung auf die Prüfung.

Lehr- und Lernformen
4027021 Elektronenmikroskopie I 2 SWS; D. Gerthsen

Literatur
L. Reimer, H. Kohl, Transmission Electron Microscopy, Springer Verlag
3.61 Modul: Elektronenmikroskopie I, ohne Übungen (NF) [M-PHYS-102992]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

Leistungspunkte: 4
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-105969 | Elektronenmikroskopie I, ohne Übungen (NF) | 4 LP | Gerthsen |

Qualifikationsziele

Aus Analogien zur Lichtmikroskopie sollen die Studierenden Parallelen und Unterschiede zwischen Lichtmikroskopie und Transmissionselektronenmikroskopie (TEM) sowie die Bildentstehung im Transmissionselektronenmikroskop verstehen. Die Studierenden können die Wechselwirkung zwischen hochenergetischen Elektronen und Festkörpern beschreiben und erklären (kinematische Beugungstheorie und deren Grenzen bei der Wechselwirkung zwischen Elektronen und Festkörper, dynamische Beugungstheorie). Anhand theoretischer Konzepte für die dynamische Elektronenbeugung und den Abbildungsprozess sollen TEM Abbildungen interpretiert werden (Welche Kontraste entstehen für perfekte Festkörper und Defekte in Festkörpern?). Durch Anwendungsbeispiele aus der Festkörperphysik und Materialforschung sollen die Studierenden die Einsatzmöglichkeiten und Grenzen der TEM kennenlernen und verstehen.

In den praktischen Übungen werden die theoretischen Konzepte aus der Vorlesung sowie TEM Abbildungsmodi durch Arbeit in kleinen Gruppen visualisiert, geübt und vertieft.

Zusammensetzung der Modulnote

Voraussetzungen

keine, die Vorlesungen Elektronenmikroskopie I und II sind unabhängig voneinander

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102989 - Elektronenmikroskopie I, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102990 - Elektronenmikroskopie I, ohne Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102991 - Elektronenmikroskopie I, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Transmissionselektronenmikroskopie (TEM), hochauflösende TEM, Raster-Transmissionselektronenmikroskopie, kinematische und dynamische Elektronenbeugung im Festkörper, TEM Kontrastentstehung mit Anwendungsbeispielen aus der Material- und Festkörperphysik, Elektronenholographie, Transmissionselektronenmikroskopie mit Phasenplatten

Empfehlungen

Grundkenntnisse Optik, Festkörperphysik, Materialphysik oder Werkstoffkunde, Quantenmechanik

Arbeitsaufwand

120 h bestehend aus Präsenzzeiten: insgesamt 52 h, davon 28 h für Vorlesung (14 Wochen * 2 SWS). Die restlichen Stunden dienen der Vorbereitung auf die Versuche, Anfertigung von Praktikumsprotokollen, Nachbereitung des Vorlesungsstoffes und Vorbereitung auf die Prüfung.

Lehr- und Lernformen

4027021 Elektronenmikroskopie I 2 SWS; D. Gerthsen

Literatur

L. Reimer, H. Kohl, Transmission Electron Microscopy, Springer Verlag
3.62 Modul: Elektronenmikroskopie II, mit Übungen [M-PHYS-102227]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Kondensierte Materie
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>ECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102349</td>
<td>Elektronenmikroskopie II, mit Übungen</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt-, Ergänzungsoder Nebenfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102844 - Elektronenmikroskopie II, ohne Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103172 - Elektronenmikroskopie II, mit Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103173 - Elektronenmikroskopie II, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Rasterelektronenmikroskopie, Abbildung und Strukturierung mit fokussierten Ionenstrahlen, analytische Verfahren in der Elektronenmikroskopie (energiedispersive Röntgenspektroskopie und Elektronenenergieverlustspektroskopie)

Empfehlungen
Grundkenntnisse Optik, Festkörperphysik, Materialphysik und Werkstoffkunde

Arbeitsaufwand
240 Stunden: Präsenzzweiten 54 Stunden, davon 30 Stunden für die Vorlesung und 24 Stunden für die Praktikumsversuche. Die restlichen Stunden dienen der Vorbereitung auf die Versuche, Anfertigung von Praktikumsprotokollen, Nachbereitung des Vorlesungsstoffes und der Vorbereitung auf die Prüfung.

Lehr- und Lernformen
4027021 Elektronenmikroskopie II 2SWS; D. Gerthsen
4027022 Praktische Übungen zu Elektronenmikroskopie II 2SWS; D. Gerthsen und Mitarbeiter

Literatur
Wird in der Vorlesung genannt.
3.63 Modul: Elektronenmikroskopie II, mit Übungen (NF) [M-PHYS-103172]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-106306 | Elektronenmikroskopie II, mit Übungen (NF) | 8 LP | Gerthsen |

Qualifikationsziele

Zusammensetzung der Modulnote

Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt-, Ergänzungsoder Nebenfach.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102844 - Elektronenmikroskopie II, ohne Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102227 - Elektronenmikroskopie II, mit Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103173 - Elektronenmikroskopie II, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Rasterelektronenmikroskopie, Abbildung und Strukturierung mit fokussierten Ionenstrahlen, analytische Verfahren in der Elektronenmikroskopie (energiedispersive Röntgenspektroskopie und Elektronenenergieverlustspektroskopie)

Empfehlungen

Grundkenntnisse Optik, Festkörperphysik, Materialphysik und Werkstoffkunde

Arbeitsaufwand

240 Stunden: Präsenzzeiten 54 Stunden, davon 30 Stunden für die Vorlesung und 24 Stunden für die Praktikumsversuche. Die restlichen Stunden dienen der Vorbereitung auf die Versuche, Anfertigung von Praktikumsprotokollen, Nachbereitung des Vorlesungsstoffes und der Vorbereitung auf die Prüfung.

Lehr- und Lernformen

4027021 Elektronenmikroskopie II 2SWS; D. Gerthsen
4027022 Praktische Übungen zu Elektronenmikroskopie II 2SWS; D. Gerthsen und Mitarbeiter

Literatur

Wird in der Vorlesung genannt.
3.64 Modul: Elektronenmikroskopie II, ohne Übungen [M-PHYS-102844]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte 4
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 1

Pflichtbestandteile
| T-PHYS-105817 | Elektronenmikroskopie II, ohne Übungen | 4 LP Gerthsen |

Qualifikationsziele

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt-, Ergänzungsoder Nebenfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102227 - Elektronenmikroskopie II, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103172 - Elektronenmikroskopie II, mit Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103173 - Elektronenmikroskopie II, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Rasterelektronenmikroskopie, Abbildung und Strukturierung mit fokussierten Ionenstrahlen, analytische Verfahren in der Elektronenmikroskopie (energiedispersive Röntgenspektroskopie und Elektronenergieverlustspektroskopie)

Empfehlungen
Grundkenntnisse Optik, Festkörperphysik, Materialphysik und Werkstoffkunde

Arbeitsaufwand
120 Stunden: Präsenzzzeiten 30 Stunden für die Vorlesung. Die restlichen Stunden dienen der Nachbereitung des Vorlesungsstoffes und der Vorbereitung auf die Prüfung.

Lehr- und Lernformen
4027021 Elektronenmikroskopie II 2SWS; D. Gerthsen

Literatur
Wird in der Vorlesung genannt.
3.65 Modul: Elektronenmikroskopie II, ohne Übungen (NF) [M-PHYS-103173]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-106307 | Elektronenmikroskopie II, ohne Übungen (NF) | 4 LP | Gerthsen |

Qualifikationsziele

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt-, Ergänzungsoder Nebenfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102227 - Elektronenmikroskopie II, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102844 - Elektronenmikroskopie II, ohne Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103172 - Elektronenmikroskopie II, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Rasterelektronenmikroskopie, Abbildung und Strukturierung mit fokussierten Ionenstrahlen, analytische Verfahren in der Elektronenmikroskopie (energiedispersive Röntgenspektroskopie und Elektronenergieverlustspektroskopie)

Empfehlungen
Grundkenntnisse Optik, Festkörperphysik, Materialphysik und Werkstoffkunde

Arbeitsaufwand
120 Stunden: Präsenzzeiten 30 Stunden für die Vorlesung. Die restlichen Stunden dienen der Nachbereitung des Vorlesungsstoffes und der Vorbereitung auf die Prüfung.

Lehr- und Lernformen
4027021 Elektronenmikroskopie II 2SWS; D. Gerthsen

Literatur
Wird in der Vorlesung genannt.
3.66 Modul: Elektronenoptik, mit Übungen [M-PHYS-102321]

Verantwortung: Maximilian Haider
Roland Janzen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102362 | Elektronenoptik, mit Übungen | 6 LP | Haider, Janzen |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102845 - Elektronenoptik, ohne Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103174 - Elektronenoptik, mit Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103175 - Elektronenoptik, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Funktions- und Aufbau-Prinzipien von Elektronenmikroskopen,
Grundlagen der bildgebenden Verfahren im Elektronenmikroskop,
Einführung in die Elektronenoptik,
Einführung in die Aberrationstheorie.

Empfehlungen

Grundlagenkenntnisse der Elektrodynamik, der klassischen Mechanik und der speziellen Relativitätstheorie werden vorausgesetzt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden).

Lehr- und Lernformen

4027031 Vorlesung 2 SWS; M. Haider, R. Janzen
4027032 Übung 1 SWS; R. Janzen

Literatur

Wird in der Vorlesung genannt.
3.67 Modul: Elektronenoptik, mit Übungen (NF) [M-PHYS-103174]

Verantwortung: Maximilian Haider
Roland Janzen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-106308 | Elektronenoptik, mit Übungen (NF) | 6 LP | Haider, Janzen |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102845 - Elektronenoptik, ohne Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102321 - Elektronenoptik, mit Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103175 - Elektronenoptik, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Funktions- und Aufbau-Prinzipien von Elektronenmikroskopen,
Grundlagen der bildgebenden Verfahren im Elektronenmikroskop,
Einführung in die Elektronenoptik,
Einführung in die Aberrationstheorie.

Empfehlungen

Grundlagenkenntnisse der Elektrodynamik, der klassischen Mechanik und der speziellen Relativitätstheorie werden vorausgesetzt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden).

Lehr- und Lernformen

4027031 Vorlesung 2 SWS; M. Haider, R. Janzen
4027032 Übung 1 SWS; R. Janzen

Literatur

Wird in der Vorlesung genannt.
3.68 Modul: Elektronenoptik, ohne Übungen [M-PHYS-102845]

Verantwortung: Maximilian Haider
Roland Janzen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte: 4
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-105818 | Elektronenoptik, ohne Übungen | 4 LP | Haider, Janzen |

Qualifikationsziele
Die Studierenden kennen die Grundbegriffe der Elektronenoptik und können die relevanten theoretischen Konzepte formulieren und anwenden. Sie verstehen die Funktionsweise von Elektronenmikroskopen und Aberrations-Korrektoren. Auf dieser Basis werden die Studierenden befähigt, publizierte Ergebnisse aus dem Bereich der Elektronenoptik zu verstehen und sich selbständig in eventuell zum Verständnis noch fehlende Details einzuarbeiten.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102321 - Elektronenoptik, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103174 - Elektronenoptik, mit Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103175 - Elektronenoptik, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Funktions- und Aufbau-Prinzipien von Elektronenmikroskopen,
Grundlagen der bildgebenden Verfahren im Elektronenmikroskop,
Einführung in die Elektronenoptik,
Einführung in die Aberrationstheorie.

Empfehlungen
Grundlagenkenntnisse der Elektrodynamik, der klassischen Mechanik und der speziellen Relativitätstheorie werden vorausgesetzt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (90 Stunden).

Lehr- und Lernformen
4027031 Vorlesung 2 SWS; M. Haider, R. Janzen

Literatur
Wird in der Vorlesung genannt.
3.69 Modul: Elektronenoptik, ohne Übungen (NF) [M-PHYS-103175]

Verantwortung: Maximilian Haider
Roland Janzen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Nanophysik

Leistungspunkte 4
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| Modul: Elektronenoptik, ohne Übungen (NF) | 4 LP | Haider, Janzen |

Qualifikationsziele
Die Studierenden kennen die Grundbegriffe der Elektronenoptik und können die relevanten theoretischen Konzepte formulieren und anwenden. Sie verstehen die Funktionsweise von Elektronenmikroskopen und Aberrations-Korrektoren. Auf dieser Basis werden die Studierenden befähigt, publizierte Ergebnisse aus dem Bereich der Elektronenoptik zu verstehen und sich selbständig in eventuell zum Verständnis noch fehlende Details einzuarbeiten.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102321 - Elektronenoptik, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102845 - Elektronenoptik, ohne Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103174 - Elektronenoptik, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Funktions- und Aufbau-Prinzipien von Elektronenmikroskopen,
Grundlagen der bildgebenden Verfahren im Elektronenmikroskop,
Einführung in die Elektronenoptik,
Einführung in die Aberrations-Theorie.

Empfehlungen
Grundlagenkenntnisse der Elektrodynamik, der klassischen Mechanik und der speziellen Relativitätstheorie werden vorausgesetzt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (90 Stunden).

Lehr- und Lernformen
4027031 Vorlesung 2 SWS; M. Haider, R. Janzen

Literatur
Wird in der Vorlesung genannt.
3.70 Modul: Elektronik für Physiker [M-PHYS-102184]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Nichtphysikalisches Wahlpflichtfach
Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte: 10
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-104479 | Elektronik für Physiker | 10 LP | Rabbertz, Weber |

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102180 - Elektronik für Physiker: Analogelektronik (NF) darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102183 - Elektronik für Physiker: Digitalelektronik (NF) darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102185 - Elektronik für Physiker (NF) darf nicht begonnen worden sein.

Inhalt
Einführung in die analoge und digitale Elektronik:

- Grundlagen, lineare Netze, passive Bauelemente, Filter,
- elementare Schaltkreisanalyse und -simulation
- Bipolar- und Feldefekttransistoren
- Grundschaltungen mit einem und zwei Transistoren, Operationsverstärker
- Zahlensysteme, Schaltalgebra, Logikbausteine, Flip-Flops, Speicher
- Analog-Digital-Wandler
- Programmierbare Elektronik: CPLDs, FPGAs
- Aufbau- und Verbindungstechnik

Empfehlungen
Interesse an Elektronik

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (75 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen und des Praktikums (225 Stunden).

Lehr- und Lernformen
4022061 VorlesungElektronik für Physiker (Analogelektronik); Marc Weber
4022066 VorlesungElektronik für Physiker (Digitalelektronik); Marc Weber
4022067 Praktische Übungen zur Elektronik für Physiker; M. Weber, K. Rabbertz
Literatur
Literatur wird in der Vorlesung genannt. Außerdem wird ein Skript bereitgestellt.
3.11 Modul: Elektronik für Physiker (NF) [M-PHYS-102185]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Nebenfach / Experimentelle Teilchenphysik
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104480</td>
<td>10</td>
<td>Rabbertz, Weber</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102180 - Elektronik für Physiker: Analogelektronik (NF) darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102183 - Elektronik für Physiker: Digitalelektronik (NF) darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102184 - Elektronik für Physiker darf nicht begonnen worden sein.

Inhalt
Einführung in die analoge und digitale Elektronik:

- Grundlagen, lineare Netze, passive Bauelemente, Filter,
- elementare Schaltkreisanalyse und -simulation
- Bipolar- und Feldeffektransistoren
- Grundschaltungen mit einem und zwei Transistoren, Operationsverstärker
- Zahlensysteme, Schaltalgebra, Logikbausteine, Flip-Flops, Speicher
- Analog-Digital-Wandler
- Programmierbare Elektronik: CPLDs, FPGAs
- Aufbau- und Verbindungstechnik

Empfehlungen
Interesse an Elektronik

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (75 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen und des Praktikums (225 Stunden).

Lehr- und Lernformen

- 4022061 VorlesungElektronik für Physiker (Analogelektronik); Marc Weber
- 4022066 VorlesungElektronik für Physiker (Digitalelektronik); Marc Weber
- 4022067 Praktische Übungen zur Elektronik für Physiker; M. Weber, K. Rabbertz

Literatur
Literatur wird in der Vorlesung genannt. Außerdem wird ein Skript bereitgestellt.
3.72 Modul: Elektronik für Physiker: Analogelektronik [M-PHYS-102179]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104475 | Elektronik für Physiker: Analogelektronik | 6 LP | Rabbertz, Weber |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102180 - Elektronik für Physiker: Analogelektronik (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102182 - Elektronik für Physiker: Digitalelektronik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102183 - Elektronik für Physiker: Digitalelektronik (NF) darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102184 - Elektronik für Physiker darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102185 - Elektronik für Physiker (NF) darf nicht begonnen worden sein.

Inhalt

Einführung in die analoge Elektronik:

- Grundlagen, lineare Netze, passive Bauelemente, Filter
- elementare Schaltkreisanalyse und -simulation
- Operationsverstärker
- Bipolar- und Feldeffekttransistoren
- Grundschaltungen mit einem und zwei Transistoren
- Aufbau- und Verbindungstechnik

Empfehlungen

Interesse an Elektronik

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen und des Praktikums (135 Stunden).

Lehr- und Lernformen

4022061 VorlesungElektronik für Physiker (Analogelektronik); Marc Weber
4022067 Praktische Übungen zur Elektronik für Physiker; M. Weber, K. Rabbertz

Literatur

Literatur wird in der Vorlesung genannt. Außerdem wird ein Skript bereitgestellt.
3.73 Modul: Elektronik für Physiker: Analogelektronik (NF) [M-PHYS-102180]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte 6
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-104476 Elektronik für Physiker: Analogelektronik (NF) 6 LP Rabbertz, Weber

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102179 - Elektronik für Physiker: Analogelektronik darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102182 - Elektronik für Physiker: Digitalelektronik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102183 - Elektronik für Physiker: Digitalelektronik (NF) darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102184 - Elektronik für Physiker darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102185 - Elektronik für Physiker (NF) darf nicht begonnen worden sein.

Inhalt
Einführung in die analoge Elektronik:

- Grundlagen, lineare Netze, passive Bauelemente, Filter
- elementare Schaltkreisanalyse und -simulation
- Operationsverstärker
- Bipolar- und Feldeffekttransistoren
- Grundschaltungen mit einem und zwei Transistoren
- Aufbau- und Verbindungstechnik

Empfehlungen
Interesse an Elektronik

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen und des Praktikums (135 Stunden).

Lehr- und Lernformen
4022061 VorlesungElektronik für Physiker (Analogelektronik); Marc Weber
4022067 Praktische Übungen zur Elektronik für Physiker; M. Weber, K. Rabbertz

Literatur
Literatur wird in der Vorlesung genannt. Außerdem wird ein Skript bereitgestellt.
Modul: Elektronik für Physiker: Digitalelektronik [M-PHY-102182]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHY-104477 | Elektronik für Physiker: Digitalelektronik | 6 LP | Rabbertz, Weber |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHY-102183 - Elektronik für Physiker: Digitalelektronik (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHY-102180 - Elektronik für Physiker: Analogelektronik (NF) darf nicht begonnen worden sein.
4. Das Modul M-PHY-102184 - Elektronik für Physiker darf nicht begonnen worden sein.
5. Das Modul M-PHY-102185 - Elektronik für Physiker (NF) darf nicht begonnen worden sein.

Inhalt

Einführung in die digitale Elektronik:

- Zahlensysteme
- Schaltalgebra, elementare Logikgatter
- kombinatorische Logik
- sequentielle Logik, Flip-Flops
- Speicher
- A/D-Wandler
- Programmierbare Elektronik: CPLDs, FPGAs

Empfehlungen

Interesse an Elektronik

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen und des Praktikums (135 Stunden).

Lehr- und Lernformen

4022066 VorlesungElektronik für Physiker (Digitalelektronik); Marc Weber
4022067 Praktische Übungen zur Elektronik für Physiker; M. Weber, K. Rabbertz

Literatur

Literatur wird in der Vorlesung genannt. Außerdem wird ein Skript bereitgestellt.
3.75 Modul: Elektronik für Physiker: Digitalelektronik (NF) [M-PHYS-102183]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104478 | Elektronik für Physiker: Digitalelektronik (NF) | 6 LP | Rabbertz, Weber |

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102182 - Elektronik für Physiker: Digitalelektronik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102180 - Elektronik für Physiker: Analogelektronik (NF) darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102184 - Elektronik für Physiker darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102185 - Elektronik für Physiker (NF) darf nicht begonnen worden sein.

Inhalt
Einführung in die digitale Elektronik:

- Zahlensysteme
- Schaltalgebra, elementare Logikgatter
- kombinatorische Logik
- sequentielle Logik, Flip-Flops
- Speicher
- A/D-Wandler
- Programmierbare Elektronik: CPLDs, FPGAs

Empfehlungen
Interesse an Elektronik

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen und des Praktikums (135 Stunden).

Lehr- und Lernformen
4022066 VorlesungElektronik für Physiker (Digitalelektronik);Marc Weber
4022067 Praktische Übungen zur Elektronik für Physiker; M. Weber, K. Rabbertz

Literatur
Literatur wird in der Vorlesung genannt. Außerdem wird ein Skript bereitgestellt.
3.76 Modul: Elektronische Eigenschaften von Festkörpern I, mit Übungen [M-PHYS-102089]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Pflicht Kondensierte Materie)
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte: 10
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Wintersemester</th>
<th>Sprache</th>
</tr>
</thead>
</table>

Qualifikationsziele
Die Studierenden sollen die Konzepte zur Beschreibung der elektronischen Eigenschaften von Festkörpern kennen lernen, insbesondere bei starken Elektron-Elektron und magnetischen Wechselwirkungen, sowie die wichtigsten experimentellen Methoden, auf deren Basis diese Konzepte erstellt bzw. verifiziert werden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102087 - Elektronische Eigenschaften von Festkörpern I, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102088 - Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt

1. Phasenübergänge
2. Metalle und Isolatoren
3. Atomarer Magnetismus und magnetische Wechselwirkungen
4. Magnetische Strukturen
5. Konventionelle und unkonventionelle Supraleitung

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, sowie der Thermodynamik und Statistischen Physik werden vorausgesetzt.

Literatur
- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter
3.77 Modul: Elektronische Eigenschaften von Festkörpern I, mit Übungen (NF) [M-PHYS-102087]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

Qualifikationsziele
Die Studierenden sollen die Konzepte zur Beschreibung der elektronischen Eigenschaften von Festkörpern kennen lernen, insbesondere bei starken Elektron-Elektron und magnetischen Wechselwirkungen, sowie die wichtigsten experimentellen Methoden, auf deren Basis diese Konzepte erstellt bzw. verifiziert werden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102088 - Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
1. Phasenübergänge
2. Metalle und Isolatoren
3. Atomarer Magnetismus und magnetische Wechselwirkungen
4. Magnetische Strukturen
5. Konventionelle und unkonventionelle Supraleitung

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, sowie der Thermodynamik und Statistischen Physik werden vorausgesetzt.

Literatur
- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter
3.78 Modul: Elektronische Eigenschaften von Festkörpern I, ohne Übungen [M-PHYS-102090]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Pflicht Kondensierte Materie)
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Verantwortung</th>
</tr>
</thead>
</table>

Qualifikationsziele
Die Studierenden sollen die Konzepte zur Beschreibung der elektronischen Eigenschaften von Festkörpern kennen lernen, insbesondere bei starken Elektron-Elektron und magnetischen Wechselwirkungen, sowie die wichtigsten experimentellen Methoden, auf deren Basis diese Konzepte erstellt bzw. verifiziert werden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102087 - Elektronische Eigenschaften von Festkörpern I, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102088 - Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
1. Phasenübergänge
2. Metalle und Isolatoren
3. Atomarer Magnetismus und magnetische Wechselwirkungen
4. Magnetische Strukturen
5. Konventionelle und unkonventionelle Supraleitung

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, sowie der Thermodynamik und Statistischen Physik werden vorausgesetzt.

Literatur
- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter
3.79 Modul: Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF) [M-PHYS-102088]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-102576 | Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF) | 8 LP | Le Tacon, Weber, Weiß, Wulfhekel |

Qualifikationsziele

Die Studierenden sollen die Konzepte zur Beschreibung der elektronischen Eigenschaften von Festkörpern kennen lernen, insbesondere bei starken Elektron-Elektron und magnetischen Wechselwirkungen, sowie die wichtigsten experimentellen Methoden, auf deren Basis diese Konzepte erstellt bzw. verifiziert werden.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102087 - Elektronische Eigenschaften von Festkörpern I, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt

1. Phasenübergänge
2. Metalle und Isolatoren
3. Atomarer Magnetismus und magnetische Wechselwirkungen
4. Magnetische Strukturen
5. Konventionelle und unkonventionelle Supraleitung

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, sowie der Thermodynamik und Statistischen Physik werden vorausgesetzt.

Literatur

- R. Gross, A. Marx, Festkörperphysik
- N. W. Ashcroft, N. D. Mermin: Festkörperphysik
- H. Ibach, H. Lüth: Festkörperphysik
- C. Kittel: Einführung in die Festkörperphysik
- S. Blundell, Magnetism in Condensed Matter
3.80 Modul: Elektronische Eigenschaften von Festkörpern II, mit Übungen [M-PHYS-102108]

Verantwortung: Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Kondensierte Materie
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte 8
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-104422 Elektronische Eigenschaften von Festkörpern II, mit Übungen 8 LP Rotzinger, Ustinov

Qualifikationsziele
Die Studierenden sollen die physikalischen Eigenschaften der Supraleitung, ein thermodynamischer Zustand des elektronischen Systems von Festkörpern, kennen lernen. Hierbei werden ausführlich klassische und moderne experimentelle Befunde sowie grundlegende theoretische Modelle behandelt, wie z.B. das auch außerhalb der Supraleitung gebräuchliche Konzept der Energielücke oder des Quasiteilchens.

In den Übungen werden die vermittelten Kenntnisse vertieft und auf spezielle Probleme angewandt. Die Studierenden sollten nach dem Besuch der Veranstaltung in der Lage sein, sich in aktuelle Literatur zum Thema Supraleitung einarbeiten zu können.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102106 - Elektronische Eigenschaften von Festkörpern II, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102107 - Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Anmerkungen
The course will be given in English. Questions and discussions in German are welcome as well.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)

Literatur
Qualifikationsziele
Die Studierenden sollen die physikalischen Eigenschaften der Supraleitung, ein thermodynamischer Zustand des elektronischen Systems von Festkörpern, kennen lernen. Hierbei werden ausführlich klassische und moderne experimentelle Befunde sowie grundlegende theoretische Modelle behandelt, wie z.B. das auch außerhalb der Supraleitung gebräuchliche Konzept der Energielücke oder des Quasiteilchens.

In den Übungen werden die vermittelten Kenntnisse vertieft und auf spezielle Probleme angewandt. Die Studierenden sollten nach dem Besuch der Veranstaltung in der Lage sein, sich in aktuelle Literatur zum Thema Supraleitung einarbeiten zu können.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102107 - Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Anmerkungen
The course will be given in English. Questions and discussions in German are welcome as well.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)

Literatur
3.82 Modul: Elektronische Eigenschaften von Festkörpern II, ohne Übungen [M-PHYS-102109]

Verantwortung: Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte: 4
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Elektronische Eigenschaften von Festkörpern II, ohne Übungen</th>
<th>4 LP</th>
<th>Rotzinger, Ustinov</th>
</tr>
</thead>
</table>

Qualifikationsziele
Die Studierenden sollen die physikalischen Eigenschaften der Supraleitung, ein thermodynamischer Zustand des elektronischen Systems von Festkörpern, kennen lernen. Hierbei werden ausführlich klassische und moderne experimentelle Befunde sowie grundlegende theoretische Modelle behandelt, wie z.B. das auch außerhalb der Supraleitung gebräuchliche Konzept der Energielücke oder des Quasiteilchens.

In den Übungen werden die vermittelten Kenntnisse vertieft und auf spezielle Probleme angewandt. Die Studierenden sollten nach dem Besuch der Veranstaltung in der Lage sein, sich in aktuelle Literatur zum Thema Supraleitung einarbeiten zu können.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102106 - Elektronische Eigenschaften von Festkörpern II, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102107 - Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Anmerkungen
The course will be given in English. Questions and discussions in German are welcome as well.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (90)

Literatur
3.83 Modul: Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF) [M-PHYS-102107]

Verantwortung: Dr. Johannes Rotzinger
 Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
 Physikalisches Nebenfach / Nanophysik

Leistungspunkte 4
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-104421 Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF) 4 LP Rotzinger, Ustinov

Qualifikationen
Die Studierenden sollen die physikalischen Eigenschaften der Supraleitung, ein thermodynamischer Zustand des elektronischen Systems von Festkörpern, kennen lernen. Hierbei werden ausführlich klassische und moderne experimentelle Befunde sowie grundlegende theoretische Modelle behandelt, wie z.B. das auch außerhalb der Supraleitung gebräuchliche Konzept der Energielücke oder des Quasiteilchens.

In den Übungen werden die vermittelten Kenntnisse vertieft und auf spezielle Probleme angewandt. Die Studierenden sollten nach dem Besuch der Veranstaltung in der Lage sein, sich in aktuelle Literatur zum Thema Supraleitung einarbeiten zu können.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102106 - Elektronische Eigenschaften von Festkörpern II, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Foundations of superconductivity: thermodynamics, electrodynamics, flux quantization, Ginzburg-Landau theory, BCS theory, vortices, tunnel junctions, Josephson junctions, SQUIDs, superconducting electronics, superconducting qubits.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Anmerkungen
The course will be given in English. Questions and discussions in German are welcome as well.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (90)

Literatur
3.84 Modul: Elektronische Eigenschaften von Nanostrukturen [M-PHYS-102291]

Verantwortung: Dr. Detlef Beckmann
Dr. Regina Hoffmann-Vogel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102534 | Elektronische Eigenschaften von Nanostrukturen | 8 LP | Beckmann, Hoffmann-Vogel |

Qualifikationsziele
Vertiefung im Gebiet der Nano-Physik.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102292 - Elektronische Eigenschaften von Nanostrukturen (NF) darf nicht begonnen worden sein.

Inhalt

1. Was ist „Nano“ und warum finden wir das interessant?
2. Herstellung von Nanokontakten, Nanodrähten und dünnen Schichten
3. Unterbrochene Nanokontakte, Einzelelektroneneffekte
4. Quantentransport in verbundenen Nanokontakten
5. Eindimensionale Strukturen, Kohlenstoff-Nanoröhren
6. Zweidimensionale Strukturen, Quanten-Hall-Effekt, Graphen

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik. Kann gut mit EE I und II kombiniert werden.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Literatur
J.C. Cuevas, E. Scheer, Molecular Electronics, World Scientific 2010
3.85 Modul: Elektronische Eigenschaften von Nanostrukturen (NF) [M-PHYS-102292]

Verantwortung: Dr. Detlef Beckmann
Dr. Regina Hoffmann-Vogel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102535 | Elektronische Eigenschaften von Nanostrukturen (NF) | 8 LP | Beckmann, Hoffmann-Vogel |

Qualifikationsziele

Vertiefung im Gebiet der Nano-Physik.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102291 - Elektronische Eigenschaften von Nanostrukturen darf nicht begonnen worden sein.

Inhalt

1. Was ist „Nano“ und warum finden wir das interessant?
2. Herstellung von Nanokontakten, Nanodrähten und dünnen Schichten
3. Unterbrochene Nanokontakte, Einzelelektroneneffekte
4. Quantentransport in verbundenen Nanokontakten
5. Eindimensionale Strukturen, Kohlenstoff-Nanoröhrchen
6. Zweidimensionale Strukturen, Quanten-Hall-Effekt, Graphen

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik. Kann gut mit EE I und II kombiniert werden.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Literatur

J.C. Cuevas, E. Scheer, Molecular Electronics, World Scientific 2010
Leistungspunkte

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>14</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Jedes Sommersemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Dauer</th>
<th>1 Semester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Sprache</th>
<th>Deutsch</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Level</th>
<th>4</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-PHYS-102532</th>
<th>Experimentelle Biophysik II, mit Seminar</th>
<th>14 LP</th>
<th>Nienhaus</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

- Abgabe von Übungsblättern
- Vorrechnen in der Übung
- Vortrag im Seminar
- Mündliche Prüfung bei Kombination mit anderen Veranstaltungen zu einem Schwerpunkt- oder Ergänzungsfach

Qualifikationsziele

Die Studierenden können:

- den grundlegenden Aufbau der Biomaterie beschreiben und sind damit strukturellen, dynamischen und energetischen Eigenschaften vertraut.
- verstehen die physikalischen Prinzipien der biomolekularen Spektroskopie und können die Anwendung der verschiedenen Methoden auf die Untersuchung biomolekularer Prozesse einschätzen.
- sind mit den grundlegenden Ansätzen der Relaxations- und Fluktuationsspektroskopie vertraut.
- verstehen die physikalischen Grundlagen der Wechselwirkungen, die für molekulare Funktionsprozesse essentiell sind (chemische Bindung, Elektronentransfer, Energietransfer) sowie die Parameter, die die Übergangsraten bestimmen.
- eignen sich vertiefte Kenntnisse im Rahmen der Übungen durch Lösung von Übungsaufgaben an. Sie präsentieren ihre Ergebnisse und entwickeln so ihre Fähigkeiten weiter, die erworbenen Kenntnisse mit den anderen Studierenden zu teilen.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102166 - Experimentelle Biophysik II, mit Seminar (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102167 - Experimentelle Biophysik II, ohne Seminar darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102168 - Experimentelle Biophysik II, ohne Seminar (NF) darf nicht begonnen worden sein.

Inhalt

Nach einer kurzen Einführung in die Struktur, Dynamik und Energetik der Biomoleküle werden lichtoptische spektroskopische Methoden (u.a. optische Absorption und Fluoreszenz, Infrarot- und Ramanspektroskopie) eingeführt, mit denen sich biomolekulare Strukturen und deren Änderungen als Funktion der Zeit beobachten lassen. Lichtmikroskopische Verfahren, insbesondere mit Höchstauflösung, werden ebenfalls behandelt. Anschließend werden die physikalischen Prinzipien diskutiert, auf denen wichtige biomolekulare Prozesse (Ligandenbindung, Energie- und Elektronentransfer bei der Photosynthese) beruhen.

Empfehlungen

Grundlagen der Quantenmechanik, Thermodynamik und der Festkörperphysik werden vorausgesetzt.

Arbeitsaufwand

420 h bestehend aus Präsenzzeiten (120 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen
Lehr- und Lernformen
4020121 Vorlesung 4 SWS; Nienhaus
4020122 Übung 2 SWS; Nienhaus, N.N., Übungen zu Biophysik II
4020124 Seminar 2 SWS; Nienhaus, N.N., Seminar zu Biophysik II

Literatur
G. U. Nienhaus: Skripten zur Vorlesung Biophysik I und II
E. Sackmann & R. Merkel: Lehrbuch der Biophysik
C. Cantor & P. Schimmel: Biophysical Chemistry
I. N. Serdyuk, N. R. Zaccai & J. Zaccai: Methods in Molecular Biophysics
3.87 Modul: Experimentelle Biophysik II, mit Seminar (NF) [M-PHYS-102166]

Verantwortung: Prof. Dr. Ulrich Nienhaus
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102533 | Experimentelle Biophysik II, mit Seminar (NF) | 14 LP | Nienhaus |

Erfolgskontrolle(n)
Abgabe von Übungsblättern
Vorrechnen in der Übung
Vortrag im Seminar
Mündliche Prüfung bei Kombination mit anderen Veranstaltungen zu einem Schwerpunktfach oder Ergänzungsfach

Qualifikationsziele
Die Studierenden

- können den grundlegenden Aufbau der Biomaterie beschreiben und sind mit den strukturellen, dynamischen und energetischen Eigenschaften vertraut.
- verstehen die physikalischen Prinzipien der biomolekularen Spektroskopie und können die Anwendung der verschiedenen Methoden auf die Untersuchung biomolekularer Prozesse einschätzen.
- sind mit den grundlegenden Ansätzen der Relaxations- und Fluktuationsspektroskopie vertraut.
- verstehen die physikalischen Grundlagen der Wechselwirkungen, die für molekulare Funktionsprozesse essentiell sind (chemische Bindung, Elektronentransfer, EnergieTransfer) sowie die Parameter, die die Übergangsraten bestimmen.
- eignen sich vertiefte Kenntnisse im Rahmen der Übungen durch Lösung von Übungsaufgaben an. Sie präsentieren Ihre Ergebnisse und entwickeln so ihre Fähigkeiten weiter, die erworbenen Kenntnisse mit den anderen Studierenden zu teilen.

Voraussetzungen
keine

Modulierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102165 - Experimentelle Biophysik II, mit Seminar darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102167 - Experimentelle Biophysik II, ohne Seminar darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102168 - Experimentelle Biophysik II, ohne Seminar (NF) darf nicht begonnen worden sein.

Inhalt
Nach einer kurzen Einführung in die Struktur, Dynamik und Energetik der Biomoleküle werden lichtoptische spektroskopische Methoden (u.a. optische Absorption und Fluoreszenz, Infrarot- und Ramanspektroskopie) eingeführt, mit denen sich biomolekulare Strukturen und deren Änderungen als Funktion der Zeit beobachten lassen. Lichtmikroskopische Verfahren, insbesondere mit Höchstauflösung, werden ebenfalls behandelt. Anschließend werden die physikalischen Prinzipien diskutiert, auf denen wichtige biomolekulare Prozesse (Ligandenbindung, Energie- und Elektronentransfer bei der Photosynthese) beruhen.

Empfehlungen
Grundlagen der Quantenmechanik, Thermodynamik und der Festkörperphysik werden vorausgesetzt.

Arbeitsaufwand
420 h bestehend aus Präsenzeiten (120 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen
Lehr- und Lernformen
4020121 Vorlesung 4 SWS; Nienhaus
4020122 Übung 2 SWS; Nienhaus, N.N., Übungen zu Biophysik II
4020124 Seminar 2 SWS; Nienhaus, N.N., Seminar zu Biophysik II

Literatur
G. U. Nienhaus: Skripten zur Vorlesung Biophysik I und II
E. Sackmann & R. Merkel: Lehrbuch der Biophysik
C. Cantor & P. Schimmel: Biophysical Chemistry
I. N. Serdyuk, N. R. Zaccai & J. Zaccai: Methods in Molecular Biophysics
3.88 Modul: Experimentelle Biophysik II, ohne Seminar [M-PHYS-102167]

Verantwortung: Prof. Dr. Ulrich Nienhaus
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104471 | Experimentelle Biophysik II, ohne Seminar | 12 LP | Nienhaus |

Erfolgskontrolle(n)
Abgabe von Übungsblättern
Vorrechnen in der Übung
Mündliche Prüfung bei Kombination mit anderen Veranstaltungen zu einem Schwerpunkt- oder Ergänzungsfach

Qualifikationsziele
Die Studierenden können:
- den grundlegenden Aufbau der Biomaterie beschreiben und sind mit den strukturellen, dynamischen und energetischen Eigenschaften vertraut.
- das physikalische Verständnis der biomolekularen Spektroskopie und können die Anwendung der verschiedenen Methoden auf die Untersuchung biomolekularer Prozesse einschätzen.
- sich mit den grundlegenden Ansätzen der Relaxations- und Fluktuationsspektroskopie vertraut.
- verstehen die physikalischen Grundlagen der Wechselwirkungen, die für molekulare Funktionsprozesse essentiell sind (chemische Bindung, Elektronentransfer, Energietransfer) sowie die Parameter, die die Übergangsraten bestimmen.
- eignen sich vertiefte Kenntnisse im Rahmen der Übungen durch Lösung von Übungsaufgaben an. Sie präsentieren ihre Ergebnisse und entwickeln so ihre Fähigkeiten weiter, die erworbenen Kenntnisse mit den anderen Studierenden zu teilen.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102165 - Experimentelle Biophysik II, mit Seminar darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102166 - Experimentelle Biophysik II, mit Seminar (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102168 - Experimentelle Biophysik II, ohne Seminar (NF) darf nicht begonnen worden sein.

Inhalt
Nach einer kurzen Einführung in die Struktur, Dynamik und Energetik der Biomoleküle werden lichtoptische spektroskopische Methoden (u.a. optische Absorption und Fluoreszenz, Infrarot- und Ramanspektroskopie) eingeführt, mit denen sich biomolekulare Strukturen und deren Änderungen als Funktion der Zeit beobachten lassen. Lichtmikroskopische Verfahren, insbesondere mit Höchstauflösung, werden ebenfalls behandelt. Anschließend werden die physikalischen Prinzipien diskutiert, auf denen wichtige biomolekulare Prozesse (Ligandenbindung, Energie- und Elektronentransfer bei der Photosynthese) beruhen.

Empfehlungen
Grundlagen der Quantenmechanik, Thermodynamik und der Festkörperphysik werden vorausgesetzt.

Arbeitssaufwand
360 h bestehend aus Präsenzzeiten (90 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen.
Lehr- und Lernformen
4020121 Vorlesung 4 SWS; Nienhaus
4020122 Übung 2 SWS; Nienhaus, N.N., Übungen zu Biophysik II

Literatur
G. U. Nienhaus: Skripten zur Vorlesung Biophysik I und II
E. Sackmann & R. Merkel: Lehrbuch der Biophysik
C. Cantor & P. Schimmel: Biophysical Chemistry
I. N. Serdyuk, N. R. Zaccai & J. Zaccai: Methods in Molecular Biophysics
3.89 Modul: Experimentelle Biophysik II, ohne Seminar (NF) [M-PHYS-102168]

Verantwortung: Prof. Dr. Ulrich Nienhaus
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104472 | Experimentelle Biophysik II, ohne Seminar (NF) | 12 LP | Nienhaus |

Erfolgskontrolle(n)

Abgabe von Übungsblättern
Vorrechnen in der Übung
Mündliche Prüfung bei Kombination mit anderen Veranstaltungen zu einem Schwerpunkt- oder Ergänzungsfach

Qualifikationsziele

Die Studierenden

- können den grundlegenden Aufbau der Biomaterie beschreiben und sind mit den strukturellen, dynamischen und energetischen Eigenschaften vertraut.
- verstehen die physikalischen Prinzipien der biomolekularen Spektroskopie und können die Anwendung der verschiedenen Methoden auf die Untersuchung biomolekularer Prozesse einschätzen.
- sind mit den grundlegenden Ansätzen der Relaxations- und Fluktuationsspektroskopie vertraut.
- verstehen die physikalischen Grundlagen der Wechselwirkungen, die für molekulare Funktionsprozesse essentiell sind (chemische Bindung, Elektronentransfer, Energietransfer) sowie die Parameter, die die Übergangsraten bestimmen.
- eignen sich vertiefte Kenntnisse im Rahmen der Übungen durch Lösung von Übungsaufgaben an. Sie präsentieren ihre Ergebnisse und entwickeln so ihre Fähigkeiten weiter, die erworbenen Kenntnisse mit den anderen Studierenden zu teilen.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102165 - Experimentelle Biophysik II, mit Seminar darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102166 - Experimentelle Biophysik II, mit Seminar (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102167 - Experimentelle Biophysik II, ohne Seminar darf nicht begonnen worden sein.

Inhalt

Nach einer kurzen Einführung in die Struktur, Dynamik und Energetik der Biomoleküle werden lichtoptische spektroskopische Methoden (u.a. optische Absorption und Fluoreszenz, Infrarot- und Ramanspektroskopie) eingeführt, mit denen sich biomolekulare Strukturen und deren Änderungen als Funktion der Zeit beobachten lassen. Lichtmikroskopische Verfahren, insbesondere mit Höchstauflösung, werden ebenfalls behandelt. Anschließend werden die physikalischen Prinzipien diskutiert, auf denen wichtige biomolekulare Prozesse (Ligandenbindung, Energie- und Elektronentransfer bei der Photosynthese) beruhen.

Empfehlungen

Grundlagen der Quantenmechanik, Thermodynamik und der Festkörperphysik werden vorausgesetzt.

Arbeitsaufwand

360 h bestehend aus Präsenzzeiten (90 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Lehr- und Lernformen

4020121 Vorlesung 4 SWS; Nienhaus
4020122 Übung 2 SWS; Nienhaus, N.N., Übungen zu Biophysik II
Literatur
G. U. Nienhaus: Skripten zur Vorlesung Biophysik I und II
E. Sackmann & R. Merkel: Lehrbuch der Biophysik
C. Cantor & P. Schimmel: Biophysical Chemistry
I. N. Serdyuk, N. R. Zaccai & J. Zaccai: Methods in Molecular Biophysics
3.90 Modul: Extended Higgs Sectors Beyond the Standard Model [M-PHYS-104542]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte: 10
Turnus: Unregelmäßiger
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-109307 | Extended Higgs Sectors Beyond the Standard Model | 10 LP | Mühlleitner |

Qualifikationsziele
Vertiefung in einem Gebiet der Theoretischen Teilchenphysik, insbesondere in Modellen jenseits des Standardmodells.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104543 - Extended Higgs Sectors Beyond the Standard Model (NF) darf nicht begonnen worden sein.

Inhalt
Singulett- und Dublett-Erweiterungen des Standardmodells, Supersymmetrie (MSSM, NMSSM), Composite Higgsmodelle, Portal Higgs

Empfehlungen
Vorkenntnisse aus Theoretische Teilchenphysik I (idealerweise auch II)

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (225)

Lehr- und Lernformen

Literatur
Wird in der Vorlesung genannt.
3.91 Modul: Extended Higgs Sectors Beyond the Standard Model (NF) [M-PHYS-104543]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-109308 | Extended Higgs Sectors Beyond the Standard Model (NF) | 10 LP | Mühlleitner |

Qualifikationsziele

Vertiefung in einem Gebiet der Theoretischen Teilchenphysik, insbesondere in Modellen jenseits des Standardmodells.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104542 - Extended Higgs Sectors Beyond the Standard Model darf nicht begonnen worden sein.

Inhalt

Singulett- und Dublett-Erweiterungen des Standardmodells, Supersymmetrie (MSSM, NMSSM), Composite Higgsmodelle, Portal Higgs

Empfehlungen

Vorkenntnisse aus Theoretische Teilchenphysik I (idealerweise auch II)

Arbeitsaufwand

300 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (225)

Lehr- und Lernformen

Literatur

Wird in der Vorlesung genannt.
3.92 Modul: Festkörperspektroskopie, mit Übungen [M-PHYS-105074]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie) (EV ab 01.10.2019)
Physikalisches Ergänzungsfach / Kondensierte Materie (EV ab 01.10.2019)

Leistungspunkte 6
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-110292 Festkörperspektroskopie, mit Übungen 6 LP Le Tacon, Weber

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Qualifikationsziele

Voraussetzungen
keine

Inhalt
• Grundlagen of Photon/Neutron/Elektron-Materie Wechselwirkung
• Zweiter Quantisierungsformalismus - Anwendung auf die Streutheorie
• Einführung in die lineare Response-Theorie - generalisierte Suszeptibilität
• Allgemeines zur Röntgen- und Synchrotronstrahlung
• Röntgenspektroskopien: Absorption, inelastische Streuung, resonante Streuung
• Allgemeines zur Neutronenstreuung - Neutronenanlagen
• Neutronenspektroskopie

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, sowie der Thermodynamik und Statistischen Physik werden vorausgesetzt.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135 Stunden)

Literatur
• Elements of Modern X-ray Physics, Als-Nielsen and McMorrow, Wiley
• Festkörperphysik, Marx and Gross, de Gruyter
• Solid-State Spectroscopy, Kuzmani, Springer
• Introduction to the theory of thermal neutron scattering, Squires, Dove
3.93 Modul: Field Theories of Condensed Matter: Conformal Field Theory [M-PHYS-104548]

Verantwortung: Dr. Igor Gornyi
Dr. Boris Narozhnyy

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-109320 | Field Theories of Condensed Matter: Conformal Field Theory | 8 LP | Gornyi, Narozhnyy |

Qualifikationsziele
Deeper understanding of the condensed matter theory; gaining knowledge on most important phenomena and concepts in the physics of low-dimensional quantum systems, as well as on the corresponding field-theoretical approaches.

Voraussetzungen
Keine

Inhalt
Preliminary structure:

1. Introduction
2. Conformal transformations, conformal group in d dimensions, conformal algebra in 2 dimensions
3. Conformal theories in 2 dimensions, central charge, Virasoro algebra
4. Scaling approach to critical phenomena, Ising model, Potts model
5. Bosonization in 1+1 dimensions, Gaussian model, XXZ model
6. Non-Abelian bosonization, Sugawara construction

Empfehlungen
Basic knowledge of solid state physics, quantum mechanics, and statistical physics is assumed. It is recommended to take this course after the course Theorie der Kondensierten Materie I.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (180)

Literatur

E. Brezin and J. Zinn-Justin (Editors), Fields, Strings, and critical Phenomena (Les Houches 1988)
P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field Theory.
T. Giamarchi, Quantum Physics in One Dimension
A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems
3.94 Modul: Flavour Physics in the Standard Model and beyond [M-PHYS-105064]

Verantwortung: Dr. Monika Blanke

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik) (EV ab 01.10.2019)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik (EV ab 01.10.2019)

Leistungspunkte 4

Turnus Unregelmäßig

Dauer 1 Semester

Sprache Englisch

Level 4

Version 1

Pflichtbestandteile

T-PHYS-110281 Flavour Physics in the Standard Model and beyond 4 LP Blanke

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunktfachs oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Qualifikationsziele
Erwerben und Vertiefen der Methodik der Theoretischen Flavourphysik, Verständnis der Phänomenologie des Flavour-Sektors in und jenseits des Standardmodells.

Voraussetzungen
keine

Inhalt
- Flavour and CP violation in the Standard Model
- Determination of CKM elements
- Phenomenology of flavour and CP violating processes
- Flavour physics beyond the Standard Model: Minimal Flavour Violation
- New sources of flavour and CP violation
- Selected "hot topics" in rare meson decays

Empfehlungen
Grundkenntnisse des Standardmodells der Teilchenphysik, insbesondere der starken und schwachen Wechselwirkung sowie des Yukawa-Sektors, z.B. aus der Vorlesung "Einführung in die Theoretische Teilchenphysik". Es wird empfohlen, parallel die Vorlesung zur experimentellen Flavourphysik zu besuchen.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (90 Stunden).

Literatur
Wird in der Vorlesung angegeben
Erfolgskontrolle(n)
To pass the module, successful participation in the exercises is required. Students have to write a report on a special exercise at the end of the lecture period. This report is graded.

Qualifikationsziele
The students know the fundamentals about full-waveform inversion from theory to practical implementation. They understand the basic concept of full-waveform inversion and grid-based finite-difference schemes to solve the wave equation. They understand important practical aspects such as numerical effects and critical performance issues. Students are able to implement a basic full-waveform inversion algorithm and apply it to simple data sets. They can analyze important factors influencing the success of full-waveform inversion and assess the quality of inversion results.

Zusammensetzung der Modulnote
The grade of the module is the grade of the written report on the special exercise at the end of the lecture period.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104522 - Full-waveform Inversion, unbenotet darf nicht begonnen worden sein.

Inhalt
- Introduction to full-waveform inversion (FWI)
- Solution of the wave equation with the finite-difference method
- Practical issues and numerical effects
- Adjoint-state method
- Adaption of the adjoint-state method for FWI
- FWI of shallow seismic wavefields

Empfehlungen
Knowledge of differential calculus is essential. Experience with Matlab and general computer skills are beneficial.

Lehr- und Lernformen
4060181 Seismic Full Waveform Inversion (V2)
4060182 Exercises to Seismic Full Waveform Inversion (Ü1)

Literatur
- Andreas Fichtner, "Full Seismic Waveform Modelling and Inversion", 2011, Springer.
3.96 Modul: Full-waveform Inversion, unbenotet [M-PHYS-104522]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>6</td>
<td>Turnus</td>
<td>Dauer</td>
<td>Sprache</td>
<td>Level</td>
</tr>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
</table>
| T-PHYS-109272 | Full-waveform inversion | 6 LP | Bohlen, Hertweck

Erfolgskontrolle(n)
Final pass based on successful participation of the exercises.

Qualifikationsziele
The students know the fundamentals about full-waveform inversion from theory to practical implementation. They understand the basic concept of full-waveform inversion and grid-based finite-difference schemes to solve the wave equation. They understand important practical aspects such as numerical effects and critical performance issues. Students are able to implement a basic full-waveform inversion algorithm and apply it to simple data sets. They can analyze important factors influencing the success of full-waveform inversion and assess the quality of inversion results.

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-105235 - Full-waveform inversion, benotet darf nicht begonnen worden sein.

Inhalt
- Introduction to full-waveform inversion (FWI)
- Solution of the wave equation with the finite-difference method
- Practical issues and numerical effects
- Adjoint-state method
- Adaption of the adjoint-state method for FWI
- FWI of shallow seismic wavefields

Empfehlungen
Knowledge of differential calculus is essential. Experience with Matlab and general computer skills are beneficial.

Lehr- und Lernformen
4060181 Seismic Full Waveform Inversion (V2)
4060182 Exercises to Seismic Full Waveform Inversion (Ü1)

Literatur
- Andreas Fichtner, "Full Seismic Waveform Modelling and Inversion", 2011, Springer.
3.97 Modul: Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet [M-PHYS-101873]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

Leistungspunkte 6 Turnus Unregelmäßig Dauer 1 Semester Sprache Deutsch Level 4 Version 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103572</td>
<td>Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Studienleistung</td>
<td>4 LP</td>
<td>Gottschämmer</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103674</td>
<td>Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Prüfung</td>
<td>2 LP</td>
<td>Gottschämmer</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Vorleistung: Bearbeitung von Übungsblättern, Diskussion der Vorträge, Halten eines Vortrags im Gelände
Prüfung: Erstellen eines Kapitels des Exkursionsführers

Qualifikationsziele

Die Studierenden sind in der Lage, selbstorganisiert und lösungsorientiert an einer vorgegebenen konkreten Fragestellung zu arbeiten. Sie können diese überblicken, analysieren, interpretieren und bewerten, schriftlich zusammenfassen und eigene Fragestellungen dazu formulieren. Sie sind in der Lage, fachbezogen zu argumentieren und über die Inhalte mit Kommilitonen zu diskutieren und ihren eigenen Standpunkt zu vertreten. Ebenso können sie den Standpunkt der anderen kritisch hinterfragen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101953 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, unbenotet darf nicht begonnen worden sein.

Inhalt
• Einführung in die vulkanischen Minerale und Gesteine
• Einführung in die Geodynamik des Mittelmeerraums
• Gefährdung und Risiko: Definitionen, Beispiele, Vorgehensweisen, Sicherheitsregeln
Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

Leistungspunkte 4
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-103572 Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Studienleistung 4 LP Gottschämmer

Erfolgskontrolle(n)
Bearbeitung von Übungsblättern, Diskussion der Vorträge

Qualifikationsziele

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101873 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet darf nicht begonnen worden sein.

Inhalt
- Einführung in die vulkanischen Minerale und Gesteine
- Einführung in die Geodynamik des Mittelmeerraums
- Gefährdung und Risiko: Definitionen, Beispiele, Vorgehensweisen, Sicherheitsregeln
3.99 Modul: Geophysikalische Erkundung von Vulkanfeldern, benotet [M-PHYS-101951]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Punkt</th>
<th>Leistung</th>
<th>Note</th>
<th>efter gekündigung</th>
<th>Bearbeiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103573</td>
<td>Geophysikalische Erkundung von Vulkanfeldern, Studienleistung</td>
<td>3 LP</td>
<td>Ritter</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-103672</td>
<td>Geophysikalische Erkundung von Vulkanfeldern, Prüfung</td>
<td>1 LP</td>
<td>Ritter</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Vorleistung: Bearbeitung von Übungsblättern, aktive Teilnahme und Diskussion.
Prüfung: Schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele

Die Studierenden können mathematische Probleme aus dem Bereich der Druck-Temperatur-Verteilung im Erdinnern, der Gesteinsphysik und der Schmelzbildung unter Einbeziehung einfacher Programmieraufgaben lösen, die Ergebnisse grafisch darstellen, zusammenfassen und interpretieren.

Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt.
Bewertet wird: Bearbeitung von Übungsblättern, Schriftliche Anfertigung eines Reflexionsberichts.

Voraussetzungen

siehe untergeordnete Teilleistung

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101874 - Geophysikalische Erkundung von Vulkanfeldern, unbenotet darf nicht begonnen worden sein.

Inhalt

- Gesteinsphysik
- Geophysikalische Verfahren in Anwendungsbeispielen
- Geophysikalische Erkundung der Vulkanfelder in der Eifel
- Schmelzbildung
- Problemstellungen aus den oben genannten Bereichen: Rechnerübungen
3.100 Modul: Geophysikalische Erkundung von Vulkanfeldern, unbenotet [M-PHYS-101874]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

Leistungspunkte: 3
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-103573 Geophysikalische Erkundung von Vulkanfeldern, Studienleistung 3 LP Ritter

Erfolgskontrolle(n)
Bearbeitung von Übungsblättern, aktive Teilnahme und Diskussion

Qualifikationsziele

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101951 - Geophysikalische Erkundung von Vulkanfeldern, benotet darf nicht begonnen worden sein.

Inhalt
- Gesteinsphysik
- Geophysikalische Verfahren in Anwendungsbeispielen
- Geophysikalische Erkundung der Vulkanfelder in der Eifel
- Schmelzbildung
3.101 Modul: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, benotet [M-PHYS-101952]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Inhalt</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103571</td>
<td>Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung</td>
<td>3</td>
</tr>
<tr>
<td>T-PHYS-103673</td>
<td>Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Prüfung</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Bearbeitung von Übungsblättern, Präsentation eines eigenen Vortrags, Erstellung eines Skriptabschnitts, schriftliche Anfertigung einer Zusammenfassung des Vortrags, Halten eines Vortrags im Gelände

Qualifikationsziele
Die Studierenden kennen unterschiedliche Methoden, um Vulkane geophysikalisch in der Tiefe zu erkunden. Insbesondere verfügen sie über ein fundiertes Wissen im Bereich der Bohrlochmethoden im vulkanischen Umfeld.

Die Studierenden verstehen die Geschichte des Vulkanismus in einem miozänen Vulkankomplex, können dessen Entstehung wiedergeben und einordnen und mit den Ergebnissen geophysikalischer Untersuchungen verknüpfen. Im Gelände können sie die Strukturen des miozänen Vulkankomplexes erkennen und mit den Ergebnissen der geophysikalischen Untersuchungen, insbesondere denen der Forschungsbohrungen am Vogelsberg sowie den in den Bohrungen durchgeführten Experimenten, analysieren und interpretieren.

Die Studierenden können sich in einfache Themen und Problemstellungen einarbeiten, diese überblicken, analysieren, interpretieren und bewerten. Sie sind in der Lage, fachbezogen zu argumentieren und über die Inhalte mit Kommilitonen zu diskutieren und ihren eigenen Standpunkt zu vertreten. Ebenso können sie den Standpunkt der anderen kritisch hinterfragen.

Zusammensetzung der Modulnote

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101872 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, unbenotet darf nicht begonnen worden sein.

Inhalt

- Methoden der geophysikalischen Tiefenerkundung an Vulkanen
- Physikalische Bohrlochmessungen am Vulkan
- Aufbau eines miozänen Vulkankomplexes
- Geotope im Vogelsberg
Arbeitsaufwand

120 h teilen sich wie folgt auf:

- Vorlesung in Karlsruhe zur Vorbereitung inkl. deren Vor- und Nachbereitung: 5 h
- Bearbeiten von Übungsblättern: 5 h
- Erstellen eines Skriptkapitels: 20 h
- In-Situ-Vorlesung im Vogelsberg: 40 h
- Vorbereitung eines Vortrags: 20 h
- Schriftliche Zusammenfassung des Vortrags: 30 h
3.102 Modul: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, unbenotet [M-PHYS-101872]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

Erfolgskontrolle(n)
Bearbeitung von Übungsblättern, Präsentation eines eigenen Vortrags, Erstellung eines Skriptabschnitts, schriftliche Anfertigung eines Reflexionsberichts

Qualifikationsziele

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
siehe untergeordnete Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101952 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, benotet darf nicht begonnen worden sein.

Inhalt
- Methoden der geophysikalischen Tiefenerkundung an Vulkanen
- Physikalische Bohrlochmessungen am Vulkan
- Aufbau eines miozänen Vulkankomplexes
- Geotope im Vogelsberg

Arbeitsaufwand
90 h teilen sich wie folgt auf:
- Vorlesung in Karlsruhe zur Vorbereitung inkl. deren Vor- und Nachbereitung: 5 h
- Bearbeiten von Übungsblättern: 5 h
- Erstellen eines Skriptkapitels: 20 h
- In-Situ-Vorlesung im Vogelsberg: 40 h
- Vorbereitung eines Vortrags: 20 h
3 MODULE

M 3.103 Modul: Grundlagen der Nanotechnologie I [M-PHYS-102097]

Verantwortung: Prof. Dr. Gernot Goll
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Pflichtbestandteil)
 Physikalisches Ergänzungsfach / Nanophysik (Pflichtbestandteil)

Leistungspunkte 4
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>LP</th>
<th>Leitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102529</td>
<td>Grundlagen der Nanotechnologie I</td>
<td>4</td>
<td>Goll</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102096 - Grundlagen der Nanotechnologie I (NF) darf nicht begonnen worden sein.

Inhalt
Einführung in zentrale Gebiete der Nanotechnologie;
Vermittlung der konzeptionellen, theoretischen und insbesondere methodischen Grundlagen:

- Methoden der Abbildung und Charakterisierung (Nanoanalytik)
- Methoden der Herstellung von Nanostrukturen (Lithographie und Selbstorganisation)
 Entlang der einzelnen Prozessschritte von der Belackung über die Belichtung bis hin zur Strukturübertragung durch Ätzen und Bedampfen werden die eingesetzten Methoden erläutert, deren Einsatzgrenzen diskutiert und aktuelle Entwicklungen aufgezeigt.

Die Vorlesung „Nanotechnologie II“ behandelt im Sommersemester Anwendungsgebiete und aktuelle Forschungsthemen.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik und der Quantenmechanik werden erwartet.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung. (90)

Lehr- und Lernformen
4021041 Vorlesung 2 SWS; G Goll

Literatur
3.104 Modul: Grundlagen der Nanotechnologie I (NF) [M-PHYS-102096]

Verantwortung: Prof. Dr. Gernot Goll
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik

Leistungspunkte 4
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-102528 Grundlagen der Nanotechnologie I (NF) 4 LP Goll

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102097 - Grundlagen der Nanotechnologie I darf nicht begonnen worden sein.

Inhalt
Einführung in zentrale Gebiete der Nanotechnologie;
Vermittlung der konzeptionellen, theoretischen und insbesondere methodischen Grundlagen:

- Methoden der Abbildung und Charakterisierung (Nanoanalytik)
- Methoden der Herstellung von Nanostrukturen (Lithographie und Selbstorganisation)
 Entlang der einzelnen Prozessschritte von der Belackung über die Belichtung bis hin zur Strukturübertragung durch Ätzen und Bedampfen werden die eingesetzten Methoden erläutert, deren Einsatzgrenzen diskutiert und aktuelle Entwicklungen aufgezeigt.

Die Vorlesung „Nanotechnologie II“ behandelt im Sommersemester Anwendungsgebiete und aktuelle Forschungsthemen.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik und der Quantenmechanik werden erwartet.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung. (90)

Lehr- und Lernformen
4021041 Vorlesung 2 SWS; G Goll

Literatur
Verantwortung: Prof. Dr. Gernot Goll

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Pflichtbestandteil)
Physikalisches Ergänzungsfach / Nanophysik (Pflichtbestandteil)

Leistungspunkte:

4

Turnus:
Jedes Sommersemester

Dauer:
1 Semester

Sprache:
Deutsch

Level:
4

Version:
1

Pflichtbestandteile

| T-PHYS-102531 | Grundlagen der Nanotechnologie II | 4 LP | Goll |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102099 - Grundlagen der Nanotechnologie II (NF) darf nicht begonnen worden sein.

Inhalt

Einführung in zentrale Gebiete der Nanotechnologie

Vermittlung der konzeptionellen, theoretischen und insbesondere methodischen Grundlagen;

Anwendungen und aktuelle Entwicklungen u.a. aus den Bereichen Nanoelektronik, Nanooptik, Nanomechanik, Nanotribologie, Biologische Nanostrukturen, Selbstorganisierte Nanostrukturen.

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik und der Quantenmechanik werden erwartet.

Arbeitsaufwand

120 Stunden bestehend aus Präsenzzeiten (30), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen

4021151 Vorlesung 2 SWS; G. Goll

Literatur

3.106 Modul: Grundlagen der Nanotechnologie II (NF) [M-PHYS-102099]

Verantwortung: Prof. Dr. Gernot Goll
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102530 | Grundlagen der Nanotechnologie II (NF) | 4 LP | Goll |

Qualifikationsziele
Der Studierende vertieft sein Wissen auf dem Gebiet der Nanophysik, beherrschte die relevanten theoretischen Konzepte und ist mit den grundlegenden Anwendungsbereichen der Nanophysik vertraut. Der Studierende ist befähigt, aktuelle Daten und Abbildungen aus der wissenschaftlichen Literatur zu interpretieren und den aktuellen Stand der Forschung sowie wichtige „offene Fragen“ darzustellen.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102100 - Grundlagen der Nanotechnologie II darf nicht begonnen worden sein.

Inhalt
Einführung in zentrale Gebiete der Nanotechnologie
Vermittlung der konzeptionellen, theoretischen und insbesondere methodischen Grundlagen;
Anwendungen und aktuelle Entwicklungen u.a. aus den Bereichen Nanoelektronik, Nanooptik, Nanomechanik, Nanotribologie, Biologische Nanostrukturen, Selbstorganisierte Nanostrukturen.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik und der Quantenmechanik werden erwartet.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen
4021151 Vorlesung 2 SWS; G. Goll

Literatur
3.107 Modul: Hadronische Wechselwirkungen [M-PHYS-105063]

Verantwortung: Dr. Stefan Gieseke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunkt­fach / Experimentelle Teilchen­physik (Wahl Experimentelle Teilchen­physik) (EV ab 01.10.2019)
- Physikalisches Schwerpunkt­fach / Experimentelle Astroteilchen­physik (Wahl Experimentelle Astroteilchen­physik) (EV ab 01.10.2019)
- Physikalisches Schwerpunkt­fach / Theoretische Teilchen­physik (Wahl Theoretische Teilchen­physik) (EV ab 01.10.2019)
- Physikalisches Ergänzung­fach / Experimentelle Teilchen­physik (Wahl Experimentelle Teilchen­physik) (EV ab 01.10.2019)
- Physikalisches Ergänzung­fach / Experimentelle Astroteilchen­physik (Wahl Experimentelle Astroteilchen­physik) (EV ab 01.10.2019)
- Physikalisches Ergänzung­fach / Theoretische Teilchen­physik (EV ab 01.10.2019)

Leistungspunkte
- 4

Turnus
- Unregelmäßig

Dauer
- 1 Semester

Sprache
- Englisch

Level
- 4

Version
- 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Prüfungstitel</th>
<th>Prüfungsvermerkung</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110279</td>
<td>Hadronische Wechselwirkungen</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Qualifikationsziele
The students will have an overview of models for hadronic interactions. Here, all interactions that are not normally addressed in the context of a perturbative Quantum Field Theory are understood. The course will cover elements of Scattering Theory as well as simple models for typical forward physics processes. The phenomenology of strong interactions at colliders and in Astroparticle Physics will be discussed in numerous examples.

Voraussetzungen
keine

Inhalt
- Total, elastic, diffractive cross sections
- Good-Walker formalism
- Scattering Theory
- Gribov-Regge-Theory
- Hadronic Decays
- Hadronization models
- Multiple Partonic Interactions
- Final states at the LHC
- Cosmic Ray Air showers

Empfehlungen
Grundlegende Kenntnisse in Teilchenphysik sind empfehlenswert

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (90 Stunden).

Literatur
Literaturempfehlungen werden während des Kurses gegeben

Verantwortung: Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Pflicht Kondensierte Materie)
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte
10

Turnus
Jedes Sommersemester

Dauer
1 Semester

Sprache
Deutsch

Level
4

Version
1

Pflichtbestandteile
T-PHYS-102343 Halbleiterphysik, mit Übungen 10 LP Kalt

Qualifikationsziele

Die Studierenden

- kennen charakteristische Details der Halbleiter-Bandstruktur und können diese theoretisch begründen
- beherrschen die Beschreibung von Gleichgewichts- sowie Nichtgleichgewichtsprozessen
- können mit Hilfe der Differentialgleichungen der inneren Elektronik Transportphänomene und dynamische Probleme berechnen und verstehen die Bedeutung von zeitlicher bzw. räumlicher Inhomogenität als Antrieb für diese Prozesse
- verstehen die Bandverläufe und physikalischen Eigenschaften von Halbleiter-Übergängen
- können an Hand der gelernten Grundlagen das phänomenologische Verhalten und typische Anwendungen von Halbleiterbauelementen beschreiben und theoretisch begründen

Voraussetzungen
keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102130 - Halbleiterphysik, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102300 - Halbleiterphysik, ohne Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102301 - Halbleiterphysik, ohne Übungen darf nicht begonnen worden sein.

Inhalt

I. Grundlegende Eigenschaften von Halbleitern (Materialklassen, Bandstruktur, k*p-Theorie, Statistik, Boltzmann-Gleichgewicht)

II. Nichtgleichgewichtsprozesse in Halbleitern (Boltzmann-Gleichung, Generation und Rekombination, Transportphänomene)

III. Halbleiterübergänge im thermodynamischen Gleichgewicht (pn-Übergang, Heteroübergänge, niederdimensionale Halbleiter, Schottky-Kontakt, ohmscher Kontakt, Isolator-Halbleiter-Übergang)

IV. Halbleiterübergänge im Nichtgleichgewicht/ Bauelemente (Diode, Photodiode, Solarzelle, LED, Diodenlaser, Mikrowellenbauelemente, bipolarer Transistor, Feldeffekttransistor, CCD, Speicherbauelemente,...)

V. Halbleiter-Technologie (Epitaxie, Dotierung, Strukturierung, Integration)

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand

300 Stunden bestehend aus Präsenzzeiten (75 Std.), Nachbereitung von Vorlesung und Übungen; Prüfungsvorbereitung bzw. Vorbereitung des Vortrags

Lehr- und Lernformen

4020111 Vorlesung 4 SWS; H. Kalt
4020112 Übung 1 SWS; H. Kalt;
Literatur
R. Enderlein, N. Horing: *Fundamentals of Semiconductor Physics and Devices*
M. Grundmann: *The Physics of Semiconductors*
S.M. Sze, K.K. Ng: *Physics of Semiconductor Devices*
3.109 Modul: Halbleiterphysik, mit Übungen (NF) [M-PHYS-102130]

Verantwortung: Prof. Dr. Heinz Kalt
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

Leistungspunkte: 10
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| Modul | T-PHYS-102301 | Halbleiterphysik, mit Übungen (NF) | 10 LP | Kalt |

Qualifikationsziele

Die Studierenden

- kennen charakteristische Details der Halbleiter-Bandstruktur und können diese theoretisch begründen
- beherrschen die Beschreibung von Gleichgewichts- sowie Nichtgleichgewichtsprozessen
- können mit Hilfe der Differentialgleichungen der inneren Elektronik Transportphänomene und dynamische Probleme berechnen und verstehen die Bedeutung von zeitlicher bzw. räumlicher Inhomogenität als Antrieb für diese Prozesse
- verstehen die Bandverläufe und physikalischen Eigenschaften von Halbleiter-Übergängen
- können an Hand der gelernten Grundlagen das phänomenologische Verhalten und typische Anwendungen von Halbleiterbauelementen beschreiben und theoretisch begründen

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102131 - Halbleiterphysik, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102300 - Halbleiterphysik, ohne Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102301 - Halbleiterphysik, ohne Übungen darf nicht begonnen worden sein.

Inhalt

I. Grundlegende Eigenschaften von Halbleitern (Materialklassen, Bandstruktur, k*p-Theorie, Statistik, Boltzmann-Gleichgewicht)
II. Nichtgleichgewichtsprozesse in Halbleitern (Boltzmann-Gleichung, Generation und Recombination, Transportphänomene)
III. Halbleiterübergänge im thermodynamischen Gleichgewicht (pn-Übergang, Heteroübergänge, niederdimensionale Halbleiter, Schottky-Kontakt, ohmscher Kontakt, Isolator-Halbleiter-Übergang)
IV. Halbleiterübergänge im Nichtgleichgewicht/ Bauelemente (Diode, Photodiode, Solarzelle, LED, Diodenlaser, Mikrowellenbauelemente, bipolarer Transistor, Feldeffekttransistor, CCD, Speicherbauelemente, ...)
V. Halbleiter-Technologie (Epitaxie, Dotierung, Strukturierung, Integration)

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand

300 Stunden bestehend aus Präsenzeiten (75 Std.), Nachbereitung von Vorlesung und Übungen; Prüfungsvorbereitung bzw. Vorbereitung des Vortrags

Lehr- und Lernformen

4020111 Vorlesung 4 SWS; H. Kalt
4020112 Übung 1 SWS; H. Kalt;

Literatur

R. Enderlein, N. Horing: *Fundamentals of Semiconductor Physics and Devices*
M. Grundmann: *The Physics of Semiconductors*
S.M. Sze, K.K. Ng: *Physics of Semiconductor Devices*
Modul: Halbleiterphysik, ohne Übungen [M-PHYS-102301]

Verantwortung: Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Pflicht Kondensierte Materie)
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte 8

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 4

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104590</td>
<td>Halbleiterphysik, ohne Übungen</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Die Studierenden

- kennen charakteristische Details der Halbleiter-Bandstruktur und können diese theoretisch begründen
- beherrschen die Beschreibung von Gleichgewichts- sowie Nichtgleichgewichtsprozessen
- können mit Hilfe der Differentialgleichungen der inneren Elektronik Transportphänomene und dynamische Probleme berechnen und verstehen die Bedeutung von zeitlicher bzw. räumlicher Inhomogenität als Antrieb für diese Prozesse
- verstehen die Bandverläufe und physikalischen Eigenschaften von Halbleiter-Übergängen
- können an Hand der gelernten Grundlagen das phänomenologische Verhalten und typische Anwendungen von Halbleiterbauelementen beschreiben und theoretisch begründen

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102130 - Halbleiterphysik, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102300 - Halbleiterphysik, ohne Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102131 - Halbleiterphysik, mit Übungen darf nicht begonnen worden sein.

Inhalt

I. Grundlegende Eigenschaften von Halbleitern (Materialklassen, Bandstruktur, k*p-Theorie, Statistik, Boltzmann-Gleichgewicht)

II. Nichtgleichgewichtsprozesse in Halbleitern (Boltzmann-Gleichung, Generation und Rekombination, Transportphänomene)

III. Halbleiterübergänge im thermodynamischen Gleichgewicht (pn-Übergang, Heteroübergänge, niederdimensionale Halbleiter, Schottky-Kontakt, ohmscher Kontakt, Isolator-Halbleiter-Übergang)

IV. Halbleiterübergänge im Nichtgleichgewicht/ Bauelemente (Diode, Photodiode, Solarzelle, LED, Diodenlaser, Mikrowellenbauelemente, bipolarer Transistor, Feldeffekttransistor, CCD, Speicherbauelemente, ...)

V. Halbleiter-Technologie (Epitaxie, Dotierung, Strukturierung, Integration)

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60 Std.), Nachbereitung von Vorlesung und Übungen; Prüfungsvorbereitung bzw. Vorbereitung des Vortrags

Lehr- und Lernformen

4020111 Vorlesung 4 SWS; H. Kalt
4020112 Übung 1 SWS; H. Kalt;
Literatur
R. Enderlein, N. Horing: *Fundamentals of Semiconductor Physics and Devices*
M. Grundmann: *The Physics of Semiconductors*
S.M. Sze, K.K. Ng: *Physics of Semiconductor Devices*
M
3.111 Modul: Halbleiterphysik, ohne Übungen (NF) [M-PHYS-102300]

Verantwortung:
Prof. Dr. Heinz Kalt

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

Leistungspunkte
8

Turnus
Jedes Sommersemester

Dauer
1 Semester

Sprache
Deutsch

Level
4

Version
1

Pflichtbestandteile

| T-PHYS-104589 | Halbleiterphysik, ohne Übungen (NF) | 8 LP | Kalt |

Qualifikationsziele
Die Studierenden

- kennen charakteristische Details der Halbleiter-Bandstruktur und können diese theoretisch begründen
- beherrschen die Beschreibung von Gleichgewichts- sowie Nichtgleichgewichtsprozessen
- können mit Hilfe der Differentialgleichungen der inneren Elektronik Transportphänomene und dynamische Probleme berechnen und verstehen die Bedeutung von zeitlicher bzw. räumlicher Inhomogenität als Antrieb für diese Prozesse
- verstehen die Bandverläufe und physikalischen Eigenschaften von Halbleiter-Übergängen
- können an Hand der gelernten Grundlagen das phänomenologische Verhalten und typische Anwendungen von Halbleiterbauelementen beschreiben und theoretisch begründen

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102131 - Halbleiterphysik, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102130 - Halbleiterphysik, mit Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102301 - Halbleiterphysik, ohne Übungen darf nicht begonnen worden sein.

Inhalt
I. Grundlegende Eigenschaften von Halbleitern (Materialklassen, Bandstruktur, k*p-Theorie, Statistik, Boltzmann-Gleichgewicht)

II. Nichtgleichgewichtsprozesse in Halbleitern (Boltzmann-Gleichung, Generation und Rekombination, Transportphänomene)

III. Halbleiterübergänge im thermodynamischen Gleichgewicht (pn-Übergang, Heteroübergänge, niederdimensionale Halbleiter, Schottky-Kontakt, ohmscher Kontakt, Isolator-Halbleiter-Übergang)

IV. Halbleiterübergänge im Nichtgleichgewicht/ Bauelemente (Diode, Photodiode, Solarzelle, LED, Diodenlaser, Mikrowellenbauelemente, bipolarer Transistor, Feldeffektkommutator, CCD, Speicherbauelemente, ...)

V. Halbleiter-Technologie (Epitaxie, Dotierung, Strukturierung, Integration)

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Std.), Nachbereitung von Vorlesung und Übungen; Prüfungsvorbereitung bzw. Vorbereitung des Vortrags

Lehr- und Lernformen
4020111 Vorlesung 4 SWS; H. Kalt
4020112 Übung 1 SWS; H. Kalt;

Literatur
R. Enderlein, N. Horing: Fundamentals of Semiconductor Physics and Devices
M. Grundmann: The Physics of Semiconductors
S.M. Sze, K.K. Ng: Physics of Semiconductor Devices
3.112 Modul: Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik [M-PHYS-102207]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte 4
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 4
Version 1

Wahlpflichtblock: HS-EAP (4 LP)

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104541</td>
<td>Hauptseminar: Astroteilchenphysik - Neutrinos und Dunkle Materie</td>
<td>Drexlin</td>
</tr>
<tr>
<td>T-PHYS-104550</td>
<td>Hauptseminar: Astroteilchenphysik - Das Universum bei höchsten Energien</td>
<td>Drexlin, Engel</td>
</tr>
<tr>
<td>T-PHYS-104547</td>
<td>Hauptseminar: Experimentelle Methoden der Teilchenphysik</td>
<td>Husemann, Müller</td>
</tr>
<tr>
<td>T-PHYS-104557</td>
<td>Hauptseminar: Astroteilchenphysik - Kosmische Strahlung</td>
<td>Bluemer</td>
</tr>
<tr>
<td>T-PHYS-104558</td>
<td>Hauptseminar: Synchrotronstrahlung</td>
<td>Baumbach</td>
</tr>
<tr>
<td>T-PHYS-104559</td>
<td>Hauptseminar: Beschleuniger und Synchrotronstrahlung</td>
<td>Baumbach, Müller</td>
</tr>
<tr>
<td>T-PHYS-110293</td>
<td>Hauptseminar: Astroteilchenphysik</td>
<td>Drexlin, Engel, Valerius</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, regelmäßige Anwesenheit sowie eigener Vortrag.

Qualifikationsziele
Es werden wissenschaftliche Präsentationstechniken anhand eines eigenen Vortrags sowie den Vorträgen der anderen Teilnehmer erlernt. Dies beinhaltet die selbständige Sammlung an wissenschaftlichen Materials, die korrekte Zitationstechnik, die Auswahl des Stoffes unter didaktischen Gesichtspunkten, die Gliederung des Vortrages, die Foliengestaltung, die eigentliche Präsentation und die Beantwortung von Fragen aus dem Publikum.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik darf nicht begonnen worden sein.

Inhalt
Zusammen mit den Präsentationstechniken werden je nach Themenwahl spezielle wissenschaftliche Themen bis hin zum aktuellen Forschungsstand vermittelt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung (30 Stunden) sowie Vorbereitung des eigenen Vortrags inkl. Probevortrag (60 Stunden)
Literatur
Neben Lehrbüchern zu den Spezialthemen werden insbesondere wissenschaftliche Fachartikel verwendet.
3.113 Modul: Hauptseminar im Themenfeld Experimentelle Teilchenphysik [M-PHYS-102206]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
 Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
 Physikalisches Nebenfach / Experimentelle Teilchenphysik

Leistungspunkte 4
Turnus Jedes Semester Dauer 1 Semester Sprache Deutsch/Englisch Level 4 Version 1

Wahlpflichtblock: HS-ETP (4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Verantwortlichkeiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104522</td>
<td>Hauptseminar: Hunting New Physics in the Higgs Sector</td>
<td>4 LP</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>T-PHYS-104537</td>
<td>Hauptseminar: Experimentelle und Theoretische Grundlagen der Elementarteilchenphysik</td>
<td>4 LP</td>
<td>Gieseke, Quast, Zeppenfeld</td>
</tr>
<tr>
<td>T-PHYS-104547</td>
<td>Hauptseminar: Experimentelle Methoden der Teilchenphysik</td>
<td>4 LP</td>
<td>Husemann, Müller</td>
</tr>
<tr>
<td>T-PHYS-104558</td>
<td>Hauptseminar: Synchrotronstrahlung</td>
<td>4 LP</td>
<td>Baumbach</td>
</tr>
<tr>
<td>T-PHYS-104559</td>
<td>Hauptseminar: Beschleuniger und Synchrotronstrahlung</td>
<td>4 LP</td>
<td>Baumbach</td>
</tr>
<tr>
<td>T-PHYS-105791</td>
<td>Hauptseminar: Teilchenphysik und Experimentelle Methoden</td>
<td>4 LP</td>
<td>Husemann, Müller, Quast</td>
</tr>
<tr>
<td>T-PHYS-106129</td>
<td>Hauptseminar: Moderne Teilchenbeschleuniger und Forschung mit Photonen</td>
<td>4 LP</td>
<td>Baumbach, Müller</td>
</tr>
<tr>
<td>T-PHYS-106287</td>
<td>Hauptseminar: Big Data Science in- und außerhalb der Physik</td>
<td>4 LP</td>
<td>Feindt</td>
</tr>
<tr>
<td>T-PHYS-106525</td>
<td>Hauptseminar: Experimentelle und Theoretische Methoden der Teilchenphysik</td>
<td>4 LP</td>
<td>Gieseke, Quast</td>
</tr>
<tr>
<td>T-PHYS-107566</td>
<td>Hauptseminar: Teilchenphysik bei höchster Energie am LHC</td>
<td>4 LP</td>
<td>Mozer, Müller, Wolf</td>
</tr>
<tr>
<td>T-PHYS-108435</td>
<td>Hauptseminar: Standardmodell der Teilchenphysik: Experiment und Theorie</td>
<td>4 LP</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>T-PHYS-109973</td>
<td>Hauptseminar: Flavourphysik</td>
<td>4 LP</td>
<td>Bernlochner</td>
</tr>
<tr>
<td>T-PHYS-109976</td>
<td>Hauptseminar: Experimentelle und Theoretische Methoden der Colliderphysik</td>
<td>4 LP</td>
<td>Gieseke, Rabbertz</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, regelmäßige Anwesenheit sowie eigener Vortrag.

Qualifikationsziele
Es werden wissenschaftliche Präsentationstechniken anhand eines eigenen Vortrags sowie den Vorträgen der anderen Teilnehmer erlernt. Dies beinhaltet die selbständige Sammlung an wissenschaftlichen Materials, die korrekte Zitationstechnik, die Auswahl des Stoffes unter didaktischen Gesichtspunkten, die Gliederung des Vortrages, die Foliengestaltung, die eigentliche Präsentation und die Beantwortung von Fragen aus dem Publikum.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik darf nicht begonnen worden sein.
Inhalt
Zusammen mit den Präsentationstechniken werden je nach Themenwahl spezielle wissenschaftliche Themen bis hin zum aktuellen Forschungsstand vermittelt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung (30 Stunden) sowie Vorbereitung des eigenen Vortrags inkl. Probevortrag (60 Stunden)

Literatur
Neben Lehrbüchern zu den Spezialthemen werden insbesondere wissenschaftliche Fachartikel verwendet.
3.114 Modul: Hauptseminar im Themenfeld Kondensierte Materie [M-PHYS-102203]

Verantwortung: Studiendekan Physik

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Nebenfach / Kondensierte Materie

Leistungspunkte: 4

Turnus: Jedes Semester

Dauer: 1 Semester

Sprache: Deutsch/Englisch

Level: 4

Version: 1

Wahlpflichtblock: HS-KM (4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modultitel</th>
<th>LP</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104523</td>
<td>Hauptseminar: Elektronenoptik</td>
<td>4</td>
<td>Haider</td>
</tr>
<tr>
<td>T-PHYS-104539</td>
<td>Hauptseminar: Metamaterialien</td>
<td>4</td>
<td>Naber, Wegener</td>
</tr>
<tr>
<td>T-PHYS-104540</td>
<td>Hauptseminar: Halbleiter-Nanostrukturen</td>
<td>4</td>
<td>Hetterich, Kalt</td>
</tr>
<tr>
<td>T-PHYS-104543</td>
<td>Hauptseminar: Experimentelle Methoden der Festkörperphysik</td>
<td>4</td>
<td>Ustinov, Weiß</td>
</tr>
<tr>
<td>T-PHYS-104549</td>
<td>Hauptseminar: Physik tiefer Temperaturen</td>
<td>4</td>
<td>Beckmann, Ustinov</td>
</tr>
<tr>
<td>T-PHYS-104558</td>
<td>Hauptseminar: Synchrotronstrahlung</td>
<td>4</td>
<td>Baumbach</td>
</tr>
<tr>
<td>T-PHYS-104559</td>
<td>Hauptseminar: Beschleuniger und Synchrotronstrahlung</td>
<td>4</td>
<td>Baumbach</td>
</tr>
<tr>
<td>T-PHYS-105790</td>
<td>Hauptseminar: Schlüsselfeinkonzipierte experimente der Festkörperphysik</td>
<td>4</td>
<td>Le Tacon, Weiß</td>
</tr>
<tr>
<td>T-PHYS-105794</td>
<td>Hauptseminar: Elektronenmikroskopie und deren Anwendung in der Festkörperforschung</td>
<td>4</td>
<td>Gerthsen</td>
</tr>
<tr>
<td>T-PHYS-105795</td>
<td>Hauptseminar: Forschung mit Photonen - Festkörperforschung, Strukturaufklärung und Bildgebung</td>
<td>4</td>
<td>Baumbach</td>
</tr>
<tr>
<td>T-PHYS-105789</td>
<td>Hauptseminar: Optoelektronik - Grundlagen und Bauelemente</td>
<td>4</td>
<td>Hetterich, Kalt</td>
</tr>
<tr>
<td>T-PHYS-106125</td>
<td>Hauptseminar: Magnetismus</td>
<td>4</td>
<td>Wernsdorfer</td>
</tr>
<tr>
<td>T-PHYS-106129</td>
<td>Hauptseminar: Moderne Teilchenbeschleuniger und Forschung mit Photonen</td>
<td>4</td>
<td>Baumbach, Müller</td>
</tr>
<tr>
<td>T-PHYS-106524</td>
<td>Hauptseminar: Basisgrößen und Basiseinheiten</td>
<td>4</td>
<td>Wulfhekel</td>
</tr>
<tr>
<td>T-PHYS-107564</td>
<td>Hauptseminar: Tiefstemperaturphysik</td>
<td>4</td>
<td>Ustinov, Weiß</td>
</tr>
<tr>
<td>T-PHYS-107565</td>
<td>Hauptseminar: Quantenoptik und Spindynamik auf der Nanoskala</td>
<td>4</td>
<td>Wernsdorfer</td>
</tr>
<tr>
<td>T-PHYS-108433</td>
<td>Hauptseminar: Quantentechnologie (Spins, Tunnelsysteme, NV-Zentren, Supraleitende Qubits etc.)</td>
<td>4</td>
<td>Weiß</td>
</tr>
<tr>
<td>T-PHYS-108434</td>
<td>Hauptseminar: Phasenübergänge in Festkörpern mit Korrelierten Elektronen</td>
<td>4</td>
<td>Le Tacon</td>
</tr>
<tr>
<td>T-PHYS-108436</td>
<td>Hauptseminar: Elektronenmikroskopie und Elektronenoptik</td>
<td>4</td>
<td>Gerthsen</td>
</tr>
<tr>
<td>T-PHYS-106523</td>
<td>Hauptseminar: Quantenoptik</td>
<td>4</td>
<td>Hunger, Naber, Rockstuhl, Wegener</td>
</tr>
<tr>
<td>T-PHYS-108876</td>
<td>Hauptseminar: Quanteneffekte in Dünnen Schichten</td>
<td>4</td>
<td>Wulfhekel</td>
</tr>
<tr>
<td>T-PHYS-109971</td>
<td>Hauptseminar: Aktuelle Experimente der Quantenphysik</td>
<td>4</td>
<td>Hunger, Le Tacon, Wernsdorfer</td>
</tr>
<tr>
<td>T-PHYS-109972</td>
<td>Hauptseminar: Festkörperphysik bei Tiefen Temperaturen</td>
<td>4</td>
<td>Weiß, Wulfhekel</td>
</tr>
<tr>
<td>T-PHYS-109977</td>
<td>Hauptseminar: Neutronen- und Röntgenstrahlung in der Festkörperphysik</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung, regelmäßige Anwesenheit sowie eigener Vortrag.

Qualifikationsziele

Es werden wissenschaftliche Präsentationstechniken anhand eines eigenen Vortrags sowie den Vorträgen der anderen Teilnehmer erlernt. Dies beinhaltet die selbständige Sammlung an wissenschaftlichen Materials, die korrekten Zitationstechnik, die Auswahl des Stoffes unter didaktischen Gesichtspunkten, die Gliederung des Vortrages, die Foliengestaltung, die eigentliche Präsentation und die Beantwortung von Fragen aus dem Publikum.
Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik darf nicht begonnen worden sein.

Inhalt
Zusammen mit den Präsentationstechniken werden je nach Themenwahl spezielle wissenschaftliche Themen bis hin zum aktuellen Forschungsstand vermittelt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung (30 Stunden) sowie Vorbereitung des eigenen Vortrags inkl. Probevortrag (60 Stunden)

Literatur
Neben Lehrbüchern zu den Spezialthemen werden insbesondere wissenschaftliche Fachartikel verwendet.
3.115 Modul: Hauptseminar im Themenfeld Nanophysik [M-PHYS-102204]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Nebenfach / Nanophysik

Leistungspunkte: 4
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

Wahlpflichtblock: HS-NP (4 LP)

<table>
<thead>
<tr>
<th>Modul-ID</th>
<th>Thema</th>
<th>Leistungspunkte</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104523</td>
<td>Hauptseminar: Elektronenoptik</td>
<td>4 LP</td>
<td>Haider</td>
</tr>
<tr>
<td>T-PHYS-104539</td>
<td>Hauptseminar: Metamaterialien</td>
<td>4 LP</td>
<td>Naber, Wegener</td>
</tr>
<tr>
<td>T-PHYS-104540</td>
<td>Hauptseminar: Halbleiter-Nanostrukturen</td>
<td>4 LP</td>
<td>Hetterich, Kalt</td>
</tr>
<tr>
<td>T-PHYS-104544</td>
<td>Hauptseminar: Konformationsdynamik in Biomolekülen</td>
<td>4 LP</td>
<td>Nienhaus, Wenzel</td>
</tr>
<tr>
<td>T-PHYS-104542</td>
<td>Hauptseminar: Nanoelektronik und Quantentransport</td>
<td>4 LP</td>
<td>Schön</td>
</tr>
<tr>
<td>T-PHYS-104560</td>
<td>Hauptseminar: Lichtoptische Nanoskopie</td>
<td>4 LP</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>T-PHYS-104573</td>
<td>Hauptseminar: Biophysik der Sinneswahrnehmungen</td>
<td>4 LP</td>
<td>Weiß, Wulfhekel</td>
</tr>
<tr>
<td>T-PHYS-104574</td>
<td>Hauptseminar: Konzepte und Bauelemente des Quantencomputers</td>
<td>4 LP</td>
<td>Schön</td>
</tr>
<tr>
<td>T-PHYS-105792</td>
<td>Hauptseminar: Konzepte und Physik des Quantencomputers</td>
<td>4 LP</td>
<td>Schön</td>
</tr>
<tr>
<td>T-PHYS-105789</td>
<td>Hauptseminar: Optoelektronik - Grundlagen und Bauelemente</td>
<td>4 LP</td>
<td>Hetterich, Kalt</td>
</tr>
<tr>
<td>T-PHYS-105794</td>
<td>Hauptseminar: Elektronenmikroskopie und deren Anwendung in der Festkörperforschung</td>
<td>4 LP</td>
<td>Gerthsen</td>
</tr>
<tr>
<td>T-PHYS-106125</td>
<td>Hauptseminar: Magnetismus</td>
<td>4 LP</td>
<td>Wernsdorfer</td>
</tr>
<tr>
<td>T-PHYS-107565</td>
<td>Hauptseminar: Quantenoptik und Spindynamik auf der Nanoskala</td>
<td>4 LP</td>
<td>Wernsdorfer</td>
</tr>
<tr>
<td>T-PHYS-107891</td>
<td>Hauptseminar: Experimente mit einzelnen Photonen</td>
<td>4 LP</td>
<td>Wegener</td>
</tr>
<tr>
<td>T-PHYS-108433</td>
<td>Hauptseminar: Quantentechnologie (Spins, Tunnelsysteme, NV-Zentren, Supraleitende Qubits etc.)</td>
<td>4 LP</td>
<td>Weiß</td>
</tr>
<tr>
<td>T-PHYS-108436</td>
<td>Hauptseminar: Elektronenmikroskopie und Elektronenoptik</td>
<td>4 LP</td>
<td>Gerthsen</td>
</tr>
<tr>
<td>T-PHYS-108876</td>
<td>Hauptseminar: Quanteneffekte in Dünnen Schichten</td>
<td>4 LP</td>
<td>Wulfhekel</td>
</tr>
<tr>
<td>T-PHYS-108877</td>
<td>Hauptseminar: Methoden der Virtuellen Materialentwicklung</td>
<td>4 LP</td>
<td>Wenzel</td>
</tr>
<tr>
<td>T-PHYS-109971</td>
<td>Hauptseminar: Aktuelle Experimente der Quantenphysik</td>
<td>4 LP</td>
<td>Hunger, Le Tacon, Wernsdorfer</td>
</tr>
<tr>
<td>T-PHYS-109972</td>
<td>Hauptseminar: Festkörperphysik bei Tiefen Temperature</td>
<td>4 LP</td>
<td>Weiß, Wulfhekel</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, regelmäßige Anwesenheit sowie eigener Vortrag.

Qualifikationsziele
Es werden wissenschaftliche Präsentationstechniken anhand eines eigenen Vortrags sowie den Vorträgen der anderen Teilnehmer erlernt. Dies beinhaltet die selbständige Sammlung an wissenschaftlichen Materials, die korrekte Zitationstechnik, die Auswahl des Stoffes unter didaktischen Gesichtspunkten, die Gliederung des Vortrages, die Folien gestaltung, die eigentliche Präsentation und die Beantwortung von Fragen aus dem Publikum.

Voraussetzungen
Keine
Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik darf nicht begonnen worden sein.

Inhalt
Zusammen mit den Präsentationstechniken werden je nach Themenwahl spezielle wissenschaftliche Themen bis hin zum aktuellen Forschungsstand vermittelt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung (30 Stunden) sowie Vorbereitung des eigenen Vortrags inkl. Probevortrag (60 Stunden)

Literatur
Neben Lehrbüchern zu den Spezialthemen werden insbesondere wissenschaftliche Fachartikel verwendet.
3.116 Modul: Hauptseminar im Themenfeld Optik und Photonik [M-PHYS-102205]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
Physikalisches Ergänzungsfach / Optik und Photonik
Physikalisches Nebenfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: HS-OP (4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Titel der Hauptseminare</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104539</td>
<td>Hauptseminar: Metamaterialien</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-104544</td>
<td>Hauptseminar: Konformationsdynamik in Biomolekülen</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-104560</td>
<td>Hauptseminar: Lichtoptische Nanoskopie</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-104573</td>
<td>Hauptseminar: Biophysik der Sinneswahrnehmungen</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-105788</td>
<td>Hauptseminar: Plasmonik</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-105789</td>
<td>Hauptseminar: Optoelektronik - Grundlagen und Bauelemente</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-106523</td>
<td>Hauptseminar: Quantenoptik</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-106524</td>
<td>Hauptseminar: Basisgrößen und Basiseinheiten</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-107565</td>
<td>Hauptseminar: Quantenoptik und Spindynamik auf der Nanoskala</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-107891</td>
<td>Hauptseminar: Experimente mit einzelnen Photonen</td>
<td>4</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, regelmäßige Anwesenheit sowie eigener Vortrag.

Qualifikationsziele
Es werden wissenschaftliche Präsentationstechniken anhand eines eigenen Vortrags sowie den Vorträgen der anderen Teilnehmer erlernt. Dies beinhaltet die selbständige Sammlung an wissenschaftlichen Materials, die korrekte Zitationstechnik, die Auswahl des Stoffes unter didaktischen Gesichtspunkten, die Gliederung des Vortrages, die Foliengestaltung, die eigentliche Präsentation und die Beantwortung von Fragen aus dem Publikum.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik darf nicht begonnen worden sein.

Inhalt
Zusammen mit den Präsentationstechniken werden je nach Themenwahl spezielle wissenschaftliche Themen bis hin zum aktuellen Forschungsstand vermittelt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung (30 Stunden) sowie Vorbereitung des eigenen Vortrags inkl. Probevortrag (60 Stunden)
Literatur
Neben Lehrbüchern zu den Spezialthemen werden insbesondere wissenschaftliche Fachartikel verwendet.
3.117 Modul: Hauptseminar im Themenfeld Theoretische Teilchenphysik [M-PHYS-102208]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
- Physikalisches Ergänzungsfach / Theoretische Teilchenphysik
- Physikalisches Nebenfach / Theoretische Teilchenphysik

Leistungspunkte: 4
Turnus: Jedes Semester
Dauer: 1 Semester
Sprache: Deutsch/Englisch
Level: 4
Version: 1

<table>
<thead>
<tr>
<th>Wahlpflichtblock: HS-TTP (4 LP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104522</td>
</tr>
<tr>
<td>T-PHYS-104537</td>
</tr>
<tr>
<td>T-PHYS-104575</td>
</tr>
<tr>
<td>T-PHYS-105793</td>
</tr>
<tr>
<td>T-PHYS-106126</td>
</tr>
<tr>
<td>T-PHYS-106127</td>
</tr>
<tr>
<td>T-PHYS-106128</td>
</tr>
<tr>
<td>T-PHYS-106525</td>
</tr>
<tr>
<td>T-PHYS-107567</td>
</tr>
<tr>
<td>T-PHYS-108435</td>
</tr>
<tr>
<td>T-PHYS-109974</td>
</tr>
<tr>
<td>T-PHYS-109975</td>
</tr>
<tr>
<td>T-PHYS-109976</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, regelmäßige Anwesenheit sowie eigener Vortrag.

Qualifikationsziele
Es werden wissenschaftliche Präsentationstechniken anhand eines eigenen Vortrags sowie den Vorträgen der anderen Teilnehmer erlernt. Dies beinhaltet die selbständige Sammlung an wissenschaftlichen Materials, die korrekten Zitationstechniken, die Auswahl des Stoffes unter didaktischen Gesichtspunkten, die Gliederung des Vortrages, die Foliengestaltung, die eigentliche Präsentation und die Beantwortung von Fragen aus dem Publikum.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik darf nicht begonnen worden sein.
Inhalt
Zusammen mit den Präsentationstechniken werden je nach Themenwahl spezielle wissenschaftliche Themen bis hin zum aktuellen Forschungsstand vermittelt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung (30 Stunden) sowie Vorbereitung des eigenen Vortrags inkl. Probevortrag (60 Stunden)

Literatur
Neben Lehrbüchern zu den Spezialthemen werden insbesondere wissenschaftliche Fachartikel verwendet.
Modul: Hauptseminar im Themenfeld Theorie der Kondensierte Materie [M-PHYS-102209]

Verantwortung: Studiendekan Physik
Einhaltung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie
- Physikalisches Nebenfach / Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: HS-TKM (4 LP)

<table>
<thead>
<tr>
<th>Code</th>
<th>Thema</th>
<th>Lehrstunden</th>
<th>Lehrer/innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104538</td>
<td>Hauptseminar: Elementare Quanteneffekte der Kondensierten Materie</td>
<td>4 LP</td>
<td>Mirlin, Schmalian, Shnirman</td>
</tr>
<tr>
<td>T-PHYS-104542</td>
<td>Hauptseminar: Nanoelektronik und Quantentransport</td>
<td>4 LP</td>
<td>Schön</td>
</tr>
<tr>
<td>T-PHYS-104574</td>
<td>Hauptseminar: Konzepte und Bauelemente des Quantencomputers</td>
<td>4 LP</td>
<td>Schön</td>
</tr>
<tr>
<td>T-PHYS-105788</td>
<td>Hauptseminar: Plasmonik</td>
<td>4 LP</td>
<td>Rockstuhl</td>
</tr>
<tr>
<td>T-PHYS-105792</td>
<td>Hauptseminar: Konzepte und Physik des Quantencomputers</td>
<td>4 LP</td>
<td>Schön</td>
</tr>
<tr>
<td>T-PHYS-104544</td>
<td>Hauptseminar: Konformationsdynamik in Biomolekülen</td>
<td>4 LP</td>
<td>Nienhaus, Wenzel</td>
</tr>
<tr>
<td>T-PHYS-106523</td>
<td>Hauptseminar: Quantenoptik</td>
<td>4 LP</td>
<td>Hunger, Naber, Rockstuhl, Wegener</td>
</tr>
<tr>
<td>T-PHYS-107567</td>
<td>Hauptseminar: Miracles in Quantum Field Theory</td>
<td>4 LP</td>
<td>Melnikov</td>
</tr>
<tr>
<td>T-PHYS-108877</td>
<td>Hauptseminar: Methoden der Virtuellen Materialentwicklung</td>
<td>4 LP</td>
<td>Wenzel</td>
</tr>
<tr>
<td>T-PHYS-109598</td>
<td>Hauptseminar: Theory of Superconductivity</td>
<td>4 LP</td>
<td>Schmalian</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, regelmäßige Anwesenheit sowie eigener Vortrag.

Qualifikationsziele
Es werden wissenschaftliche Präsentationstechniken anhand eines eigenen Vortrags sowie den Vorträgen der anderen Teilnehmer erlernt. Dies beinhaltet die selbständige Sammlung an wissenschaftlichen Materials, die korrekten Zitationstechnik, die Auswahl des Stoffes unter didaktischen Gesichtspunkten, die Gliederung des Vortrages, die Foliengestaltung, die eigentliche Präsentation und die Beantwortung von Fragen aus dem Publikum.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik darf nicht begonnen worden sein.
6. Das Modul M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik darf nicht begonnen worden sein.

Inhalt
Zusammen mit den Präsentationstechniken werden je nach Themenwahl spezielle wissenschaftliche Themen bis hin zum aktuellen Forschungsstand vermittelt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung (30 Stunden) sowie Vorbereitung des eigenen Vortrags inkl. Probevortrag (60 Stunden)
Literatur
Neben Lehrbüchern zu den Spezialthemen werden insbesondere wissenschaftliche Fachartikel verwendet.
3.119 Modul: Hydrodynamik [M-PHYS-104864]

Verantwortung: Prof. Dr. Jörg Schmalian
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte 8
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS-109897 | Hydrodynamik | 8 LP | Schmalian |

Erfolgskontrollen
Kurzvorträge in Rahmen der Vorlesung

Qualifikationsziele
Deeper understanding of the condensed matter theory; gaining knowledge on most important phenomena and concepts in hydrodynamics, as well as on its modern applications to electronic systems in novel materials.

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104865 - Hydrodynamik (NF) darf nicht begonnen worden sein.

Inhalt

1. Introduction.
2. Hydrodynamics of an ideal fluid, Euler equation.
3. Dissipative corrections, Navier-Stokes equation, viscosity, thermal conductivity.
4. Magnetohydrodynamics, collisionless plasma.
5. Electronic hydrodynamics in graphene.
6. Electronic hydrodynamics in other novel materials (Weyl semimetals, etc.).

Empfehlungen
Grundlagenkenntnisse in Festkörperphysik, Quantenmechanik und Statistischer Physik werden vorausgesetzt

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (180 Stunden)

Literatur

- L.D. Landau, E.M. Lifshitz, Fluid Dynamics
- D. Vollhardt, P. Wölfle, The superfluid phases of Helium 3
3.120 Modul: Hydrodynamik (NF) [M-PHYS-104865]

Verantwortung: Prof. Dr. Jörg Schmalian
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Theorie der Kondensierten Materie

Leistungspunkte: 8, Turnus: Unregelmäßig, Dauer: 1 Semester, Sprache: Englisch, Level: 4, Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109896</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hydrodynamik (NF)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Schmalian</td>
<td>8 LP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Kurzvorträgen in Rahmen der Vorlesung

Qualifikationsziele
Deeper understanding of the condensed matter theory; gaining knowledge on most important phenomena and concepts in hydrodynamics, as well as on its modern applications to electronic systems in novel materials.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104864 - Hydrodynamik darf nicht begonnen worden sein.

Inhalt
1. Introduction.
2. Hydrodynamics of an ideal fluid, Euler equation.
3. Dissipative corrections, Navier-Stokes equation, viscosity, thermal conductivity.
4. Magnetohydrodynamics, collisionless plasma.
5. Electronic hydrodynamics in graphene.
6. Electronic hydrodynamics in other novel materials (Weyl semimetals, etc.).

Empfehlungen
Grundlagenkenntnisse in Festkörperphysik, Quantenmechanik und Statistischer Physik werden vorausgesetzt

Arbeitsaufwand
240 Stunden bestehend aus Präsenzziten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (180 Stunden)

Literatur
- L.D. Landau, E.M. Lifshitz, Fluid Dynamics
- D. Vollhardt, P. Wölfle, The superfluid phases of Helium 3
3.121 Modul: Induced Seismicity, benotet [M-PHYS-101959]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

Leistungspunkte: 5
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Pflichtbestandteile
T-PHYS-103575 Induced Seismicity, Studienleistung 3 LP Ritter
T-PHYS-103677 Induced Seismicity, Prüfung 2 LP Ritter

Erfolgskontrolle(n)
Presentation (45%), report (45%) and participation in discussion (10%) will be graded. A detailed rating scheme will be distributed during the first lecture.

Qualifikationsziele
Die Studierenden kennen die Grundlagen induzierter Seismizität, verstehen deren Ursachen und können Möglichkeiten des Auftretens benennen und vergleichen. Sie haben grundlegende Kenntnisse im Bereich der rechtlichen Aspekte im Zusammenhang mit induzierter Seismizität erworben und können die induzierte Seismizität an Staudämmen, im Bergbau und im Zusammenhang mit Geothermie analysieren, unterscheiden und beurteilen.

Die Studierenden kennen Regionen im In- und Ausland, in denen induzierte Seismizität auftritt und können im Gelände Strukturen erkennen, die auf das mögliche Auftreten induzierter Seismizität hinweisen.

Die Studierenden sind in der Lage, selbstorganisiert und lösungsorientiert an einer vorgegebenen konkreten Fragestellung aus dem Bereich der induzierten Seismizität zu arbeiten und Fachliteratur zu verstehen. Sie können die Fragestellung überblicken, analysieren, interpretieren und bewerten. Sie sind in der Lage, fachbezogen zu argumentieren und über die Inhalte mit Kommilitonen zu diskutieren und ihren eigenen Standpunkt zu vertreten. Ebenso können sie den Standpunkt der anderen kritisch hinterfragen. Sie können die Inhalte dieser Untersuchungen schriftlich zusammenfassen, dabei reflektieren und einordnen.

Zusammensetzung der Modulnote
Presentation (45%), report (45%) and participation in discussion (10%) will be graded. A detailed rating scheme will be distributed during the first lecture.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101878 - Induced Seismicity, unbenotet darf nicht begonnen worden sein.

Inhalt
- Grundlagen: Induzierte Seismizität
- Ursachen induzierter Seismizität
- Rechtliche Aspekte
- Fallbeispiele: Staudämme, Geothermie, Bergbau

Arbeitsaufwand
Total workload: 150 h which consists of
- 10 h lecture at KIT as preparation
- 5 h preparaton and wrap-up of lecture
- 40 h in situ lecture in Thuringia
- 35 h preparation of presentation
- 60 h preparation of report
3.122 Modul: Induced Seismicity, unbenotet [M-PHYS-101878]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

Leistungspunkte: 3
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-103575 Induced Seismicity, Studienleistung 3 LP Ritter

Erfolgskontrolle(n)
In order to pass the module a presentation has to be given during the in situ lecture and participation in discussions after presentations of fellow students is necessary.

Qualifikationsziele
Die Studierenden kennen die Grundlagen induzierter Seismizität, verstehen deren Ursachen und können Möglichkeiten des Auftretens benennen und vergleichen. Sie haben grundlegende Kenntnisse im Bereich der rechtlichen Aspekte im Zusammenhang mit induzierter Seismizität erworben und können die induzierte Seismizität an Staudämmen, im Bergbau und im Zusammenhang mit Geothermie analysieren, unterscheiden und beurteilen.

Die Studierenden kennen Regionen im In- und Ausland, in denen induzierte Seismizität auftritt und können im Gelände Strukturen erkennen, die auf das mögliche Auftreten induzierter Seismizität hinweisen.

Zusammensetzung der Modulnote
Die Studienleistung ist unbenotet.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101959 - Induced Seismicity, benotet darf nicht begonnen worden sein.

Inhalt
- Grundlagen: Induzierte Seismizität
- Ursachen induzierter Seismizität
- Rechtliche Aspekte
- Fallbeispiele: Staudämme, Geothermie, Bergbau

Arbeitsaufwand
Total workload: 90 h which consists of

- 10 h lecture at KIT as preparation
- 5 h preparation and wrap-up of lecture
- 40 h in situ lecture in Thuringia
- 35 h preparation of presentation
3.123 Modul: Inversion & Tomographie [M-PHYS-102368]

Verantwortung: Prof. Dr. Thomas Bohlen
Prof. Dr. Joachim Ritter

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-PHYS-104737</th>
<th>Inversion & Tomographie</th>
<th>8 LP</th>
<th>Bohlen, Ritter</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

To pass the module, the oral exam (approx. 45 minutes) must be passed. As prerequisites the examinations of other type must be passed, based on successful participation of the exercises. Students write reports on their exercise work. These reports are rated. The necessary number of points is explained at the beginning of the individual exercises.

Qualifikationsziele

The students understand how to invert data to achieve a model of physical parameters. The students realize that seismic waves can be treated in different waves: full waveform, finite-frequency approximations (banana-doughnut theory) and rays. From this they understand how seismic images can be constructed and interpreted. Students are able to evaluate inversion models based on error bonds, resolution matrices and reconstruction tests. They know the complete chain of tomography: data pre-processing, parameterization, inversion, model assessment and interpretation. The students are used to read scientific papers on inversion and tomography and to discuss questions on these papers. Finally the students are able to understand basic inverse problems and read more advanced texts. Practically, the students understand how to code simple problems with Matlab or possibly Python. The students know how to analyze inverse problems using singular value decomposition and other methods.

Zusammensetzung der Modulnote

The grade of the module results from grade of the oral exam.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102658 - Inversion & Tomographie (NF) darf nicht begonnen worden sein.

Inhalt

- Fundamentals of tomography
- Application of seismic tomography
- Regional to global seismic tomography
- Analysis of tomography problems
- Fundamentals in seismic inversion
- Application of linear and non-linear inversion

Empfehlungen

Knowledge on fundamentals of seismology and understanding of mathematics, especially matrix calculus. Fundamental skills in Linux, Matlab and computing in general.

Lehr- und Lernformen

V+Ü, 4 SWS

Literatur

3.124 Modul: Inversion & Tomographie (NF) [M-PHYS-102658]

Verantwortung: Prof. Dr. Thomas Bohlen
Prof. Dr. Joachim Ritter

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-105572 | Inversion & Tomographie (NF) | 8 LP | Bohlen, Ritter |

Erfolgskontrolle(n)

To pass the module, the examinations of other type must be passed, based on successful participation of the exercises. Students write reports on their exercise work. These reports are rated. The necessary number of points is explained at the beginning of the individual exercises.

Qualifikationsziele

The students understand how to invert data to achieve a model of physical parameters. The students realize that seismic waves can be treated in different waves: full waveform, finite-frequency approximations (banana-doughnut theory) and rays. From this they understand how seismic images can be constructed and interpreted. Students are able to evaluate inversion models based on error bonds, resolution matrices and reconstruction tests. They know the complete chain of tomography: data pre-processing, parameterization, inversion, model assessment and interpretation. The students are used to read scientific papers on inversion and tomography and to discuss questions on these papers. Finally the students are able to understand basic inverse problems and read more advanced texts. Practically, the students understand how to code simple problems with Matlab or possibly Python. The students know how to analyze inverse problems using singular value decomposition and other methods.

Zusammensetzung der Modulnote

The module is ungraded

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102368 - Inversion & Tomographie darf nicht begonnen worden sein.

Inhalt

- Fundamentals of tomography
- Application of seismic tomography
- Regional to global seismic tomography
- Analysis of tomography problems
- Fundamentals in seismic inversion
- Application of linear and non-linear inversion

Empfehlungen

Knowledge on fundamentals of seismology and understanding of mathematics, especially matrix calculus. Fundamental skills in Linux, Matlab and computing in general.

Lehr- und Lernformen

V+Ü, 4 SWS

Literatur

3.125 Modul: Masterarbeit [M-PHYS-102068]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Masterarbeit

Leistungspunkte 30
Sprache Deutsch Level 4 Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104370</td>
<td>Masterarbeit</td>
</tr>
</tbody>
</table>

30 LP Studiendekan Physik

Voraussetzungen
Modul "Spezialisierungsphase" und Modul "Einführung in die wissenschaftliche Arbeit" abgelegt.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101396 - Spezialisierungsphase muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-PHYS-101397 - Einführung in das wissenschaftliche Arbeiten muss erfolgreich abgeschlossen worden sein.
3.126 Modul: Messmethoden und Techniken in der Experimentalphysik, mit erw. Übungen [M-PHYS-102517]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Frank Hartmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte: 8

Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-102376 | Messmethoden und Techniken der Experimentalphysik, mit erw. Übungen | 8 LP | Drexlin, Hartmann |

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102518 - Messmethoden und Techniken in der Experimentalphysik, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102519 - Messmethoden und Techniken in der Experimentalphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Unter anderem werden folgende Themen behandelt:
- Messgeräte und ihre Genauigkeitsklassen, Berechnung von Messunsicherheiten, analoge und digitale Signalverarbeitung, Methoden der (Tief-) Temperaturmessung und Magnetfeldmessung, Einführung in die Vakuumtechnik, Anwendungsbeispiele aus der Astroteilchenphysik (z.B. Messtechniken für kosmische Strahlung und Neutrinos).
- Vorlesung und Übung finden im unregelmäßigen Wechsel wöchentlich am Campus Süd statt (2 SWS) und werden durch Blockveranstaltungen am Campus Nord ergänzt (1 SWS für alle Teilnehmer + 1 SWS Blockpraktikum nach Vereinbarung).

Empfehlungen
Interesse an Experimentalphysik

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten (45 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen, zusätzlich noch das Praktikum mit 24 h Präsenzzeit und 16 h Nachbereitung.
Literatur
Wird in der Vorlesung genannt.
3.127 Modul: Messmethoden und Techniken in der Experimentalphysik, mit erw. Übungen (NF) [M-PHYS-102519]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Frank Hartmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Nebenfach / Experimentelle Teilchenphysik
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile
T-PHYS-105106 Messmethoden und Techniken der Experimentalphysik, mit erw. Übungen (NF)
8 LP
Drexlin, Hartmann

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-102518 - Messmethoden und Techniken in der Experimentalphysik, ohne erw. Übungen darf nicht begonnen worden sein.

Inhalt

Unter anderem werden folgende Themen behandelt: Messgeräte und ihre Genauigkeitsklassen, Berechnung von Messunsicherheiten, analoge und digitale Signalverarbeitung, Methoden der (Tief-) Temperaturmessung und Magnetfeldmessung, Einführung in die Vakuumtechnik, Anwendungsbeispiele aus der Astroteilchenphysik (z.B. Messtechniken für kosmische Strahlung und Neutrinos).

Vorlesung und Übung finden im unregelmäßigem Wechsel wöchentlich am Campus Süd statt (2 SWS) und werden durch Blockveranstaltungen am Campus Nord ergänzt (1 SWS für alle Teilnehmer + 1 SWS Blockpraktikum nach Vereinbarung).

Empfehlungen
Interesse an Experimentalphysik

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten (45 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen, zusätzlich noch das Praktikum mit 24 h Präsenzzeit und 16 h Nachbereitung.

Literatur
Wird in der Vorlesung genannt.
3.128 Modul: Messmethoden und Techniken in der Experimentalphysik, ohne erw. Übungen [M-PHYS-102518]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Frank Hartmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-105105 | Messmethoden und Techniken der Experimentalphysik, ohne erw. Übungen | 6 LP | Drexlin, Hartmann |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-102519 - Messmethoden und Techniken in der Experimentalphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Unter anderem werden folgende Themen behandelt:
- Messgeräte und ihre Genauigkeitsklassen, Berechnung von Messunsicherheiten, analoge und digitale Signalverarbeitung, Methoden der (Tief-) Temperaturmessung und Magnetfeldmessung, Einführung in die Vakuumtechnik, Anwendungsbeispiele aus der Astroteilchenphysik (z.B. Messtechniken für kosmische Strahlung und Neutrinos).
- Vorlesung und Übung finden im unregelmäßigem Wechsel wöchentlich am Campus Süd statt (2 SWS) und werden durch Blockveranstaltungen am Campus Nord ergänzt (1 SWS für alle Teilnehmer + 1 SWS Blockpraktikum nach Vereinbarung).

Empfehlungen

Interesse an Experimentalphysik

Arbeitsaufwand

180 h bestehend aus Präsenzzeiten (45 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen
Literatur
Wird in der Vorlesung genannt.
3.129 Modul: Messmethoden und Techniken in der Experimentalphysik, ohne erw. Übungen (NF) [M-PHYS-103194]

Verantwortung: Prof. Dr. Guido Drexlin
 Dr. Frank Hartmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik
 Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-106327 Messmethoden und Techniken der Experimentalphysik, ohne erw. Übungen (NF) 6 LP Drexlin, Hartmann

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-102519 - Messmethoden und Techniken in der Experimentalphysik, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Unter anderem werden folgende Themen behandelt:
Messgeräte und ihre Genauigkeitsklassen, Berechnung von Messunsicherheiten, analoge und digitale Signalverarbeitung, Methoden der (Tief-) Temperaturmessung und Magnetfeldmessung, Einführung in die Vakuumtechnik, Anwendungsbeispiele aus der Astroteilchenphysik (z.B. Messtechniken für kosmische Strahlung und Neutrinos).

Vorlesung und Übung finden im unregelmäßigem Wechsel wöchentlich am Campus Süd statt (2 SWS) und werden durch Blockveranstaltungen am Campus Nord ergänzt (1 SWS für alle Teilnehmer + 1 SWS Blockpraktikum nach Vereinbarung).

Empfehlungen
Interesse an Experimentalphysik

Arbeitsaufwand
180 h bestehend aus Präsenzzeiten (45 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Literatur
Wird in der Vorlesung genannt.
3.130 Modul: Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum [M-PHYS-103091]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>LP</th>
<th>Baumbach, Hofmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td></td>
</tr>
</tbody>
</table>

Qualifikationsziele

Der/die Studierende soll in die Grundbegriffe der Röntgenphysik als Vertiefung von Themen der Wellenoptik und der Kondensierten Materie eingeführt werden. Er/Sie soll die physikalischen und instrumentellen Grundlagen moderner im Ortsraum und im reziproken Raum abbildender Röntgenmessmethoden verstehen und anwenden lernen.

Die Vorlesung und die Übungen stellen darüber hinaus die Verbindungen zu wichtigen Anwendungsgebieten dieser Methoden her. Die Übungen sollen die Studierenden befähigen, Röntgenexperimente an Großgeräten vorzubereiten und mittels konkreter experimenteller Gruppenarbeit das in der Vorlesung gewonnene Wissen anwenden.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-103169 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103170 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF) darf nicht begonnen worden sein.

Inhalt

Einführung in die moderne Röntgenphysik. Die Vorlesung schlägt eine Brücke von den physikalischen Grundlagen zu modernen Röntgenmethoden für Physiker, und gibt einen Überblick über wichtige gegenwärtige Anwendungsfelder:

- Theoretische und experimentelle Grundlagen zur Röntgenoptik und Röntgenanalytik, insbesondere Röntgenbeugung und -streuung.
- Moderne Instrumentierung im Röntgenlabor und an physikalischen Großgeräten (an Synchrotronspeicherringen, Freien Elektronenlasern).
- Anwendungsbeispiele aus der Kristallographie und den Nanowissenschaften
- Die Übungen enthalten optional die Möglichkeit der betreuten Durchführung von drei Experimenten an modernsten Röntgeneräten des KIT- Synchrotrons am KIT CN.

Empfehlungen

Grundlagen der klassischen Elektrodynamik, Optik, Quantenmechanik und Basiswissen zur Festkörperphysik

Arbeitsaufwand

300 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung, Vorbereitung der Übungen und Praktikum.
Lehr- und Lernformen
4028061 Vorlesung 2, SWS; Baumbach, Tilo, Hofmann, Ralf
4028062 Übung 2, SWS; Baumbach, Tilo, Hofmann, Ralf
4028063 Praktikum, 2 SWS; Baumbach, Tilo; Hofmann, Ralf

Literatur
- J. Als-Nielsen, D. McMorrow: Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd
Modul: Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF) [M-PHYS-103170]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

Leistungspunkte: 10
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-106304 | Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF) | 10 LP | Baumbach, Hofmann

Qualifikationsziele
Der/die Studierende soll in die Grundbegriffe der Röntgenphysik als Vertiefung von Themen der Wellenoptik und der Kondensierten Materie eingeführt werden. Er/Sie soll die physikalischen und instrumentellen Grundlagen moderner im Ortssraum und im reziproken Raum abbildender Röntgenmessmethoden verstehen und anwenden lernen.

Die Vorlesung und die Übungen stellen darüber hinaus die Verbindungen zu wichtigen Anwendungsgebieten dieser Methoden her. Die Übungen sollen die Studierenden befähigen, Röntgenexperimente an Großgeräten vorzubereiten und mittels konkreter experimenteller Gruppenarbeit die in der Vorlesung gewonnene Wissen anwenden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-103169 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum (NF) darf nicht begonnen worden sein.

Inhalt
Einführung in die moderne Röntgenphysik. Die Vorlesung schlägt eine Brücke von den physikalischen Grundlagen zu modernen Röntgenmethoden für Physiker, und gibt einen Überblick über wichtige gegenwärtige Anwendungsfelder:

- Theoretische und experimentelle Grundlagen zur Röntgenoptik und Röntgenanalytik, insbesondere Röntgenbeugung und -streuung.
- Moderne Instrumentierung im Röntgenlabor und an physikalischen Großgeräten (an Synchrotronspeicherringen, Freien Elektronenlasern).
- Anwendungsbeispiele aus der Kristallographie und den Nanowissenschaften
- Die Übungen enthalten optional die Möglichkeit der betreuten Durchführung von drei Experimenten an modernsten Röntengeräten des KIT-Synchrotrons am KIT CN.

Empfehlungen
Grundlagen der klassischen Elektrodynamik, Optik, Quantenmechanik und Basiswissen zur Festkörperphysik

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung, Vorbereitung der Übungen und Praktikum.

Lehr- und Lernformen
4028061 Vorlesung 2, SWS; Baumbach, Tilo, Hofmann, Ralf
4028062 Übung 2, SWS; Baumbach, Tilo, Hofmann, Ralf
4028063 Praktikum, 2 SWS; Baumbach, Tilo; Hofmann, Ralf

Physik Master 2015 (Master of Science)
Modulhandbuch mit Stand vom 09.10.2019
Literatur

- J. Als-Nielsen, D. McMorrow: Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd
3.132 Modul: Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum [M-PHYS-102229]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
Physikalisches Ergänzungsfach / Kondensierte Materie
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-102352 | Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum | 8 LP | Baumbach, Hofmann |

Qualifikationsziele

Der/die Studierende soll in die Grundbegriffe der Röntgenphysik als Vertiefung von Themen der Wellenoptik und der Kondensierten Materie eingeführt werden. Er/Sie soll die physikalischen und instrumentellen Grundlagen moderner im Ortsraum und im reziproken Raum abbildender Röntgenmessmethoden verstehen und anwenden lernen.

Die Vorlesung und die Übungen stellen darüber hinaus die Verbindungen zu wichtigen Anwendungsgebieten dieser Methoden her. Die Übungen sollen die Studierenden befähigen, Röntgenexperimente an Großgeräten vorzubereiten und mittels konkreter experimenteller Gruppenarbeit das in der Vorlesung gewonnene Wissen anzuwenden.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-103169 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103170 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF) darf nicht begonnen worden sein.

Inhalt

Einführung in die moderne Röntgenphysik. Die Vorlesung schlägt eine Brücke von den physikalischen Grundlagen zu modernen Röntgenmethoden für Physiker, und gibt einen Überblick über wichtige gegenwärtige Anwendungsfelder:

- Theoretische und experimentelle Grundlagen zur Röntgenoptik und Röntgenanalytik, insbesondere Röntgenbeugung und -streuung.
- Moderne Instrumentierung im Röntgenlabor und an physikalischen Großgeräten (an Synchrotronspeicherringen, Freien Elektronenlasern).
- Anwendungsbeispiele aus der Kristallographie und den Nanowissenschaften
- Die Übungen enthalten optional die Möglichkeit der betreuten Durchführung von drei Experimenten an modernsten Röntengeräten des KIT-Synchrotrons am KIT CN.

Empfehlungen

Grundlagen der klassischen Elektrodynamik, Optik, Quantenmechanik und Basiswissen zur Festkörperphysik

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung, Vorbereitung der Übungen.

Lehr- und Lernformen

4028061 Vorlesung, 2 SWS; Baumbach, Tilo, Hofmann, Ralf
4028062 Übung, 2 SWS; Baumbach, Tilo, Hofmann, Ralf
Literatur

- J. Als-Nielsen, D. McMorrow: Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd
Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

Pflichtbestandteile
T-PHYS-106303 Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum (NF) 8 LP Baumbach, Hofmann

Qualifikationsziele
Der/die Studierende soll in die Grundbegriffe der Röntgenphysik als Vertiefung von Themen der Wellenoptik und der kondensierten Materie eingeführt werden. Er/Sie soll die physikalischen und instrumentellen Grundlagen moderner im Ortsraum und im reziproken Raum abbildender Röntgenmessmethoden verstehen und anwenden lernen.

Die Vorlesung und die Übungen stellen darüber hinaus die Verbindungen zu wichtigen Anwendungsgebieten dieser Methoden her. Die Übungen sollen die Studierenden befähigen, Röntgenexperimente an Großgeräten vorzubereiten und mittels konkreter experimenteller Gruppenarbeit das in der Vorlesung gewonnene Wissen anzuwenden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
3. Das Modul M-PHYS-103170 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF) darf nicht begonnen worden sein.

Inhalt
Einführung in die moderne Röntgenphysik. Die Vorlesung schlägt eine Brücke von den physikalischen Grundlagen zu modernen Röntgenmethoden für Physiker, und gibt einen Überblick über wichtige gegenwärtige Anwendungsfelder:
- Theoretische und experimentelle Grundlagen zur Röntgenoptik und Röntgenanalytik, insbesondere Röntgenbeugung und -streuung.
- Moderne Instrumentierung im Röntgenlabor und an physikalischen Großgeräten (an Synchrotronspeicherringen, Freien Elektronenlasern).
- Anwendungsbeispiele aus der Kristallographie und den Nanowissenschaften
- Die Übungen enthalten optional die Möglichkeit der betreuten Durchführung von drei Experimenten an modernsten Röntgengeräten des KIT-Synchrotrons am KIT CN.

Empfehlungen
Grundlagen der klassischen Elektrodynamik, Optik, Quantenmechanik und Basiswissen zur Festkörperphysik

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung, Vorbereitung der Übungen.

Lehr- und Lernformen
4028061 Vorlesung, 2 SWS; Baumbach, Tilo, Hofmann, Ralf
4028062 Übung, 2 SWS; Baumbach, Tilo, Hofmann, Ralf
Literatur
J. Als-Nielsen, D. McMorrow: Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Kondensierte Materie
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kurscode</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102353</td>
<td>Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Der Studierende soll in die Grundbegriffe der Kernresonanz-Streuung mit Synchrotronstrahlung eingeführt werden. Er soll die physikalischen und instrumentellen Grundlagen spektroskopischer Röntgenmessmethoden verstehen und lernen, sie auf festkörperphysikalische Fragestellungen der Nanowissenschaften (Magnetismus, Diffusion und Gitterdynamik) anzuwenden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103171 - Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation (NF) darf nicht begonnen worden sein.

Inhalt
Die Vorlesung schlägt eine Brücke zwischen der Festkörperphysik und den auf Kernresonanzstreueung basierenden Methoden für die Untersuchung elektronischer und magnetischer Schwingungen, Gitterschwingungen und Diffusionsphänomenen in dünnen Filmen und Nanostrukturen. Die folgenden Themen werden vorgestellt und diskutiert: Eine kurze Einführung in die Theorie der Synchrotronstrahlung, Röntgenoptik, Detektoren und Elektronik; Kernresonanzstreueung der Synchrotronstrahlung; Hyperfinewechselwirkungen, Gitterschwingungen und atomare Diffusion untersucht mittels in situ Kernresonanzstreueung.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung, Vorbereitung der Übungen und Praktikum.

Literatur
3.135 Modul: Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation (NF) [M-PHYS-103171]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

Leistungspunkte 8
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS-106305 | Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation (NF) | 8 LP | Baumbach, Stankov |

Qualifikationsziele

Der Studierende soll in die Grundbegriffe der Kernresonanz-Streuung mit Synchrotronstrahlung eingeführt werden. Er soll die physikalischen und instrumentellen Grundlagen spektroskopischer Röntgenmessmethoden verstehen und lernen, sie auf festkörperphysikalische Fragestellungen der Nanowissenschaften (Magnetismus, Diffusion und Gitterdynamik) anzuwenden.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt

Die Vorlesung schlägt eine Brücke zwischen der Festkörperphysik und den auf Kernresonanzstreuung basierenden Methoden für die Untersuchung elektronischer und magnetischer Schwingungen, Gitterschwingungen und Diffusionsphänomenen in dünnen Filmen und Nanostrukturen. Die folgenden Themen werden vorgestellt und diskutiert: Eine kurze Einführung in die Theorie der Synchrotronstrahlung, Röntgenoptiken, Detektoren und Elektronik; Kernresonanzstreuung der Synchrotronstrahlung; Hyperfinewechselwirkungen, Gitterschwingungen und atomare Diffusion untersucht mittels in situ Kernresonanzstreuung.

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung, Vorbereitung der Übungen und Praktikum.

Literatur

3.136 Modul: Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum [M-PHYS-102846]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
Physikalisches Ergänzungsfach / Optik und Photonik

Pflichtbestandteile

| T-PHYS-105819 | Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum | 10 LP | Baumbach, Hofmann |

Qualifikationsziele
Der Studierende soll die experimentellen und theoretischen Grundlagen für die Durchführung der Datenakquisition bzw. Interpretation in Hinsicht auf 2D und 3D Röntgenbildgebung im Real- und reziproken Raum erlangen. Dazu gehören mikroskopische Absorptions- und (nicht-)interferometrische Phasenkontrastbildgebung, dffraktionsverstärkte Beugung, und Streumethoden. Die Vorlesung stellt Verbindungen zu routinemäßigen Anwendungen dieser Methoden in den Lebenswissenschaften und der Festkörperforschung an ANKA her auch mittels konkreter experimenteller Gruppenarbeit, um das in der Vorlesung gewonnene Wissen anzuwenden.

Voraussetzungen
Die angebotenen Übungen sind als Leistungsnachweis erforderlich. Die Übungen beinhalten die betreuten Durchführung eines aus drei möglichen Experimenten an modernsten Röntgengeräten der Synchrotronstrahlungsanlage ANKA am KIT CN

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102323 - Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum (NF) darf nicht begonnen worden sein.

Inhalt
Die Vorlesung schlägt eine Brücke von den physikalischen Grundlagen zu modernen Röntgenmethoden für Physiker, Chemiker und Werkstoffwissenschaftler und gibt einen Überblick über wichtige gegenwärtige Anwendungsfelder:

- Theoretische und experimentelle Grundlagen zur Röntgenoptik und Röntgenanalytik, insbesondere Computertomographie, Röntgenmikroskopie, -beugung und -streuung.
- Moderne Instrumentierung im Röntgenlabor und an physikalischen Großgeräten (Synchrotronspeicherringe, Freie Elektronenlaser).
- Anwendungsbeispiele aus der Kristallographie, den Nanowissenschaften und den Lebenswissenschaften.

Empfehlungen
Grundlagen der klassischen Elektrodynamik, Optik und Basiswissen zur Festkörperphysik

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen und Durchführung eines Experiments an ANKA zusammen mit dessen Auswertung

Lehr- und Lernformen

4028131 Vorlesung 2 SWS; Hofmann, Ralf, Baumbach, Tilo
4028134 Übung 2 SWS; Hofmann, Ralf
4028133 Praktikum 2 SWS; Hofmann, Ralf
Literatur

- Jens Als-Nielsen, Des McMorrow: Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd
- D. M. Paganin, Coherent X-ray Optics, Oxford Science Publications
3.137 Modul: Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum (NF) [M-PHYS-102847]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Optik und Photonik

Leistungspunkte: 10
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-105820 | Modern X-Ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum (NF) | 10 LP | Baumbach, Hofmann |

Qualifikationsziele

Der Studierende soll die experimentellen und theoretischen Grundlagen für die Durchführung der Datenakquisition bzw. -interpretation in Hinsicht auf 2D und 3D Röntgenbildgebung im Real- und reziproken Raum erlangen. Dazu gehören mikroskopische Absorptions- und (nicht-)interferometrische Phasenkontrastbildgebung, diffraktionsverstärkte Beugung, und Streumethoden. Die Vorlesung stellt Verbindungen zu routinemäßigen Anwendungen dieser Methoden in den Lebenswissenschaften und der Festkörperforschung an ANKA her auch mittels konkreter experimenteller Gruppenarbeit, um das in der Vorlesung gewonnene Wissen anzuwenden.

Voraussetzungen

Die angebotenen Übungen sind als Leistungsnachweis erforderlich. Die Übungen beinhalten die betreuten Durchführung eines aus drei möglichen Experimenten an modernsten Röntgengeräten der Synchrotronstrahlungsanlage ANKA am KIT CN.

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt

Die Vorlesung schlägt eine Brücke von den physikalischen Grundlagen zu modernen Röntgenmethoden für Physiker, Chemiker und Werkstoffwissenschaftler und gibt einen Überblick über wichtige gegenwärtige Anwendungsfelder:

- Theoretische und experimentelle Grundlagen zur Röntgenoptik und Röntgenanalytik, insbesondere Computertomographie, Röntgenmikroskopie, -beugung und -streuung.
- Moderne Instrumentierung im Röntgenlabor und an physikalischen Großgeräten (Synchrotronspeicherringe, Freie Elektronenlaser).
- Anwendungsbeispiele aus der Kristallographie, den Nanowissenschaften und den Lebenswissenschaften.

Empfehlungen

Grundlagen der klassischen Elektrodynamik, Optik und Basiswissen zur Festkörperphysik

Arbeitsaufwand

300 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen und Durchführung eines Experiments an ANKA zusammen mit dessen Auswertung.

Lehr- und Lernformen

| 4028131 Vorlesung2 SWS; Hofmann, Ralf, Baumbach, Tilo |
| 4028134 Übung2 SWS; Hofmann, Ralf |
| 4028133 Praktikum 2 SWS; Hofmann, Ralf |
Literatur

- Jens Als-Nielsen, Des McMorrow: Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd
- D. M. Paganin, Coherent X-ray Optics, Oxford Science Publications

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte 8
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Qualifikationsziele
Der Studierende soll die experimentellen und theoretischen Grundlagen für die Durchführung der Datenakquisition bzw. -interpretation in Hinsicht auf 2D und 3D Röntgenbildgebung im Real- und reziproken Raum erlangen. Dazu gehören mikroskopische Absorptions- und (nicht-)interferometrische Phasenkontrastbildgebung, diffaktionsverstärkte Beugung, und Streumethoden. Die Vorlesung stellt Verbindungen zu routinemäßigen Anwendungen dieser Methoden in den Lebenswissenschaften und der Festkörperforschung an ANKA her auch mittels konkreter experimenteller Gruppenarbeit, um das in der Vorlesung gewonnene Wissen anzuwenden.

Voraussetzungen
Die angebotenen Übungen sind als Leistungsnachweis erforderlich. Die Übungen beinhalten die betreuten Durchführung eines aus drei möglichen Experimenten an modernsten Röntgengeräten der Synchrotronstrahlungsanlage ANKA am KIT CN

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102323 - Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum (NF) darf nicht begonnen worden sein.

Inhalt
Die Vorlesung schlägt eine Brücke von den physikalischen Grundlagen zu modernen Röntgenmethoden für Physiker, Chemiker und Werkstoffwissenschaftler und gibt einen Überblick über wichtige gegenwärtige Anwendungsfelder:
- Theoretische und experimentelle Grundlagen zur Röntgenoptik und Röntgenanalytik, insbesondere Computertomographie, Röntgenmikroskopie, -beugung und -streuung.
- Moderne Instrumentierung im Röntgenlabor und an physikalischen Großgeräten (Synchrotronspeicherringe, Freie Elektronenlaser).
- Anwendungsbeispiele aus der Kristallographie, den Nanowissenschaften und den Lebenswissenschaften.

Empfehlungen
Grundlagen der klassischen Elektrodynamik, Optik und Basiswissen zur Festkörperphysik

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung, Vorbereitung der Übungen

Lehr- und Lernformen
4028131 Vorlesung 2 SWS; Hofmann, Ralf, Baumbach, Tilo
4028134 Übung 2 SWS; Hofmann, Ralf
Literatur

- Jens Als-Nielsen, Des McMorrow: Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd
- D. M. Paganin, Coherent X-ray Optics, Oxford Science Publications
3.139 Modul: Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum (NF) [M-PHYS-102323]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Optik und Photonik

Leistungspunkte: 8
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
| T-PHYS-104598 | Modern X-Ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum (NF) | 8 LP | Baumbach, Hofmann |

Qualifikationsziele
Der Studierende soll die experimentellen und theoretischen Grundlagen für die Durchführung der Datenakquisition bzw. interpretation in Hinsicht auf 2D und 3D Röntgenbilddgebung im Real- und reziproken Raum erlangen. Dazu gehören mikroskopische Absorptions- und (nicht-)interferometrische Phasenkontrastbildgebung, diffaktionsverstärkte Beugung, und Streumethoden. Die Vorlesung stellt Verbindungen zu routinemäßigen Anwendungen dieser Methoden in den Lebenswissenschaften und der Festkörperforschung an ANKA her auch mittels konkreter experimenteller Gruppenarbeit, um das in der Vorlesung gewonnene Wissen anzuwenden.

Voraussetzungen
Die angebotenen Übungen sind als Leistungsnachweis erforderlich. Die Übungen beinhalten die betreuten Durchführung eines aus drei möglichen Experimenten an modernsten Röntgengeräten der Synchrotronstrahlungsanlage ANKA am KIT CN

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt
Die Vorlesung schlägt eine Brücke von den physikalischen Grundlagen zu modernen Röntgenmethoden für Physiker, Chemiker und Werkstoffwissenschaftler und gibt einen Überblick über wichtige gegenwärtige Anwendungsfelder:

- Theoretische und experimentelle Grundlagen zur Röntgenoptik und Röntgenanalytik, insbesondere Computertomographie, Röntgenmikroskopie, -beugung und -streuung.
- Moderne Instrumentierung im Röntgenlabor und an physikalischen Großgeräten (Synchrotronspeicherringe, Freie Elektronenlaser).
- Anwendungsbeispiele aus der Kristallographie, den Nanowissenschaften und den Lebenswissenschaften.

Empfehlungen
Grundlagen der klassischen Elektrodynamik, Optik und Basiswissen zur Festkörperphysik

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Lehr- und Lernformen
4028131 Vorlesung 2 SWS; Hofmann, Ralf, Baumbach, Tilo
4028134 Übung 2 SWS; Hofmann, Ralf
Literatur

- Jens Als-Nielsen, Des McMorrow: Elements of Modern X-Ray Physics, John Wiley & Sons, Ltd
- D. M. Paganin, Coherent X-ray Optics, Oxford Science Publications
3.140 Modul: Moderne Methoden der Datenanalyse, mit erw. Übungen [M-PHYS-102127]

Verantwortung: Prof. Dr. Florian Bernlochner
Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte
8

Turnus
Jedes Sommersemester

Dauer
1 Semester

Sprache
Deutsch

Level
4

Version
1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102495</td>
<td>Moderne Methoden der Datenanalyse, mit erw. Übungen</td>
<td>8 LP</td>
<td>Bernlocher, Quast</td>
<td></td>
</tr>
</tbody>
</table>

Qualifikationsziele
Die Studierenden können Grundlagen der statistischen Datenanalyse formulieren, moderne Methoden der Datenanalyse auf physikalische Probleme anwenden und Werkzeuge zur Datenanalyse nutzen und weiterentwickeln. Auf dieser Basis werden die Studierenden befähigt, den Einsatz statistischer Verfahren in Wissenschaft und Gesellschaft zu hinterfragen und zu bewerten.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102125 - Moderne Methoden der Datenanalyse, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102126 - Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102128 - Moderne Methoden der Datenanalyse, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Grundlagen der Wahrscheinlichkeitsrechnung, Wahrscheinlichkeitsverteilungen, Monte-Carlo-Methoden, Parameterschätzung, numerische Optimierung, Faltung und Entfaltung, Hypothesentests, Vertrauensintervalle, multivariate Klassifizierung, Zeitreihenanalyse und Filterung.

Empfehlungen
Grundlagenkenntnisse der statistischen Datenanalyse, wie sie z.B. in der Bachelorvorlesung Rechnernutzung in der Physik vermittelt werden, sind wünschenswert.

Literatur
G.Cowan: Statistical Data Analysis, Oxford University Press
G.Bohm, G.Zech: Einführung in Statistik und Messwertanalyse für Physiker, DESYeBook
V.Blobel, E.Lohrmann: Statistische und numerische Methoden der Datenanalyse, DESYeBook
S.Brandt: Datenanalyse, Spektrum
T. Hastie, T. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer
3.141 Modul: Moderne Methoden der Datenanalyse, mit erw. Übungen (NF) [M-PHYS-102128]

Verantwortung: Prof. Dr. Florian Bernlochner
Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik
Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102496 | Moderne Methoden der Datenanalyse, mit erw. Übungen (NF) | 8 LP | Bernlochner, Quast |

Qualifikationsziele

Die Studierenden können Grundlagen der statistischen Datenanalyse formulieren, moderne Methoden der Datenanalyse auf physikalische Probleme anwenden und Werkzeuge zur Datenanalyse nutzen und weiterentwickeln. Auf dieser Basis werden die Studierenden befähigt, den Einsatz statistischer Verfahren in Wissenschaft und Gesellschaft zu hinterfragen und zu bewerten.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102125 - Moderne Methoden der Datenanalyse, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102126 - Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Grundlagen der Wahrscheinlichkeitsrechnung, Wahrscheinlichkeitsverteilungen, Monte-Carlo-Methoden, Parameterschätzung, numerische Optimierung, Faltung und Entfaltung, Hypothesentests, Vertrauensintervalle, multivariate Klassifizierung, Zeitreihenanalyse und Filterung.

Empfehlungen

Grundlagenkenntnisse der statistischen Datenanalyse, wie sie z.B. in der Bachelorvorlesung Rechnernutzung in der Physik vermittelt werden, sind wünschenswert.

Literatur

G.Cowan: Statistical Data Analysis, Oxford University Press
G.Bohm, G.Zech: Einführung in Statistik und Messwertanalyse für Physiker, DESYeBook
V.Blobel, E.Lohrmann: Statistische und numerische Methoden der Datenanalyse, DESYeBook
S.Brandt: Datenanalyse, Spektrum
T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer
3.142 Modul: Moderne Methoden der Datenanalyse, ohne erw. Übungen [M-PHYS-102125]

Verantwortung: Prof. Dr. Florian Bernlochner
Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)

Leistungspunkte
6
Turnus
Jedes Sommersemester
Dauer
1 Semester
Sprache
Deutsch
Level
4
Version
1

Pflichtbestandteile

| T-PHYS-102494 | Moderne Methoden der Datenanalyse, ohne erw. Übungen | 6 LP | Bernlocher, Quast |

Qualifikationsziele

Die Studierenden können Grundlagen der statistischen Datenanalyse formulieren, moderne Methoden der Datenanalyse auf physikalische Probleme anwenden und Werkzeuge zur Datenanalyse nutzen und weiterentwickeln. Auf dieser Basis werden die Studierenden befähigt, den Einsatz statistischer Verfahren in Wissenschaft und Gesellschaft zu hinterfragen und zu bewerten.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102126 - Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102127 - Moderne Methoden der Datenanalyse, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102128 - Moderne Methoden der Datenanalyse, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Grundlagen der Wahrscheinlichkeitsrechnung, Wahrscheinlichkeitsverteilungen, Monte-Carlo-Methoden, Parameterschätzung, numerische Optimierung, Faltung und Entfaltung, Hypothesentests, Vertrauensintervalle, multivariate Klassifizierung, Zeitreihenanalyse und Filterung.

Empfehlungen

Grundlagenkenntnisse der statistischen Datenanalyse, wie sie z.B. in der Bachelorvorlesung Rechnernutzung in der Physik vermittelt werden, sind wünschenswert.

Literatur

G.Cowan: Statistical Data Analysis, Oxford University Press
G.Bohm, G.Zech: Einführung in Statistik und Messwertanalyse für Physiker, DESYeBook
V.Blobel, E.Lohrmann: Statistische und numerische Methoden der Datenanalyse, DESYeBook
S.Brandt: Datenanalyse, Spektrum
T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer
3.143 Modul: Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF) [M-PHYS-102126]

Verantwortung: Prof. Dr. Florian Bernlochner

Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik

Physikalisches Nebenfach / Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-PHYS-102497 Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF) 6 LP Bernlochner, Quast

Qualifikationsziele

Die Studierenden können Grundlagen der statistischen Datenanalyse formulieren, moderne Methoden der Datenanalyse auf physikalische Probleme anwenden und Werkzeuge zur Datenanalyse nutzen und weiterentwickeln. Auf dieser Basis werden die Studierenden befähigt, den Einsatz statistischer Verfahren in Wissenschaft und Gesellschaft zu hinterfragen und zu bewerten.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102125 - Moderne Methoden der Datenanalyse, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102127 - Moderne Methoden der Datenanalyse, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102128 - Moderne Methoden der Datenanalyse, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Grundlagen der Wahrscheinlichkeitsrechnung, Wahrscheinlichkeitsverteilungen, Monte-Carlo-Methoden, Parameterschätzung, numerische Optimierung, Faltung und Entfaltung, Hypothesentests, Vertrauensintervalle, multivariate Klassifizierung, Zeitreihenanalyse und Filterung.

Empfehlungen

Grundlagenkenntnisse der statistischen Datenanalyse, wie sie z.B. in der Bachelorvorlesung Rechnernutzung in der Physik vermittelt werden, sind wünschenswert.

Literatur

G.Cowan: Statistical Data Analysis, Oxford University Press
G.Bohm, G.Zech: Einführung in Statistik und Messwertanalyse für Physiker, DESYeBook
V.Blobel, E.Lohrmann: Statistische und numerische Methoden der Datenanalyse, DESYeBook
S.Brandt: Datenanalyse, Spektrum
T. Hastie, R. Tibshirani, J. Friedman: The Elements of Statistical Learning, Springer
3.144 Modul: Molekulare Elektronik [M-PHYS-104540]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikaliges Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikaliges Ergänzungsfach / Kondensierte Materie
Physikaliges Ergänzungsfach / Nanophysik (Wahl Nanophysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-109305 | Molekulare Elektronik | 6 LP | Wulfhekel |

Qualifikationsziele

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104541 - Molekulare Elektronik (NF) darf nicht begonnen worden sein.

Inhalt
Molekulare Bindung, molekulare Orbitale, Lokalisierung und Delokalisierung von Ladungsträgern, Adsorption und elektronische Wechselwirkung zwischen Molekülen und Leitern, Selbstenergie, Landauer-Büttiker Ladungstransport, Spintransport, Spin-Bahn Wechselwirkung, Kondo Effekt, Steven's Operatoren und Zero-Field-Splitting, Wärmetransport, Seebeck Effekt, Memrisors

Empfehlungen
Grundlegende Kenntnisse in klassischem Elektromagnetismus, Quantenmechanik, Festkörperphysik

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden)

Literatur
Wird in der Vorlesung genannt.
3.145 Modul: Molekulare Elektronik (NF) [M-PHYS-104541]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>LP</th>
<th>Wulfhekel</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109306</td>
<td>Molekulare Elektronik (NF)</td>
<td>6</td>
<td></td>
</tr>
</tbody>
</table>

Qualifikationsziele

Zusammensetzung der Modulnote

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul **M-PHYS-104540 - Molekulare Elektronik** darf nicht begonnen worden sein.

Inhalt

Molekulaire Bindung, molekulare Orbitale, Lokalisierung und Delokalisierung von Ladungsträgern, Adsorption und elektronische Wechselwirkung zwischen Molekülen und Leitern, Selbstenergie, Landauer-Büttiker Ladungstransport, Spintransport, Spin-Bahn Wechselwirkung, Kondo Effekt, Steven's Operatoren und Zero-Field-Splitting, Wärmetransport, Seebeck Effekt, Memrisors

Empfehlungen

Grundlegende Kenntnisse in klassischem Elektromagnetismus, Quantenmechanik, Festkörperphysik

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden)

Literatur

Wird in der Vorlesung genannt.
Modul: Molekülspektroskopie [M-PHYS-102337]

3.146 Modul: Molekülspektroskopie [M-PHYS-102337]

Verantwortung: PD Dr. Andreas-Neil Unterreiner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
Physikalisches Ergänzungsfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-CHEMBIO-104639 | Molekülspektroskopie | 6 LP | Unterreiner |

Voraussetzungen
keine
3.147 Modul: Monte Carlo Ereignisgeneratoren [M-PHYS-104860]

Verantwortung: Dr. Stefan Gieseke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte: 6
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-109892 Monte Carlo Ereignisgeneratoren 6 LP Gieseke

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
An overview of the physics concepts that allow the simulation of collisions of highly energetic elementary particles at colliders. Approximations of perturbative Quantum Chromodynamics are discussed. Non-perturbative models of strong interactions will be used to explain the hadronization of particles that carry colour charge. The exercise-sessions will be partly used to discuss elements of the underlying Monte Carlo algorithms in terms of practical programming problems.

Voraussetzungen
keine

Modellierter Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104861 - Monte Carlo Ereignisgeneratoren (NF) darf nicht begonnen worden sein.

Inhalt
- Monte Carlo Method
- Hard matrix elements from Feynman Diagrams
- Parton showers
- Hadronization
- Hadronic interactions in terms of multiple partonic interactions
- Higher order corrections

Empfehlungen
Grundlegende Kenntnisse in Teilchenphysik sind empfehlenswert

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden).

Literatur
- Ellis, Stirling, Webber, "QCD and Collider Physics", Cambridge UP.
- Dissertori, Knowles, Schmelling, "Quantum Chromodynamics", Oxford UP
- Field, "Applications of Perturbative Quantum Chromodynamics (Frontiers in Physics)"
An overview of the physics concepts that allow the simulation of collisions of highly energetic elementary particles at colliders. Approximations of perturbative Quantum Chromodynamics are discussed. Non-perturbative models of strong interactions will be used to explain the hadronization of particles that carry colour charge. The exercise-sessions will be partly used to discuss elements of the underlying Monte Carlo algorithms in terms of practical programming problems.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104860 - Monte Carlo Ereignisgeneratoren darf nicht begonnen worden sein.

Inhalt

- Monte Carlo Method
- Hard matrix elements from Feynman Diagrams
- Parton showers
- Hadronization
- Hadronic interactions in terms of multiple partonic interactions
- Higher order corrections

Empfehlungen
Grundlegende Kenntnisse in Teilchenphysik sind empfehlenswert

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden).

Literatur

- Ellis, Stirling, Webber, "QCD and Collider Physics", Cambridge UP.
- Dissertori, Knowles, Schmelling, "Quantum Chromodynamics", Oxford UP
- Field, "Applications of Perturbative Quantum Chromodynamics (Frontiers in Physics)"
3.149 Modul: Nanomagnetism, Quantummagnetism and Spin Bath Physics [M-PHYS-103782]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Ergänzungsfach / Kondensierte Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-107626 | Nanomagnetism, Quantummagnetism and Spin Bath Physics | 4 LP | Wernsdorfer |

Qualifikationsziele

Die Studierenden erarbeiten Wissen auf dem Gebiet des Nanomagnetismus und Quantenmagnetismus, lernen grundlegende Konzepte zur Beschreibung von Spin-Systemen und deren Dynamik, und erlangen Einblick in den aktuellen Stand der Forschung.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103783 - Nanomagnetism, Quantummagnetism and Spin Bath Physics (NF) darf nicht begonnen worden sein.

Inhalt

Nanomagnetismus, single magnetic particle measurement techniques, mechanisms of magnetization reversal, influence of temperature on the magnetization reversal, Neel-Brown model, spin Hamiltonians, spin-lattice relaxation, molecular magnetism, magnetization, reversal by quantum tunneling, Landau-Zener tunneling, quantum phase interference, semiclassical descriptions, quantum dots, molecular quantum spintronics, quantum spin chains, spin qubits, spin bath physics, environmental decoherence effects.

Empfehlungen

Grundlegende Kenntnisse in klassischem Elektromagnetismus, Quantenmechanik, Festkörperphysik

Arbeitsaufwand

120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (90 Stunden)

Lehr- und Lernformen

4021051 Vorlesung, 2 SWS; W. Wernsdorfer
Modul: Nanomagnetism, Quantummagnetism and Spin Bath Physics (NF) [M-PHYS-103783]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie

Leistungspunkte 4, Turnus Unregelmäßig, Dauer 1 Semester, Sprache Deutsch, Level 4, Version 1

Pflichtbestandteile

| T-PHYS-107627 | Nanomagnetism, Quantummagnetism and Spin Bath Physics (NF) | 4 LP | Wernsdorfer |

Qualifikationsziele
Die Studierenden erarbeiten Wissen auf dem Gebiet des Nanomagnetismus und Quantenmagnetismus, lernen grundlegende Konzepte zur Beschreibung von Spin-Systemen und deren Dynamik, und erlangen Einblick in den aktuellen Stand der Forschung.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103782 - Nanomagnetism, Quantum magnetism and Spin Bath Physics darf nicht begonnen worden sein.

Inhalt
Nanomagnetismus, single magnetic particle measurement techniques, mechanisms of magnetization reversal, influence of temperature on the magnetization reversal, Neel-Brown model, spin Hamiltonians, spin-lattice relaxation, molecular magnetism, magnetization reversal by quantum tunneling, Landau-Zener tunneling, quantum phase interference, semiclassical descriptions, quantum dots, molecular quantum spintronics, quantum spin chains, spin qubits, spin bath physics, environmental decoherence effects.

Empfehlungen
Kenntnisse in klassischem Elektromagnetismus, Quantenmechanik, Festkörperphysik

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (90 Stunden)

Lehr- und Lernformen
4021051 Vorlesung, 2 SWS; W. Wernsdorfer

Literatur
Wird in der Vorlesung genannt.
3.151 Modul: Nanomaterials, mit Übungen [M-PHYS-105068]

Verantwortung: Dr. Thomas Reisinger
Prof. Dr. Wolfgang Wernsdorfer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie) (EV ab 01.10.2019)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik) (EV ab 01.10.2019)
Physikalisches Ergänzungsfach / Kondensierte Materie (EV ab 01.10.2019)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik) (EV ab 01.10.2019)

Leistungspunkte
8

Turnus
Jedes Wintersemester

Dauer
1 Semester

Sprache
Englisch

Level
4

Version
1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Falls dies dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Qualifikationsziele

The field of nanomaterials is a very active area of research driven by the need for novel materials with enhanced functional properties. Many of these have had and continue to have profound impact in technological applications. In this class the students will acquire an understanding of the various aspects of nanomaterials that lead to enhanced properties with an emphasis on nanoparticulate systems. The students will develop a clear knowledge of methods for the fabrication of nanomaterials, their properties (optical, magnetic and electrical) as well as some of their applications. In order to gain some insights to current research problems the tutorial will be organized as a journal club, with the students presenting and discussing selected research articles.

Voraussetzungen
keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-105069 - Nanomaterials, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-105071 - Nanomaterials, ohne Übungen darf nicht begonnen worden sein.

Inhalt

After a general introduction to nanostructured materials with an emphasis on nanoparticle based systems (Reduced dimensionality, size effects on properties) the course will cover the following topics:

1. Synthesis of clusters, nanoparticles and nanocomposites (Free-jet expansion, Physical vapor deposition, chemical vapor deposition, selection of chemical routes).
2. Optical properties (Quantum dots, luminescence, plasmons, measurement techniques, applications),
3. Magnetic properties (Superparamagnetism, measurement techniques, applications),
4. Transport properties (Superconductivity and magneto transport with an emphasis on granular systems),
5. Synthesis, properties and applications of nanowires and 2d materials

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).
Literatur

- R.K. Goyal, Nanomaterials and nanocomposites: synthesis, properties, characterization techniques and applications, CRC Press 2018
- A.S. Edelstein (Ed.), Nanomaterials: Synthesis, properties, applications
- D. Vollath. Nanomaterials: An Introduction to Synthesis, Properties and Applications
Erfolgskontrolle(n)
Es müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
The field of nanomaterials is a very active area of research driven by the need for novel materials with enhanced functional properties. Many of these have had and continue to have profound impact in technological applications. In this class the students will acquire an understanding of the various aspects of nanomaterials that lead to enhanced properties with an emphasis on nanoparticulate systems. The students will develop a clear knowledge of methods for the fabrication of nanomaterials, their properties (optical, magnetic and electrical) as well as some of their applications. In order to gain some insights to current research problems the tutorial will be organized as a journal club, with the students presenting and discussing selected research articles.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-105068 - Nanomaterials, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-105071 - Nanomaterials, ohne Übungen darf nicht begonnen worden sein.

Inhalt
After a general introduction to nanostructured materials with an emphasis on nanoparticle based systems (Reduced dimensionality, size effects on properties) the course will cover the following topics:

1. Synthesis of clusters, nanoparticles and nanocomposites (Free-jet expansion, Physical vapor deposition, chemical vapor deposition, selection of chemical routes).
2. Optical properties (Quantum dots, luminescence, plasmons, measurement techniques, applications),
3. Magnetic properties (Superparamagnetism, measurement techniques, applications),
4. Transport properties (Superconductivity and magneto transport with an emphasis on granular systems),
5. Synthesis, properties and applications of nanowires and 2d materials

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).

Literatur
- R.K. Goyal, Nanomaterials and nanocomposites : synthesis, properties, characterization techniques and applications, CRC Press 2018
- A.S. Edelstein (Ed.), Nanomaterials: Synthesis, properties, applications
- D. Vollath. Nanomaterials : An Introduction to Synthesis, Properties and Applications
Modul: Nanomaterials, ohne Übungen [M-PHYS-105071]

Verantwortung: Dr. Thomas Reisinger
Prof. Dr. Wolfgang Wernsdorfer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie) (EV ab 01.10.2019)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik) (EV ab 01.10.2019)
Physikalisches Ergänzungsfach / Kondensierte Materie (EV ab 01.10.2019)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik) (EV ab 01.10.2019)

Leistungspunkte
4 LP
Turnus
Jedes Wintersemester
Dauer
1 Semester
Sprache
Englisch
Level
4
Version
1

Pflichtbestandteile
T-PHYS-110288 Nanomaterials, ohne Übungen

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Qualifikationsziele
The field of nanomaterials is a very active area of research driven by the need for novel materials with enhanced functional properties. Many of these have had and continue to have profound impact in technological applications. In this class the students will acquire an understanding of the various aspects of nanomaterials that lead to enhanced properties with an emphasis on nanoparticulate systems. The students will develop a clear knowledge of methods for the fabrication of nanomaterials, their properties (optical, magnetic and electrical) as well as some of their applications. In order to gain some insights to current research problems the tutorial will be organized as a journal club, with the students presenting and discussing selected research articles.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-105068 - Nanomaterials, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-105069 - Nanomaterials, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
After a general introduction to nanostructured materials with an emphasis on nanoparticle based systems (Reduced dimensionality, size effects on properties) the course will cover the following topics:

1. Synthesis of clusters, nanoparticles and nanocomposites (Free-jet expansion, Physical vapor deposition, chemical vapor deposition, selection of chemical routes).
2. Optical properties (Quantum dots, luminescence, plasmons, measurement techniques, applications),
3. Magnetic properties (Superparamagnetism, measurement techniques, applications),
4. Transport properties (Superconductivity and magneto transport with an emphasis on granular systems),
5. Synthesis, properties and applications of nanowires and 2d materials

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (90 Stunden).
Literatur

- R.K. Goyal, Nanomaterials and nanocomposites: synthesis, properties, characterization techniques and applications, CRC Press 2018
- A.S. Edelstein (Ed.), Nanomaterials: Synthesis, properties, applications
- D. Vollath, Nanomaterials: An Introduction to Synthesis, Properties and Applications
3.154 Modul: Nano-Optics [M-PHYS-102146]

Verantwortung: Dr. Andreas Naber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte 8

Turnus Jedes Wintersemester

Dauer 1 Semester

Sprache Englisch

Level 4

Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-PHYS-102282</th>
<th>Nano-Optics</th>
<th>8 LP</th>
<th>Naber</th>
</tr>
</thead>
</table>

Qualifikationsziele

The students

- improve their understanding of general principles in electrodynamics and optics
- have a deeper understanding of the theoretical background in optical imaging and its relation to phenomena on a nanoscale
- are familiar with conventional techniques in optical microscopy and make use of their knowledge for the understanding of nano-optical methods
- realize the necessity of completely new experimental concepts to overcome the constraints of classical microscopy in the exploration of optical phenomena beyond the diffraction limit
- understand the basics of different experimental approaches for optical imaging on a nanoscale
- are able to discuss pros and cons of these techniques for applications in different fields of physics and biology
- are aware of the importance of nano-optical methods for the elucidation of long-standing interdisciplinary issues

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102147 - Nano-Optics (NF) darf nicht begonnen worden sein.

Inhalt

The lecture gives an introduction to theory and instrumentation of advanced methods in optical microscopy. Emphasis is laid on far- and near-field optical techniques with an optical resolution capability on a 10- to 100-nm-scale which is well below the principal limit of classical microscopy. Applications from different scientific disciplines are discussed (e.g., nano-antennas, single-molecule detection, plasmon-polariton propagation on metal surfaces, imaging of biological cell compartments including membranes).

Empfehlungen

Grundlagenkenntnisse in Optik

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)

Lehr- und Lernformen

4020021 Vorlesung 3 SWS

4020022 Übung 1 SWS

Literatur

Wird in der Vorlesung genannt.
3.155 Modul: Nano-Optics (NF) [M-PHYS-102147]

Verantwortung: Dr. Andreas Naber
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102360 | Nano-Optics (NF) | 8 LP | Naber |

Qualifikationsziele
The students

- improve their understanding of general principles in electrodynamics and optics
- have a deeper understanding of the theoretical background in optical imaging and its relation to phenomena on a nanoscale
- are familiar with conventional techniques in optical microscopy and make use of their knowledge for the understanding of nano-optical methods
- realize the necessity of completely new experimental concepts to overcome the constraints of classical microscopy in the exploration of optical phenomena beyond the diffraction limit
- understand the basics of different experimental approaches for optical imaging on a nanoscale
- are able to discuss pros and cons of these techniques for applications in different fields of physics and biology
- are aware of the importance of nano-optical methods for the elucidation of long-standing interdisciplinary issues

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102146 - Nano-Optics darf nicht begonnen worden sein.

Inhalt
The lecture gives an introduction to theory and instrumentation of advanced methods in optical microscopy. Emphasis is laid on far- and near-field optical techniques with an optical resolution capability on a 10- to 100-nm-scale which is well below the principal limit of classical microscopy. Applications from different scientific disciplines are discussed (e.g., nano-antennas, single-molecule detection, plasmon-polariton propagation on metal surfaces, imaging of biological cell compartments including membranes).

Empfehlungen
Grundlagenkenntnisse in Optik

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)

Lehr- und Lernformen
4020021 Vorlesung 3 SWS
4020022 Übung 1 SWS

Literatur
Wird in der Vorlesung genannt.
3.156 Modul: Naturgefahren und Risiken [M-PHYS-101833]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 4

Pflichtbestandteile

| T-PHYS-103525 | Geological Hazards and Risk | 8 LP | Gottschämmer |

Erfolgskontrolle(n)
Active and regular attendance of lecture and practicals. Project work (graded).

Qualifikationsziele
The students understand basic concepts of hazard and risk. They can explain in detail different aspects of earthquake hazard, volcanic hazard as well as other geological hazards, can compare and evaluate those hazards. They have fundamental knowledge of risk reduction and risk management. They know methods of risk modelling and are able to apply them.

Zusammensetzung der Modulnote
Project work will be graded.

Voraussetzungen
none

Inhalt
- Earthquake Hazards
 - Short introduction to seismology and seismometry (occurrence of tectonic earthquakes, types of seismic waves, magnitude, intensity, source physics)
 - Induced seismicity
 - Engineering seismology, Recurrence intervals, Gutenberg-Richter, PGA, PGV, spectral acceleration, hazard maps
 - Earthquake statistics
 - Liquefaction
- Tsunami Hazards
- Landslide Hazards
- Hazards from Sinkholes
- Volcanic Hazards
 - Short introduction to physical volcanology
 - Types of volcanic hazards
- The Concept of Risk, Damage and Loss
- Data Analysis and the use of GIS in Risk analysis
- Risk Modelling - Scenario Analysis
- Risk Reduction and Risk Management
- Analysis Feedback and Prospects in the Risk Modelling Industry

Arbeitsaufwand
- 60 h: active attendance during lectures and exercises
- 90 h: review, preparation and weekly assignments
- 90 h: project work
Lehr- und Lernformen
4060121 Geological Hazards and Risk (V2)
4060122 Übungen zu Geological Hazards and Risk (Ü2)

Literatur
Literature will be provided by the lecturer.
Modul: Neutrinophysik - Theoretische Aspekte [M-PHYS-102192]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
- Physikalisches Ergänzungsfach / Experimentelle Astroteilchenphysik (Wahl Experimentelle Astroteilchenphysik)
- Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Sprache</th>
<th>Level</th>
<th>Schwetz-Mangold</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104514</td>
<td>Neutrinophysik - theoretische Aspekte</td>
<td>8 LP</td>
<td>Unregelmäßig</td>
<td>Deutsch</td>
<td>4</td>
<td>Schwetz-Mangold</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102330 - Neutrinophysik - Theoretische Aspekte (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Grundlagenkenntnisse der Quantenmechanik werden vorausgesetzt. Kenntnisse fundamentaler Konzepte der Elementarteilchenphysik oder Quantenfeldtheorie sind empfehlenswert, werden aber auch kurz in der Vorlesung eingeführt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden)

Lehr- und Lernformen

4022091 Vorlesung 2 SWS; T. Schwetz-Mangold
4022092 Übung 1 SWS; T. Schwetz-Mangold, S. Vogl

Literatur

- C. Giunti and C. Kim, Fundamentals of Neutrino Physics and Astrophysics
- Kai Zuber, Neutrino Physics
- weitere Literatur wird in der Vorlesung bekanntgegeben
3.158 Modul: Neutrinophysik - Theoretische Aspekte (NF) [M-PHYS-102330]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Experimentelle Astroteilchenphysik
Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104637 | Neutrinophysik - Theoretische Aspekte (NF) | 8 LP | Schwetz-Mangold |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102192 - Neutrinophysik - Theoretische Aspekte darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Grundlagenkenntnisse der Quantenmechanik werden vorausgesetzt. Kenntnisse fundamentaler Konzepte der Elementarteilchenphysik oder Quantenfeldtheorie sind empfehlenswert, werden aber auch kurz in der Vorlesung eingeführt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135 Stunden)

Lehr- und Lernformen

4022091 Vorlesung 2 SWS; T. Schwetz-Mangold
4022092 Übung 1 SWS; T. Schwetz-Mangold, S. Vogl

Literatur

- C. Giunti and C. Kim, Fundamentals of Neutrino Physics and Astrophysics
- Kai Zuber, Neutrino Physics
weitere Literatur wird in der Vorlesung bekanntgegeben
3.159 Modul: Nonlinear Optics [M-ETIT-100430]

Verantwortung: Prof. Dr.-Ing. Christian Koos
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von: Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
Physikalisches Ergänzungsfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-101906 | Nonlinear Optics | 6 LP | Koos |

Erfolgskontrolle(n)
The oral exam is offered continuously upon individual appointment.

Qualifikationsziele
The students

- understand and can mathematically describe the effect of basic nonlinear-optical phenomena using optical susceptibility tensors,
- understand and can mathematically describe wave propagation in nonlinear anisotropic materials,
- have an overview and can quantitatively describe common second-order nonlinear effects comprising the electro-optic effect, second-harmonic generation, sum- and difference frequency generation, parametric amplification and optical rectification,
- have an overview and can quantitatively describe the Kerr effect and other common third-order nonlinear effects, comprising self- and cross-phase modulation, four-wave mixing, self-focussing, and third-harmonic generation,
- have an overview and can describe nonlinear-optical interaction in active devices such as semiconductor optical amplifiers
- conceive the basic principles of various phase-matching techniques and can apply them to practical design problems,
- conceive the basic principles electro-optic modulators, can apply them to practical design problems, and have an overview on state-of-the art devices,
- conceive the basic principles third-order nonlinear signal processing and can apply them to practical design problems.

Voraussetzungen
keine

Inhalt

1. The nonlinear optical susceptibility: Maxwell’s equations and constitutive relations, relation between electric field and polarization, formal definition and properties of the nonlinear optical susceptibility tensor,
2. Wave propagation in nonlinear anisotropic materials
3. Second-order nonlinear effects and devices: Linear electro-optic effect / Pockels effect, second-harmonic generation, sum- and difference-frequency generation, phase matching, parametric amplification, optical rectification
4. Third-order nonlinear effects and devices: Nonlinear refractive index and Kerr effect, self- and cross-phase modulation, four-wave mixing, self-focussing, third-harmonic generation
5. Nonlinear effects in active optical devices

Arbeitsaufwand
Approx. 150 h - 30 h lecture, 15 h exercises, 75 h homework and self-studies.
3.160 Modul: Oberflächenphysik, mit Übungen [M-PHYS-102134]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalische Ergänzungsfach / Kondensierte Materie
Physikalische Ergänzungsfach / Nanophysik (Wahl Nanophysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102512 | Oberflächenphysik, mit Übungen | 10 LP | Wulfhekel |

Qualifikationsziele
Der Studierende soll in die Grundbegriffe der Oberflächenphysik eingeführt werden, die relevanten theoretischen Konzepte beherrschen, die Konzepte und Messmethoden der Oberflächenphysik verstehen und anwenden lernen. In der Übung soll der Studierende konkrete Probleme der Oberflächenphysik in Gruppen lösen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102133 - Oberflächenphysik, ohne Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102135 - Oberflächenphysik, ohne Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102136 - Oberflächenphysik, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
In der Vorlesung Oberflächenphysik wird die Festkörperphysik an Oberflächen und Grenzflächen sowie die physikalische Chemie an Oberflächen besprochen. Beginnen mit der zweidimensionalen Raumgruppe wird die Struktur von Oberflächen besprochen sowie Effekte, die durch die Symmetriebrechung an Ober- und Grenzflächen entstehen. Weiterhin wird das Schichtwachstum und die Modifikation des Schichtwachstums mittels verschiedener Techniken behandelt. Der Hauptteil der Vorlesung beschäftigt sich mit der elektronischen Struktur von zweidimensionalen Systemen und Nanostrukturen sowie den experimentellen Techniken der Oberflächenphysik.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
300 Stunden bestehend aus Präsenzzeiten (75 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (225 Stunden).

Literatur

- K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama, Surface Science: An Introduction, Springer
- H. Ibach, Physics of Surfaces and Interfaces, Springer
3.161 Modul: Oberflächenphysik, mit Übungen (NF) [M-PHYS-102136]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102510 | Oberflächenphysik, mit Übungen (NF) | 10 LP | Wulfhekel |

Qualifikationsziele
Der Studierende soll in die Grundbegriffe der Oberflächenphysik eingeführt werden, die relevanten theoretischen Konzepte beherrschen lernen sowie die Konzepte und Messmethoden der Oberflächenphysik verstehen und anwenden lernen. In der Übung soll der Studierende konkrete Probleme der Oberflächenphysik in Gruppen lösen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102133 - Oberflächenphysik, ohne Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102134 - Oberflächenphysik, mit Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102135 - Oberflächenphysik, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
In der Vorlesung Oberflächenphysik wird die Festkörperphysik an Oberflächen und Grenzflächen sowie die physikalische Chemie an Oberflächen besprochen. Beginnen mit der zweidimensionalen Raumgruppe wird die Struktur von Oberflächen besprochen sowie Effekte, die durch die Symmetriebrechung an Ober- und Grenzflächen entstehen. Weiterhin wird das Schichtwachstum und die Modifikation des Schichtwachstums mittels verschiedener Techniken behandelt. Der Hauptteil der Vorlesung beschäftigt sich mit der elektronischen Struktur von zweidimensionalen Systemen und Nanostrukturen sowie den experimentellen Techniken der Oberflächenphysik.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
300 Stunden bestehend aus Präsenzeiten (75 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (225 Stunden).

Literatur
- K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama, Surface Science: An Introduction, Springer
- H. Ibach, Physics of Surfaces and Interfaces, Springer
3.162 Modul: Oberflächenphysik, ohne Übungen [M-PHYS-102133]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Kondensierte Materie
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte 8
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-102513 Oberflächenphysik, ohne Übungen 8 LP Wulfhekel

Qualifikationsziele
Der Studierende soll in die Grundbegriffe der Oberflächenphysik eingeführt werden, die relevanten theoretischen Konzepte beherrschen lernen sowie die Konzepte und Messmethoden der Oberflächenphysik verstehen und anwenden lernen. In der Übung soll der Studierende konkrete Probleme der Oberflächenphysik in Gruppen lösen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102134 - Oberflächenphysik, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102135 - Oberflächenphysik, ohne Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102136 - Oberflächenphysik, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
In der Vorlesung Oberflächenphysik wird die Festkörperphysik an Oberflächen und Grenzflächen sowie die physikalische Chemie an Oberflächen besprochen. Beginnen mit der zweidimensionalen Raumgruppe wird die Struktur von Oberflächen besprochen sowie Effekte, die durch die Symmetriebrechung an Ober- und Grenzflächen entstehen. Weiterhin wird das Schichtwachstum und die Modifikation des Schichtwachstums mittels verschiedener Techniken behandelt. Der Hauptteil der Vorlesung beschäftigt sich mit der elektronischen Struktur von zweidimensionalen Systemen und Nanostrukturen sowie den experimentellen Techniken der Oberflächenphysik.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).

Literatur
- K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama, Surface Science: An Introduction, Springer
- H. Ibach, Physics of Surfaces and Interfaces, Springer
3.163 Modul: Oberflächenphysik, ohne Übungen (NF) [M-PHYS-102135]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

Leistungspunkte 8
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulreferenz</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102511</td>
<td>Oberflächenphysik, ohne Übungen (NF) 8 LP Wulfhekel</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Der Studierende soll in die Grundbegriffe der Oberflächenphysik eingeführt werden, die relevanten theoretischen Konzepte beherrschen lernen sowie die Konzepte und Messmethoden der Oberflächenphysik verstehen und anwenden lernen. In der Übung soll der Studierende konkrete Probleme der Oberflächenphysik in Gruppen lösen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102133 - Oberflächenphysik, ohne Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102134 - Oberflächenphysik, mit Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102136 - Oberflächenphysik, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
In der Vorlesung Oberflächenphysik wird die Festkörperphysik an Oberflächen und Grenzflächen sowie die physikalische Chemie an Oberflächen besprochen. Beginnen mit der zweidimensionalen Raumgruppe wird die Struktur von Oberflächen besprochen sowie Effekte, die durch die Symmetriebrechung an Ober- und Grenzflächen entstehen. Weiterhin wird das Schichtwachstum und die Modifikation des Schichtwachstums mittels verschiedener Techniken behandelt. Der Hauptteil der Vorlesung beschäftigt sich mit der elektronischen Struktur von zweidimensionalen Systemen und Nanostrukturen sowie den experimentellen Techniken der Oberflächenphysik.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).

Literatur
- K. Oura, V.G. Lifshits, A.A. Sararin, A.V. Zotov, M. Katayama, Surface Science: An Introduction, Springer
- H. Ibach, Physics of Surfaces and Interfaces, Springer
3.164 Modul: Photovoltaik [M-ETIT-100513]

Verantwortung: Prof. Dr.-Ing. Michael Powalla
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Bestandteil von:
- Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
- Physikalisches Ergänzungsfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-ETIT-101939 | Photovoltaik | 6 LP | Powalla |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Modulnote ist die Note dieser schriftlichen Prüfung.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

"M-ETIT-100524 - Solar Energy" darf nicht begonnen sein.

Arbeitsaufwand

1. Präsenzzeit in Vorlesungen
2. Vor-/Nachbereitung derselben
3. Klausurvorbereitung und Präsenz in selbiger
Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt. Benotet werden Übungsblätter (25%), Vortrag (25%) und Bericht (50%).

Qualifikationsziele

Die Studierenden sind in der Lage, selbstorganisiert und lösungsorientiert an einer vorgegebenen konkreten Fragestellung aus dem Bereich der physikalischen Untersuchungsmethoden der Lithosphäre zu arbeiten und Fachliteratur zu verstehen. Sie können die Fragestellung überblicken, analysieren, interpretieren und bewerten. Sie sind in der Lage, fachbezogen zu argumentieren und über die Inhalte mit Kommilitonen zu diskutieren und ihren eigenen Standpunkt zu vertreten. Ebenso können sie den Standpunkt der anderen kritisch hinterfragen.

Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der Erfolgskontrolle anderer Art bestimmt. Benotet werden Übungsblätter (25%), Vortrag (25%) und Bericht (50%).

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul **M-PHYS-101875 - Physik der Lithosphäre, unbenotet** darf nicht begonnen worden sein.

Inhalt

- Aufbau und physikalische Eigenschaften der Lithosphäre
- Abgrenzung der Lithosphäre: Definitionen
- Gesteinsphysik
- Spannungen im Gestein
- Elastizität und Biegesteifigkeit
- Wärmefluss
- Physikalische Untersuchungsmethoden der Lithosphäre
Arbeitsaufwand
90 h teilen sich auf in

- 15 h Vorlesung und Übungen am GPI
- 5 h Nachbereitung der Vorlesung und Übungen am GPI
- 18 h Vorlesung und Übungen im Gelände (In-Situ)
- 15 h Bearbeitung der Übungsblätter
- 25 h Vorbereitung des Vortrags
- 12 h Erstellen eines Berichts
3.166 Modul: Physik der Lithosphäre, unbenotet [M-PHYS-101875]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

Erfolgskontrolle(n)
Studienleistung (unbenotet). Zum Bestehen der Studienleistung müssen erfolgreich Übungsblätter bearbeitet werden sowie ein schriftlicher Bericht eingereicht werden.

Qualifikationsziele

Zusammensetzung der Modulnote
Studienleistung (unbenotet). Zum Bestehen der Studienleistung müssen erfolgreich Übungsblätter bearbeitet werden sowie ein schriftlicher Bericht eingereicht werden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101960 - Physik der Lithosphäre, benotet darf nicht begonnen worden sein.

Inhalt
- Aufbau und physikalische Eigenschaften der Lithosphäre
- Abgrenzung der Lithosphäre: Definitionen
- Gesteinsphysik
- Spannungen im Gestein
- Elastizität und Biegesteifigkeit
- Wärmeübergang
- Physikalische Untersuchungsmethoden der Lithosphäre

Arbeitsaufwand
60 h teilen sich auf in
- 15 h Vorlesung und Übungen am GPI
- 18 h Vorlesung und Übungen im Gelände (In-Situ)
- 15 h Bearbeitung der Übungsblätter
- 12 h Erstellen eines Berichts
3.167 Modul: Physik der Quanteninformation [M-PHYS-104866]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
Erlangen von Wissen über die Grundlagen der Quanteninformation, Quantenalgorithmen und Quantensimulationen; Vertiefung des physikalischen Verständnisses der Quantenmechanik, insbesondere der Konzepte von Kohärenz, De-Kohärenz (Dissipation), Messprozess, Verschränkung.

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modelllierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul **M-PHYS-104867 - Physik der Quanteninformation (NF)** darf nicht begonnen worden sein.

Inhalt

I. THEORIE DES QUANTENCOMPUTINGS
1. Grundlagen (Qubits, Register, Gates, Rabi-Oszillationen, Einfache Algorithmen)
2. Quantenalgorithmen, Quantensimulationen
3. Adiabatische Prozesse (Landau-Zehner Übergänge, Berry Phase, Holonomies)
4. Offene Quantensysteme (Dichte-Operator, Dekoherränz), Quanten-Messungen
4. Quantenfehlerkorrektur

II. EINIGE PHYSIKALISCHE REALISIERUNGEN
1. Quantenoptik, kalte Ionen
2. Josephson-Qubits (Josephson Effekt, Makroskopisches Quantentunneln, Dissipation, Caldeira-Leggett Modell, Verschiedene Qubits)
3. Topologisches Quantencomputing / Majorana Quasiteilchen

Empfehlungen
Grundlagenkenntnisse in der Quantenmechanik I und II werden vorausgesetzt; Vorkenntnisse aus der Statistischen Physik und TKM I sind nützlich.

Literatur

- M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information"
- H.-P. Breuer and F. Petruccione, "The theory of open quantum systems"
- G. Chen et al., "Quantum Computing Devices: Principles, Designs, and Analysis"
3.168 Modul: Physik der Quanteninformation (NF) [M-PHYS-104867]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Theorie der Kondensierten Materie

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109900</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
Erlangen von Wissen über die Grundlagen der Quanteninformation, Quantenalgorithmen und Quantensimulationen; Vertiefung des physikalischen Verständnisses der Quantenmechanik, insbesondere der Konzepte von Kohärenz, De-Kohärenz (Dissipation), Messprozess, Verschränkung.

Voraussetzungen
keine

Modifizierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104866 - Physik der Quanteninformation darf nicht begonnen worden sein.

Inhalt
I. THEORIE DES QUANTENCOMPUTINGS
1. Grundlagen (Qubits, Register, Gates, Rabi-Oszillationen, Einfache Algorithmen)
2. Quantenalgorithmen, Quantensimulationen
3. Adiabatische Prozesse (Landau-Zehner Übergänge, Berry Phase, Holonomies)
4. Offene Quantensysteme (Dichte-Operator, Dekoherränz), Quanten-Messungen
5. Quantenfehlerkorrektur

II. EINIGE PHYSIKALISCHE REALISIERUNGEN
1. Quantenoptik, Kalte Ionen
2. Josephson-Qubits (Josephson Effekt, Makroskopisches Quantentunneln, Dissipation, Caldeira-Leggett Modell, Verschiedene Qubits)
3. Topologisches Quantencomputing / Majorana Quasiteilchen

Empfehlungen
Grundlagenkenntnisse in der Quantenmechanik I und II werden vorausgesetzt; Vorkenntnisse aus der Statistischen Physik und TKM I sind nützlich.

Literatur
- M. A. Nielsen and I. L. Chuang, "Quantum Computation and Quantum Information"
- H.-P. Breuer and F. Petruccione, "The theory of open quantum systems"
- G. Chen et al., "Quantum Computing Devices: Principles, Designs, and Analysis"
3.169 Modul: Physik seismischer Messinstrumente [M-PHYS-102358]

Verantwortung: Dr. Thomas Forbriger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104727 | Physik seismischer Messinstrumente | 6 LP | Forbriger |

Erfolgskontrolle(n)

To pass the module, the oral exam (approx. 45 minutes) must be passed. As prerequisite a student must successfully participate the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Qualifikationsziele

The students understand the causes and consequences of different physical excitation mechanisms for inertial seismometers. They can explain essential considerations for installation and shielding. The students understand the concept of frequency response and are able to express a transfer function in terms of poles and zeroes. They can apply these concepts to sensors with electrodynamic transducers. The students can explain the significance of linearity. They are able to quantitatively infer the physical input signal from the recording of a seismic instrument. The students are able to use the concepts of bandwidth and dynamic range when expressing properties of signals and instruments. The students know means to express noise levels and to estimate instrumental self-noise. They can explain measures to increase the sensitivity and can explain the essential principles of modern force-balance feedback seismometers.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102653 - Physik seismischer Messinstrumente (NF) darf nicht begonnen worden sein.

Inhalt

- The mechanical sensor and the driven harmonic oscillator
- Various driving forces and wanted and unwanted sensitivity
- Installation and shielding
- The seismometer with electrodynamic transducer, effective gain, and damping due to passive electrodynamic feedback
- The frequency response, transfer function, poles and zeroes, non-linearity
- Seismic signals, bandwidth, dynamic range, and noise floor
- The force-balance feedback seismometer, displacement transducer, phase sensitive rectifier, controller, and the role of open-loop gain
- Effective transfer function of the velocity broad-band seismometer

Empfehlungen

A sound knowledge of the theory of ordinary differential equations and integral transformations (Fourier transformation) is expected. Basic skills in practical signal processing using elementary computer programming techniques are needed in the exercises. A basic understanding of seismic waves in the Earth is helpful.

Literatur

Further recommendations will be given during the course.
Erfolgskontrolle(n)
To pass the module, a student must successfully participate the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in ilias.

Qualifikationsziele
The students understand the causes and consequences of different physical excitation mechanisms for inertial seismometers. They can explain essential considerations for installation and shielding. The students understand the concept of frequency response and are able to express a transfer function in terms of poles and zeroes. They can apply these concepts to sensors with electrodynamic transducers. The students can explain the significance of linearity. They are able to quantitatively infer the physical input signal from the recording of a seismic instrument. The students are able to use the concepts of bandwidth and dynamic range when expressing properties of signals and instruments. The students know means to express noise levels and to estimate instrumental self-noise. They can explain measures to increase the sensitivity and can explain the essential principles of modern force-balance feedback seismometers.

Voraussetzungen
keine

Modellierter Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102358 - Physik seismischer Messinstrumente darf nicht begonnen worden sein.

Inhalt
• The mechanical sensor and the driven harmonic oscillator
• Various driving forces and wanted and unwanted sensitivity
• Installation and shielding
• The seismometer with electrodynamic transducer, effective gain, and damping due to passive electrodynamic feedback
• The frequency response, transfer function, poles and zeroes, non-linearity
• Seismic signals, bandwidth, dynamic range, and noise floor
• The force-balance feedback seismometer, displacement transducer, phase sensitive rectifier, controller, and the role of open-loop gain
• Effective transfer function of the velocity broad-band seismometer

Empfehlungen
A sound knowledge of the theory of ordinary differential equations and integral transformations (Fourier transformation) is expected. Basic skills in practical signal processing using elementary computer programming techniques are needed in the exercises. A basic understanding of seismic waves in the Earth is helpful.

Literatur

Further recommendations will be given during the course.
3.171 Modul: Physikalisches Fortgeschrittenenpraktikum [M-PHYS-101395]

Verantwortung: Dr. Andreas Naber
Dr. Christoph Sürgers
Dr. Joachim Wolf

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Fortgeschrittenenpraktikum

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102479 | Physikalisches Fortgeschrittenenpraktikum | 6 LP | Naber, Sürgers, Wolf |

Erfolgskontrolle(n)

Qualifikationsziele
Erlernen moderner experimenteller Methoden und Techniken sowie Vermittlung fortgeschrittener Fähigkeiten bei Versuchsaufbau, Messung und Auswertung.

Voraussetzungen
keine

Inhalt

Anmerkungen
Verpflichtende Teilnahme an Vorbesprechung mit Sicherheitsunterweisung und Strahlenschutzbelehrung.

Arbeitsaufwand
5 Versuche, 180 Stunden bestehend aus Präsenzzeiten (60), Vorbereitung, Auswertung der Versuche und Anfertigen der Protokolle (120).

Literatur
Lehrbücher der Experimentalphysik. Spezielles Material für jeden einzelnen Versuch wird bereitgestellt.
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach

Leistungspunkte: 8
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104384</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 1 TL, 8 LP ben</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
3.173 Modul: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 2 T len [M-PHYS-103129]

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106221</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 2 TL, 4 LP ben</td>
<td>4 LP</td>
</tr>
<tr>
<td>T-PHYS-106222</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 2 TL, 4 LP ben</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106223</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL, 3 LP ben</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-PHYS-106224</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL, 3 LP ben</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-PHYS-106225</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL, 2 LP ben</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
3.175 Modul: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TLen [M-PHYS-103131]

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106226</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-106227</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-106228</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-106229</td>
<td>Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
3.176 Modul: Precision Tests of the Standard Model at low Energies [M-PHYS-104873]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-109909 | Precision Tests of the Standard Model at low Energies | 4 LP Melnikov |

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Multiple concepts and methods of Quantum Field Theory are needed to make sense of low-energy precision experiments. The goal of these lectures is to show how abstract knowledge from Quantum Field Theory classes can be used to understand Nature.

Zusammensetzung der Modulnote

Entprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen

keine

Inhalt

Precision tests of the Standard Model at low energies allow us to explore physics of elementary particles in a way that is complementary to collider physics. The interpretation of these experimental results is always difficult. In this lecture, it will be discussed how this is done by considering a few examples, such as muon and electron anomalous magnetic moments, parity violating electron scattering, muon decay, atomic parity violation experiments etc.

Empfehlungen

Gute Kenntnisse auf dem Gebiet der Quantenfeldtheorie, mindestens auf dem Level von TTP I.

Arbeitsaufwand

120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (90 Stunden)

Literatur

- K. Melnikov, A. Vainshtein, Theory of the muon anomalous magnetic moment, Springer Tracts Mod.Phys. 216 (2006);
3.177 Modul: QCD und Colliderphysik, mit Übungen [M-PHYS-103326]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte 8
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-106670 QCD und Colliderphysik, mit Übungen 8 LP Melnikov, Zeppenfeld

Qualifikationsziele
Interesting physics at the LHC (e.g. the Higgs boson discovery) requires good understanding and control of strong interactions. The goal of these lectures is to provide a comprehensive introduction to the use of Quantum Chromodynamic for the description of hadron collisions.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103327 - QCD und Colliderphysik, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt

1. Parton model: Parton densities and cross sections for hadron colliders, collider kinematics
2. QCD as a quantum field theory, path integral formulation of quantum field theories, application to QCD, Faddeev Popov ghost fields, running coupling
3. Calculation of cross sections for important collider processes
4. Infrared and collinear divergences (physical meaning, parton splitting, cancellation, jets)
5. Theory of parton showers (multiple emissions, Sudakov form factors, ordered emission)

Empfehlungen
Working knowledge of Quantum Field Theory, at least at the level of TTP I.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).

Literatur

- Lewis H. Ryder, Quantum Field Theory, Cambridge University Press
3.178 Modul: QCD und Colliderphysik, mit Übungen (NF) [M-PHYS-103327]

Verantwortung: Prof. Dr. Kirill Melnikov
 Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

Leistungspunkte 8 Turnus Unregelmäßig Dauer 1 Semester Sprache Deutsch Level 4 Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Description</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106671</td>
<td>QCD und Colliderphysik, mit Übungen (NF)</td>
<td>8 LP Melnikov, Zeppenfeld</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Interesting physics at the LHC (e.g. the Higgs boson discovery) requires good understanding and control of strong interactions. The goal of these lectures is to provide a comprehensive introduction to the use of Quantum Chromodynamic for the description of hadron collisions.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103326 - QCD und Colliderphysik, mit Übungen darf nicht begonnen worden sein.

Inhalt
1. Parton model: Parton densities and cross sections for hadron colliders, collider kinematics
2. QCD as a quantum field theory, path integral formulation of quantum field theories, application to QCD, Faddeev Popov ghost fields, running coupling
3. Calculation of cross sections for important collider processes
4. Infrared and collinear divergences (physical meaning, parton splitting, cancellation, jets)
5. Theory of parton showers (multiple emissions, Sudakov form factors, ordered emission)

Empfehlungen
Working knowledge of Quantum Field Theory, at least at the level of TTP I.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).

Literatur
- Lewis H. Ryder, Quantum Field Theory, Cambridge University Press
3.179 Modul: Quantenoptik auf der Nanoskala [M-PHYS-103325]

Modulhandbuch mit Stand vom 09.10.2019

Verantwortung: Prof. Dr. David Hunger

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte: 4

Turnus: Unregelmäßig

Dauer: 1 Semester

Sprache: Deutsch

Level: 4

Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106669</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103330 - Quantenoptik auf der Nanoskala (NF) darf nicht begonnen worden sein.

Inhalt

- Grundlagen der Licht-Materie Wechselwirkung
- Mikro- und nanooptische Elemente
- Dipolemission in strukturierten Umgebungen
- Quantenkohärente Licht-Materiewechselwirkung
- Quantenemitter im Festkörper
- Optische Auslese und Manipulation einzelner Spins

Empfehlungen

Grundlegende Kenntnisse in klassischem Elektromagnetismus, Quantenmechanik, Atomphysik

Arbeitsaufwand

120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (90 Stunden)

Literatur

- Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
- Fundamentals of Photonics, Saleh,Teich
3.180 Modul: Quantenoptik auf der Nanoskala (NF) [M-PHYS-103330]

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106675</td>
<td>Quantenoptik auf der Nanoskala (NF)</td>
<td>4 LP</td>
<td>Hunger</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103325 - Quantenoptik auf der Nanoskala darf nicht begonnen worden sein.

Inhalt

- Grundlagen der Licht-Materie Wechselwirkung
- Mikro- und nanooptische Elemente
- Dipolemission in strukturierten Umgebungen
- Quantenkohärente Licht-Materiewechselwirkung
- Quantenemitter im Festkörper
- Optische Auslese und Manipulation einzelner Spins

Empfehlungen

Grundlegende Kenntnisse in klassischem Elektromagnetismus, Quantenmechanik, Atomphysik

Arbeitsaufwand

120 Stunden bestehend aus Präsenzzeiten (30 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (90 Stunden)

Literatur

- Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
- Fundamentals of Photonics, Saleh,Teich

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte: 8
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108478</td>
<td>Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103330 - Quantenoptik auf der Nanoskala (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103325 - Quantenoptik auf der Nanoskala darf nicht begonnen worden sein.
5. Das Modul M-PHYS-104095 - Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
- Grundlagen der Quantenoptik
- Mikro- und nanooptische Elemente
- Dipolemission in strukturierten Umgebungen
- Quantenemitter im Festkörper
- Optische Auslese und Manipulation einzelner Spins
- Spin-Photon Schnittstellen

Empfehlungen
Grundlegende Kenntnisse in klassischem Elektromagnetismus und klassischer Optik, Quantenmechanik, Atomphysik; Kenntnisse in Quantenoptik sind von Vorteil aber nicht verpflichtend.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).
Literatur

- Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
- Fundamentals of Photonics, Saleh, Teich
- wissenschaftliche Artikel (werden verteilt)
Modul: Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen (NF) [M-PHYS-104093]

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

Leistungspunkte: 8
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Beschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108479</td>
<td>Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen (NF)</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103330 - Quantenoptik auf der Nanoskala (NF) darf nicht begonnen worden sein.
4. Das Modul M-PHYS-104095 - Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen (NF) darf nicht begonnen worden sein.
5. Das Modul M-PHYS-103325 - Quantenoptik auf der Nanoskala darf nicht begonnen worden sein.

Inhalt

- Grundlagen der Quantenoptik
- Mikro- und nanooptische Elemente
- Dipolemission in strukturierten Umgebungen
- Quantenmitten im Festkörper
- Optische Auslese und Manipulation einzelner Spins
- Spin-Photon Schnittstellen

Empfehlungen
Grundlegende Kenntnisse in klassischem Elektromagnetismus und klassischer Optik, Quantenmechanik, Atomphysik; Kenntnisse in Quantenoptik sind von Vorteil aber nicht verpflichtend.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180 Stunden).
Literatur

- Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
- Fundamentals of Photonics, Saleh, Teich
- wissenschaftliche Artikel (werden verteilt)

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik
Kit-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte: 6
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen</th>
<th>6 LP</th>
<th>Hunger</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108480</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103330 - Quantenoptik auf der Nanoskala (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103325 - Quantenoptik auf der Nanoskala darf nicht begonnen worden sein.
5. Das Modul M-PHYS-104095 - Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
- Grundlagen der Quantenoptik
- Mikro- und nanooptische Elemente
- Dirolemission in strukturierten Umgebungen
- Quantenemitter im Festkörper
- Optische Auslese und Manipulation einzelner Spins
- Spin-Photon Schnittstellen

Empfehlungen
Grundlegende Kenntnisse in klassischem Elektromagnetismus und klassischer Optik, Quantenmechanik, Atomphysik; Kenntnisse in Quantenoptik sind von Vorteil aber nicht verpflichtend.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (135 Stunden).
Literatur

- Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
- Fundamentals of Photonics, Saleh, Teich
- wissenschaftliche Artikel (werden verteilt)
Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Optik und Photonik

Leistungspunkte 6
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108481</td>
<td>Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen (NF)</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103330 - Quantenoptik auf der Nanoskala (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103325 - Quantenoptik auf der Nanoskala darf nicht begonnen worden sein.

Inhalt
• Grundlagen der Quantenoptik
• Mikro- und nanooptische Elemente
• Dipolemission in strukturierten Umgebungen
• Quantenemitter im Festkörper
• Optische Auslese und Manipulation einzelner Spins
• Spin-Photon Schnittstellen

Empfehlungen
Grundlegende Kenntnisse in klassischem Elektromagnetismus und klassischer Optik, Quantenmechanik, Atomphysik; Kenntnisse in Quantenoptik sind von Vorteil aber nicht verpflichtend.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (135 Stunden).

Literatur
• Principles of Nano-Optics, Novotny, Hecht, Cambridge University Press
• Quantum Optics, M. Scully, M. Suhail Zubairy, Cambridge University Press
• Fundamentals of Photonics, Saleh,Teich
• wissenschaftliche Artikel (werden verteilt)
Qualifikationsziele
Following the first demonstration of a coherent superconducting circuit, almost 20 years ago, the field of quantum information processing using superconducting quantum bits has witnessed an exponential growth. The current performances suggest that within a horizon of a few years, superconducting quantum machines could outperform even the best classical machines for a few types of particularly hard tasks. During this class, the students will acquire a basic understanding of the principles of quantum information processing and the functioning of computers based on quantum bits (qubits), with an emphasis on experimental implementations using superconducting circuits and cavities. The supporting problem sets will cover in detail a broad set of calculations, from derivations of basic results, to solving practical problems one could encounter in a research laboratory.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-103176 - Quantum Machines: Design and Implementation in Solid State Devices (NF) darf nicht begonnen worden sein.

Inhalt
After a general introduction to the concepts of quantum information processing, we will present an overview of different experimental implementations. We will then focus on the quantization of superconducting circuits and the functioning of different types of superconducting qubits. We will discuss sources of loss and dephasing, and we will mention several strategies to increase the coherence of superconducting qubits. During the last few lectures, we will focus on advanced topics such as circuit quantum electrodynamics (cQED) and quantum optics in the microwave domain.

Empfehlungen
Grundlagenkenntnisse der Quantenmechanik

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Lehr- und Lernformen
4021021 Vorlesung 2 SWS; A. V. Ustinov; I. Pop
4021022 Übungen 2 SWS; A. V. Ustinov; I. Pop

Literatur
Wird in der Vorlesung genannt.
Qualifikationsziele
Following the first demonstration of a coherent superconducting circuit, almost 20 years ago, the field of quantum information processing using superconducting quantum bits has witnessed an exponential growth. The current performances suggest that within a horizon of a few years, superconducting quantum machines could outperform even the best classical machines for a few types of particularly hard tasks. During this class, the students will acquire a basic understanding of the principles of quantum information processing and the functioning of computers based on quantum bits (qubits), with an emphasis on experimental implementations using superconducting circuits and cavities. The supporting problem sets will cover in detail a broad set of calculations, from derivations of basic results, to solving practical problems one could encounter in a research laboratory.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

Inhalt
After a general introduction to the concepts of quantum information processing, we will present an overview of different experimental implementations. We will then focus on the quantization of superconducting circuits and the functioning of different types of superconducting qubits. We will discuss sources of loss and dephasing, and we will mention several strategies to increase the coherence of superconducting qubits. During the last few lectures, we will focus on advanced topics such as circuit quantum electro-dynamics (cQED) and quantum optics in the microwave domain.

Empfehlungen
Grundlagenkenntnisse der Quantenmechanik

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Lehr- und Lernformen
4021021 Vorlesung 2 SWS; A.V. Ustinov; I. Pop
4021022 Übungen 2 SWS; A.V. Ustinov; I. Pop

Literatur
Wird in der Vorlesung genannt.
Modul: Quantum Physics in One Dimension [M-PHYS-104097]

Verantwortung: Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte: 8
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108482</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualifikationsziele
Deeper understanding of the condensed matter theory; gaining knowledge on most important phenomena and concepts in the physics of 1D quantum systems, as well as on the corresponding field-theoretical and computational approaches.

Voraussetzungen
keine

Modellierter Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104098 - Quantum Physics in One Dimension (NF) darf nicht begonnen worden sein.

Inhalt

- Introduction
- Disorder in one dimension; Anderson localization; Field theory (sigma model); Interplay of disorder and electron-electron interactions in quasi-1D systems
- Bosonization approaches for interacting 1D electrons; Sine-Gordon model
- Non-equilibrium physics in 1D: Bosonization and kinetics
- Impurity problem and disorder in interacting 1D systems (Kane-Fisher theory; Giamarchi-Schulz-renormalization group; Many-body localization)
- Quantum-Hall edges
- Introduction to cold atoms in 1D (realizations and models)
- Numerical tools for interacting 1D systems; basics of DMRG.

Empfehlungen
Basic knowledge of solid state physics, quantum mechanics, and statistical physics is assumed. It is recommended to take this course after the course Theorie der Kondensierten Materie I.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (180)

Lehr- und Lernformen
4024131 Vorlesung, 3 SWS; I. Gornyi, A. Mirlin, E. Doggen
4024132 Übungen, 1 SWS; I. Gornyi, A. Mirlin, E. Doggen

Literatur

- T. Giamarchi, Quantum Physics in One Dimension
- A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems
- X.-G. Wen, Quantum Field Theory of Many-body Systems
Qualifikationsziele
Deeper understanding of the condensed matter theory; gaining knowledge on most important phenomena and concepts in the physics of 1D quantum systems, as well as on the corresponding field-theoretical and computational approaches.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104097 - Quantum Physics in One Dimension darf nicht begonnen worden sein.

Inhalt
- Introduction
- Disorder in one dimension; Anderson localization; Field theory (sigma model); Interplay of disorder and electron-electron interactions in quasi-1D systems
- Bosonization approaches for interacting 1D electrons; Sine-Gordon model
- Non-equilibrium physics in 1D: Bosonization and kinetics
- Impurity problem and disorder in interacting 1D systems (Kane-Fisher theory; Giamarchi-Schulz-renormalization group; Many-body localization)
- Quantum-Hall edges
- Introduction to cold atoms in 1D (realizations and models)
- Numerical tools for interacting 1D systems; basics of DMRG

Empfehlungen
Basic knowledge of solid state physics, quantum mechanics, and statistical physics is assumed. It is recommended to take this course after the course Theorie der Kondensierten Materie I.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (180)

Lehr- und Lernformen
4024131 Vorlesung, 3 SWS; I. Gornyi, A. Mirlin, E. Doggen
4024132 Übungen, 1SWS; I. Gornyi, A. Mirlin, E. Doggen

Literatur
- T. Giamarchi, Quantum Physics in One Dimension
- A.O. Gogolin, A.A. Nersesyan, A.M. Tsvelik, Bosonization and Strongly Correlated Systems
- X.-G. Wen, Quantum Field Theory of Many-body Systems
3.189 Modul: Reflexionsseismisches Processing [M-PHYS-102364]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Pflichtbestandteile

| T-PHYS-104735 | Reflexionsseismisches Processing | 8 LP | Bohlen |

Erfolgskontrolle(n)
To pass the module, the oral exam (approx. 45 minutes) must be passed. As prerequisite a student must successfully participate the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Qualifikationsziele
The students know the fundamental concepts of seismic acquisition, processing and imaging in reflection seismics. They can correctly name equipment, tools and processes and effectively communicate with specialists in the field of seismics. Students understand the various steps involved in seismic processing/imaging, their underlying theory and how they affect the data. They are able to apply the concepts and equations to simple exemplary seismic data.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102654 - Reflexionsseismisches Processing (NF) darf nicht begonnen worden sein.

Inhalt
- Overview of seismic methods and wave propagation basics
- Essential signal processing concepts and tools
- Seismic acquisition, sources and receivers, marine and land
- Geometries and traveltimes, NMO and DMO
- Processing steps: from data loading to denoise and demultiple
- Velocity analysis, NMO correction, stacking, SNR
- Imaging: basic concepts, time and depth migration, migration methods
- Seismic resolution
- Optional: advanced acquisition, processing and imaging technologies

Empfehlungen
Experience with Matlab, the Linux commandline, and shell scripts is beneficial. Knowledge of fundamental signal processing theory is essential.

Literatur
Modul: Reflexionsseismisches Processing (NF) [M-PHYS-102654]

Verantwortung: Prof. Dr. Thomas Bohlen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Geophysik

Leistungspunkte: 8

Turnus: Jedes Wintersemester

Dauer: 1 Semester

Sprache: Englisch

Level: 4

Version: 2

Pflichtbestandteile

| T-PHYS-105568 | Reflexionsseismisches Processing (NF) | 8 LP | Bohlen |

Erfolgskontrolle(n)

To pass the module, a student must successfully participate the corresponding exercise classes. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Qualifikationsziele

The students know the fundamental concepts of seismic acquisition, processing and imaging in reflection seismics. They can correctly name equipment, tools and processes and effectively communicate with specialists in the field of seismics. Students understand the various steps involved in seismic processing/imaging, their underlying theory and how they affect the data. They are able to apply the concepts and equations to simple exemplary seismic data.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102364 - Reflexionsseismisches Processing darf nicht begonnen worden sein.

Inhalt

- Overview of seismic methods and wave propagation basics
- Essential signal processing concepts and tools
- Seismic acquisition, sources and receivers, marine and land
- Geometries and traveltimes, NMO and DMO
- Processing steps: from data loading to denoise and demultiple
- Velocity analysis, NMO correction, stacking, SNR
- Imaging: basic concepts, time and depth migration, migration methods
- Seismic resolution
- Optional: advanced acquisition, processing and imaging technologies

Empfehlungen

Experience with Matlab, the Linux commandline, and shell scripts is beneficial. Knowledge of fundamental signal processing theory is essential.

Literatur

3.191 Modul: Seismic Data Processing with final report (graded) [M-PHYS-104186]

Verantwortung: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Ergänzungsfach / Geophysik (EV ab 01.10.2019)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Befristung</th>
<th>Befristungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108656</td>
<td>Seismic Data Processing, final report (graded)</td>
<td></td>
<td>4 LP</td>
<td>Bohlen, Hertweck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-PHYS-108686</td>
<td>Seismic Data Processing, coursework</td>
<td></td>
<td>2 LP</td>
<td>Bohlen, Hertweck</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Students have to participate the lecture/exercise on a regular basis and give a final presentation about their processing results (2 ECTS points). Students who would like to get the full 6 ECTS points also need to prepare and hand in a seismic data processing report. The report will determine the final grade (if applicable).

Qualifikationsziele

The students have hands-on experience applying typical seismic processing and imaging techniques to reflection seismic field data. In this way, they understand the reflection seismic method and have practical skills in data analysis and problem solving which are beneficial in their professional life later on, not only in exploration. Students can set up a basic processing and imaging flow, understand the individual processing steps and their purpose, and describe the influence of important parameters on processing results. They are able to identify data shortcomings and imaging challenges and develop basic solutions, analyze the success of individual processing/imaging steps, and critically assess the overall quality of their work. Finally, students are able to present their processing results in oral and written form.

Zusammensetzung der Modulnote

The report will determine the final grade.

Voraussetzungen

None

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104188 - Seismic Data Processing with final report (ungraded) darf nicht begonnen worden sein.

Inhalt

- Field data loading, quality control, trace edits and geometry setup
- Spectral analysis, filter application, geometrical spreading correction
- Deconvolution, zero-phasing
- Denoising using various approaches
- Multiple identification and removal (SRME, Radon)
- CMP sort, velocity analysis, NMO correction, mute and stack
- Time migration (prestack and poststack)
- Post-migration processing
- Basic interpretation (in cooperation with KIT-AGW)
- Optional: depth velocity model building and depth migration

Empfehlungen

No explicit requirements. However, basic knowledge of the reflection seismic method and general computer skills are essential. This course does not require any programming skills.

Anmerkungen

A commercial data processing software is used during this course.
Lehr- und Lernformen
4060321 Th. Bohlen, Th. Hertweck (V1)
4060322 Th. Bohlen, Th. Hertweck (Ü2)

Literatur

M 3.192 Modul: Seismic Data Processing with final report (ungraded) [M-PHYS-104188]

Verantwortung: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Coursenumber</th>
<th>Course Name</th>
<th>LP</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108657</td>
<td>Seismic Data Processing, final report (ungraded)</td>
<td>4</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>T-PHYS-108686</td>
<td>Seismic Data Processing, coursework</td>
<td>2</td>
<td>Bohlen, Hertweck</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Students have to participate the lecture/exercise on a regular basis and give a final presentation about their processing results (2 ECTS points). Students who would like to get the full 6 ECTS points also need to prepare and hand in a seismic data processing report. The report will determine the final grade (if applicable).

Qualifikationsziele

The students have hands-on experience applying typical seismic processing and imaging techniques to reflection seismic field data. In this way, they understand the reflection seismic method and have practical skills in data analysis and problem solving which are beneficial in their professional life later on, not only in exploration. Students can set up a basic processing and imaging flow, understand the individual processing steps and their purpose, and describe the influence of important parameters on processing results. They are able to identify data shortcomings and imaging challenges and develop basic solutions, analyze the success of individual processing/imaging steps, and critically assess the overall quality of their work. Finally, students are able to present their processing results in oral and written form.

Zusammensetzung der Modulnote

The coursework is not graded.

Voraussetzungen

None

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104186 - Seismic Data Processing with final report (graded) darf nicht begonnen worden sein.

Inhalt

- Field data loading, quality control, trace edits and geometry setup
- Spectral analysis, filter application, geometrical spreading correction
- Deconvolution, zero-phasing
- Denoising using various approaches
- Multiple identification and removal (SRME, Radon)
- CMP sort, velocity analysis, NMO correction, mute and stack
- Time migration (prestack and poststack)
- Post-migration processing
- Basic interpretation (in cooperation with KIT-AGW)
- Optional: depth velocity model building and depth migration

Empfehlungen

No explicit requirements. However, basic knowledge of the reflection seismic method and general computer skills are essential. This course does not require any programming skills.

Anmerkungen

A commercial data processing software is used during this course.
Lehr- und Lernformen
4060321 Th. Bohnen, Th. Hertweck (V1)
4060322 Th. Bohnen, Th. Hertweck (Ü2)

Literatur
3.193 Modul: Seismology [M-PHYS-105225]

Verantwortung: Prof. Dr. Andreas Rietbrock

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Ergänzungsfach / Geophysik (EV ab 01.10.2019)

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Voraussetzungen</th>
<th>keine</th>
</tr>
</thead>
</table>

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-105226 - Seismology (NF) darf nicht begonnen worden sein.

Inhalt

- History of seismology
- Elasticity and seismic waves
- Body waves and surface waves
- Seismogram interpretation
- Earthquake location
- Determination of Earth structure
- Seismic sources
- Seismic moment tensor
- Earthquake kinematics and dynamics
- Seismotectonics

Empfehlungen

A sound knowledge of the fundamentals in Geophysics. Basic skills in programming and Python to solve exercises.

Lehr- und Lernformen

V2 Ü2, 4 SWS, 8 ECTS

Literatur

- Peter M. Shearer, "Introduction to Seismology", Cambridge University Press.
3. Modul: Seismology (NF) [M-PHYS-105226]

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik (EV ab 01.10.2019)

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 2

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-110604 Seismology (NF)</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
To pass the module, the examinations of other type must be passed, based on successful participation of the exercises. Successful participation is based on exceeding a certain percentage of the combined total number of points awarded, as applicable, for exercise sheets, other homework (such as, for instance, reports) and written tests held as part of the exercises. The percentage threshold is communicated to students at the beginning of the course and documented in Ilias.

Qualifikationsziele
The students understand the fundamental concepts of seismology and the earthquake rupture process. They have a knowledge of seismogram interpretation, fundamentals of seismic wave propagation and the representations of the earthquake source. Students are able to apply their knowledge to observed data to gain an insight into the Earth structure and the earthquake source.

Zusammensetzung der Modulnote
The grade of the module results from grade of the oral exam.

Voraussetzungen
keine

Modellierter Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-105225 - Seismology darf nicht begonnen worden sein.

Inhalt

• History of seismology
• Elasticity and seismic waves
• Body waves and surface waves
• Seismogram interpretation
• Earthquake location
• Determination of Earth structure
• Seismic sources
• Seismic moment tensor
• Earthquake kinematics and dynamics
• Seismotectonics

Empfehlungen
A sound knowledge of the fundamentals in Geophysics. Basic skills in programming and Python to solve exercises.

Lehr- und Lernformen
V2 Ü2, 4 SWS, 8 ECTS

Literatur

• Peter M. Shearer, "Introduction to Seismology", Cambridge University Press.
• Seth Stein and Michael Wysession, "An Introduction to Seismology, Earthquakes, and Earth Structure", Blackwell Publishing.
3.195 Modul: Selected Topics in Meteorology (Minor, ungraded) [M-PHYS-104578]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Meteorologie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Semester</td>
<td>2 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlinformationen
Elective Subjects: Events worth at least 8 CP must be attended. 1V= 2 CP, 1Ü= 2 CP

Pflichtbestandteile
T-PHYS-109379 Success Control on Selected Topics in Meteorology (Minor) 8 LP Knippertz

Wahlpflichtblock: Elective Subjects (mindestens 1 Bestandteil)
T-PHYS-107692 Seminar on IPCC Assessment Report 0 LP Ginete Werner Pinto, Hoose, Ludwig
T-PHYS-107693 Tropical Meteorology 0 LP Knippertz
T-PHYS-107694 Cloud Physics 0 LP Hoose
T-PHYS-107695 Energetics 0 LP Fink
T-PHYS-107696 Atmospheric Radiation 0 LP Höpfner
T-PHYS-108610 Turbulent Diffusion 0 LP Kunz
T-PHYS-108928 Climate Modeling & Dynamics with ICON 0 LP Ginete Werner Pinto, Voigt
T-PHYS-108931 Middle Atmosphere in the Climate System 0 LP Höpfner, Sinnhuber
T-PHYS-108932 Ocean-Atmosphere Interactions 0 LP Fink
T-PHYS-108938 Atmospheric Aerosols 0 LP Möhler
T-PHYS-109133 Remote Sensing of Atmospheric State Variables 0 LP Orphal, Sinnhuber
T-PHYS-109139 Advanced Numerical Weather Prediction 0 LP Knippertz
T-PHYS-109140 Meteorological Hazards 0 LP Kunz
T-PHYS-109141 Energy Meteorology 0 LP Emeis, Ginete Werner Pinto
T-PHYS-109142 Methods of Data Analysis 0 LP Ginete Werner Pinto, Knippertz
T-PHYS-109177 Physics of Planetary Atmospheres 8 LP Leisner
T-PHYS-109902 Integrated Atmospheric Measurements 0 LP Kottmeier

Erfolgskontrolle(n)
Coursework can be computer and modelling classes, exercise sheets or preparation of a presentation.
Credits will be awarded after passing all courseworks/exercises.
Qualifikationsziele
Depending on their choice students can

- explain essential aspects of application aspects of meteorology and assign them to specific application areas. They are capable to describe the functionality of a modern weather forecasting system in detail and can predict the potential for extreme events and their impact on the population and the insurance industry depending on the region and the season. The students are capable of using weather information to derive levels of air pollution and of yields of renewable energy. They can analyse meteorological data using statistical and computer-based methods.

- explain the functionality of modern meteorological measuring methods and measuring principles and name their possible uses. This is especially true for remote sensing, advanced in-situ, trace gas and aerosol measurements. The students can build and execute experiments in the lab or in the field according to instructions, to record and scientifically evaluate data and then interpret and present the results.

- explain essential components of the climate system and their physical properties as well as causes of climate change. Students can know systems for climate monitoring and understand how climate models work. The students can designate essential processes in the atmosphere and ocean, and explain them using physical and chemical laws. They can analyze and interpret climate and weather data based on diagnostic methods. In addition, they can expertly present and discuss learned or self-developed scientific findings.

- name essential processes in the atmosphere and explain these using physical and chemical laws. In particular, students are capable of explaining the structure and dynamics of different cloud systems and of estimating the microphysical processes in clouds or calculating them directly for idealized conditions. In addition, the students are capable of mathematically evaluating the radiation transport in the atmosphere and of describing the importance of radiation processes for the structure of the atmosphere, for climate change and for the measurement of different atmospheric variables. They can also explain the chemical structure and the composition of the aerosols in the troposphere and the stratosphere based on atmospheric physico-chemical processes and transformations. The students can explain the chemical and physical causes of the stratospheric ozone hole and its future development, can describe and classify the main aerosol-cloud processes and are capable of reproducing the main points of the Köhler theory and the classical nucleation theory.

Voraussetzungen
Keine

Inhalt
This module aims to give students of other master programs an insight into various areas of meteorology:

- Applications of meteorology such as weather forecasting (T-PHYS-109139) and warning (T-PHYS-109140), insurance and energy industry (T-PHYS-109141), data analysis (T-PHYS-109142) and air quality (T-PHYS-108610).

- Experimental modern measurement methods in meteorology such as satellite remote sensing (T-PHYS-109133) and integrated atmospheric measurements including radar and laser techniques (T-PHYS-109902).

- Components of the climate system such as the tropics (T-PHYS-107693), the ocean (T-PHYS-108932) and the middle atmosphere (T-PHYS-8931) and their physical and chemical backgrounds as well as modelling their temporal and spatial changes with ICON (T-PHYS-108928) and analysing general climate dynamics and changes (T-PHYS-107692).

- Physical and chemical processes in the atmosphere such as cloud physics (T-PHYS-107694), radiation (T-PHYS-107696), aerosols (T-PHYS-8938) and atmospheric energetics (T-PHYS-107695).

- Formation and properties of planets and their atmospheres in our solar system applying fundamental principles of physics.

Empfehlungen
Basic knowledge in Physics, Physical Chemistry and Fluid Dynamics at BSc level

Arbeitsaufwand
Presence time in lectures, exercises and preparation of exercises: 240 hours
Modul: Selected Topics in Meteorology (Second Major, graded) [M-PHYS-104577]

Verantwortung:	Prof. Dr. Peter Knippertz
Einrichtung:	KIT-Fakultät für Physik
Bestandteil von:	Physikalisches Ergänzungsfach / Meteorologie

Leistungspunkte: 14
Turnus: Jedes Semester
Dauer: 2 Semester
Sprache: Englisch
Level: 4
Version: 2

Wahlinformationen
Elective Subjects: Events worth at least 14 CP must be attended. 1 V = 2 CP, 1 Ü = 2 CP

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Wahlpflichtblock: Elective Subjects (mindestens 1 Bestandteil)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109380 Exam on Selected Topics in Meteorology (Second Major)</td>
<td>14 LP Knippertz</td>
</tr>
<tr>
<td>T-PHYS-107692 Seminar on IPCC Assessment Report</td>
<td>0 LP Ginete Werner Pinto, Hoose, Ludwig</td>
</tr>
<tr>
<td>T-PHYS-107693 Tropical Meteorology</td>
<td>0 LP Knippertz</td>
</tr>
<tr>
<td>T-PHYS-107694 Cloud Physics</td>
<td>0 LP Hoose</td>
</tr>
<tr>
<td>T-PHYS-107695 Energetics</td>
<td>0 LP Fink</td>
</tr>
<tr>
<td>T-PHYS-107696 Atmospheric Radiation</td>
<td>0 LP Höpfner</td>
</tr>
<tr>
<td>T-PHYS-108610 Turbulent Diffusion</td>
<td>0 LP Kunz</td>
</tr>
<tr>
<td>T-PHYS-108928 Climate Modeling & Dynamics with ICON</td>
<td>0 LP Ginete Werner Pinto, Voigt</td>
</tr>
<tr>
<td>T-PHYS-108931 Middle Atmosphere in the Climate System</td>
<td>0 LP Höpfner, Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-108932 Ocean-Atmosphere Interactions</td>
<td>0 LP Fink</td>
</tr>
<tr>
<td>T-PHYS-108938 Atmospheric Aerosols</td>
<td>0 LP Möhler</td>
</tr>
<tr>
<td>T-PHYS-109133 Remote Sensing of Atmospheric State Variables</td>
<td>0 LP Orphal, Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-109139 Advanced Numerical Weather Prediction</td>
<td>0 LP Knippertz</td>
</tr>
<tr>
<td>T-PHYS-109140 Meteorological Hazards</td>
<td>0 LP Kunz</td>
</tr>
<tr>
<td>T-PHYS-109141 Energy Meteorology</td>
<td>0 LP Emeis, Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-109142 Methods of Data Analysis</td>
<td>0 LP Ginete Werner Pinto, Knippertz</td>
</tr>
<tr>
<td>T-PHYS-109177 Physics of Planetary Atmospheres</td>
<td>8 LP Leisner</td>
</tr>
<tr>
<td>T-PHYS-109902 Integrated Atmospheric Measurements</td>
<td>0 LP Kottmeier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Coursework can be computer and modelling classes, exercise sheets or preparation of a presentation. Prerequisites worth at least 14 CP must be attended.

→ successful completion of the prerequisites entitles to exam

(T-PHYS-109380) Exam on Selected Topics in Meteorology (Second Major):
Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Physik Master
Qualifikationsziele

Depending on their choice students can

- explain essential aspects of application aspects of meteorology and assign them to specific application areas. They are capable to describe the functionality of a modern weather forecasting system in detail and can predict the potential for extreme events and their impact on the population and the insurance industry depending on the region and the season. The students are capable of using weather information to derive levels of air pollution and of yields of renewable energy. They can analyse meteorological data using statistical and computer-based methods.

- explain the functionality of modern meteorological measuring methods and measuring principles and name their possible uses. This is especially true for remote sensing, advanced in-situ, trace gas and aerosol measurements. The students can build and execute experiments in the lab or in the field according to instructions, to record and scientifically evaluate data and then interpret and present the results.

- explain essential components of the climate system and their physical properties as well as causes of climate change. Students can know systems for climate monitoring and understand how climate models work. The students can designate essential processes in the atmosphere and ocean, and explain them using physical and chemical laws. They can analyze and interpret climate and weather data based on diagnostic methods. In addition, they can expertly present and discuss learned or self-developed scientific findings.

- name essential processes in the atmosphere and explain these using physical and chemical laws. In particular, students are capable of explaining the structure and dynamics of different cloud systems and of estimating the microphysical processes in clouds or calculating them directly for idealized conditions. In addition, the students are capable of mathematically evaluating the radiation transport in the atmosphere and of describing the importance of radiation processes for the structure of the atmosphere, for climate change and for the measurement of different atmospheric variables. They can also explain the chemical structure and the composition of the aerosols in the troposphere and the stratosphere based on atmospheric physico-chemical processes and transformations. The students can explain the chemical and physical causes of the stratospheric ozone hole and its future development, can describe and classify the main aerosol-cloud processes and are capable of reproducing the main points of the Köhler theory and the classical nucleation theory.

Zusammensetzung der Modulnote

Grade of the Oral Exam.

Voraussetzungen

Keine

Inhalt

This module aims to give students of other major programs an insight into various areas of meteorology:

- **Applications of meteorology** such as weather forecasting (T-PHYS-109139) and warning (T-PHYS-109140), insurance and energy industry (T-PHYS-109141), data analysis (T-PHYS-109142) and air quality (T-PHYS-108610).

- **Experimental modern measurement methods** in meteorology such as satellite remote sensing (T-PHYS-109133) and integrated atmospheric measurements including radar and laser techniques (T-PHYS-109902).

- **Components of the climate system** such as the tropics (T-PHYS-107693), the ocean (T-PHYS-108932) and the middle atmosphere (T-PHYS-8931) and their physical and chemical backgrounds as well as modelling their temporal and spatial changes with ICON (T-PHYS-108928) and analysing general climate dynamics and changes (T-PHYS-107692).

- **Physical and chemical processes in the atmosphere** such as cloud physics (T-PHYS-107694), radiation (T-PHYS-107696), aerosols (T-PHYS-8938) and atmospheric energetics (T-PHYS-107695).

- **Formation and properties of planets and their atmospheres** in our solar system applying fundamental principles of physics.

Empfehlungen

Basic knowledge in Physics, Physical Chemistry and Fluid Dynamics at BSc level

Arbeitsaufwand

Presence time in lectures, exercises and preparation of exercises: 240 hours

Exam Preparation: 180 hours
3.197 Modul: Simulation nanoskaliger Systeme, mit Seminar [M-PHYS-102553]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte: 8
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-105131 | Simulation nanoskaliger Systeme, mit Seminar | 8 LP | Schug, Wenzel |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103191 - Simulation nanoskaliger Systeme, ohne Seminar (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102331 - Simulation nanoskaliger Systeme, ohne Seminar darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103192 - Simulation nanoskaliger Systeme, mit Seminar (NF) darf nicht begonnen worden sein.

Inhalt

- Quantenmechanik von Vielteilchensystemen
- Methoden der Quantenchemie (LCAO, Hartree Fock, Dichtefunktionaltheorie, Elektronenkorrelationen)
- Anwendungen auf Moleküle
- Simulationsverfahren für klassische Vielteilchensysteme (Monte Carlo, Molekulardynamik)
- Anwendungen auf nanoskalige Systeme
- Einführung in Multiskalensimulationen (QM/MM, Mehrstuvenverfahren)
- Modellierung des elektronischen Transports durch nanoskalige Systeme

Empfehlungen

Kenntnisse der Quantenmechanik und Festkörpertheorie.

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen; Abschlussarbeit mit Referat (60h)

Lehr- und Lernformen

4023121 Vorlesung 2 SWS; Wenzel
4023122 Übung 1 SWS; Wenzel, Schug

Literatur

- Szabo: Modern Quantum Chemistry
- Leach: Molecular Modeling
3.198 Modul: Simulation nanoskaliger Systeme, mit Seminar (NF) [M-PHYS-103192]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Kursname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106325</td>
<td>Simulation nanoskaliger Systeme, mit Seminar (NF)</td>
<td>8 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103191 - Simulation nanoskaliger Systeme, ohne Seminar (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102331 - Simulation nanoskaliger Systeme, ohne Seminar darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102553 - Simulation nanoskaliger Systeme, mit Seminar darf nicht begonnen worden sein.

Inhalt
- Quantenmechanik von Vielteilchensystemen
- Methoden der Quantenchemie (LCAO, Hartree Fock, Dichtefunktionaltheorie, Elektronenkorrelationen)
- Anwendungen auf Moleküle
- Simulationsverfahren für klassische Vielteilchensysteme (Monte Carlo, Molekulardynamik)
- Anwendungen auf nanoskalige Systeme
- Einführung in Multiskalensimulationen (QM/MM, Mehrstufenverfahren)
- Modellierung des elektronischen Transports durch nanoskalige Systeme

Empfehlungen
Kenntnisse der Quantenmechanik und Festkörpertheorie.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen; Abschlussarbeit mit Referat (60h)

Lehr- und Lernformen
4023121 Vorlesung 2 SWS; Wenzel
4023122 Übung 1 SWS; Wenzel, Schug

Literatur
- Szabo: Modern Quantum Chemistry
- Leach: Molecular Modeling
3.199 Modul: Simulation nanoskaliger Systeme, ohne Seminar [M-PHYS-102331]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte: 6
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-102504 Simulation nanoskaliger Systeme, ohne Seminar 6 LP Schug, Wenzel

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102553 - Simulation nanoskaliger Systeme, mit Seminar darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103191 - Simulation nanoskaliger Systeme, ohne Seminar (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103192 - Simulation nanoskaliger Systeme, mit Seminar (NF) darf nicht begonnen worden sein.

Inhalt
- Quantenmechanik von Vielteilchensystemen
- Methoden der Quantenchemie (LCAO, Hartree Fock, Dichtefunktionaltheorie, Elektronenkorrelationen)
- Anwendungen auf Moleküle
- Simulationsverfahren für klassische Vielteilchensysteme (Monte Carlo, Molekulardynamik)
- Anwendungen auf nanoskalige Systeme
- Einführung in Multiskalensimulationen (QM/MM, Mehrstufenverfahren)
- Modellierung des elektronischen Transports durch nanoskalige Systeme

Empfehlungen
Kenntnisse der Quantenmechanik und Festkörpertheorie.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Lehr- und Lernformen
4023121 Vorlesung 2 SWS; Wenzel
4023122 Übung 1 SWS; Wenzel, Schug

Literatur
- Szabo: Modern Quantum Chemistry
- Leach: Molecular Modeling
3.200 Modul: Simulation nanoskaliger Systeme, ohne Seminar (NF) [M-PHYS-103191]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Theorie der Kondensierten Materie

Leistungspunkte: 6
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-106324 Simulation nanoskaliger Systeme, ohne Seminar (NF) 6 LP Wenzel

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102553 - Simulation nanoskaliger Systeme, mit Seminar darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102331 - Simulation nanoskaliger Systeme, ohne Seminar darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103192 - Simulation nanoskaliger Systeme, mit Seminar (NF) darf nicht begonnen worden sein.

Inhalt
- Quantenmechanik von Vielteilchensystemen
- Methoden der Quantenchemie (LCAO, Hartree Fock, Dichtefunktionaltheorie, Elektronenkorrelationen)
- Anwendungen auf Moleküle
- Simulationsverfahren für klassische Vielteilchensysteme (Monte Carlo, Molekulardynamik)
- Anwendungen auf nanoskalige Systeme
- Einführung in Multiskalensimulationen (QM/MM, Mehrstufenverfahren)
- Modellierung des elektronischen Transports durch nanoskalige Systeme

Empfehlungen
Kenntnisse der Quantenmechanik und Festkörpertheorie.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Lehr- und Lernformen
4023121 Vorlesung 2 SWS; Wenzel
4023122 Übung 1 SWS; Wenzel, Schug

Literatur
- Szabo: Modern Quantum Chemistry
- Leach: Molecular Modeling
3.201 Modul: Solid State Quantum Technologies [M-PHYS-104857]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Kondensierte Materie
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-109889 | Solid State Quantum Technologies | 8 LP | Wernsdorfer |

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkts- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele

The development and comprehensive use of Quantum Technology is one of the most ambitious technological goals of today's science, with expected dramatic impact on the whole society and economy. The field of quantum information processing using solid state quantum bits (qubits) has witnessed an exponential growth during the last years. The current performances suggest that within a horizon of a few years, solid state quantum machines could outperform even the best classical machines for a few types of particularly hard tasks. During this class, the students will acquire a basic understanding of the principles of quantum information processing and the functioning of computers based on qubits, with an emphasis on experimental implementations using superconducting circuits and cavities and spin based solid state qubits. The supporting problems will cover in detail a broad set of calculations, from derivations of basic results, to solving practical problems one could encounter in a research laboratory.

Zusammensetzung der Modulnote

Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104858 - Solid State Quantum Technologies (NF) darf nicht begonnen worden sein.

Inhalt

After a general introduction to the concepts of quantum information processing, we will present an overview of different experimental implementations. We will then focus on spin qubits and superconducting circuit qubits. We will discuss sources of loss and dephasing, and we will mention several strategies to increase the coherence of qubits. During the last few lectures, we will focus on advanced topics such as circuit quantum electrodynamics (cQED) and quantum optics in the microwave domain.

Empfehlungen

Grundlagenkenntnisse der Quantenmechanik

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Literatur

Wird in der Vorlesung genannt
3.202 Modul: Solid State Quantum Technologies (NF) [M-PHYS-104858]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

Leistungspunkte 8
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-109890 Solid State Quantum Technologies 8 LP Wernsdorfer

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Qualifikationsziele
The development and comprehensive use of Quantum Technology is one of the most ambitious technological goals of today's science, with expected dramatic impact on the whole society and economy. The field of quantum information processing using solid state quantum bits (qubits) has witnessed an exponential growth during the last years. The current performances suggest that within a horizon of a few years, solid state quantum machines could outperform even the best classical machines for a few types of particularly hard tasks. During this class, the students will acquire a basic understanding of the principles of quantum information processing and the functioning of computers based on qubits, with an emphasis on experimental implementations using superconducting circuits and cavities and spin based solid state qubits. The supporting problems will cover in detail a broad set of calculations, from derivations of basic results, to solving practical problems one could encounter in a research laboratory.

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkt- oder Ergänzungsfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104857 - Solid State Quantum Technologies darf nicht begonnen worden sein.

Inhalt
After a general introduction to the concepts of quantum information processing, we will present an overview of different experimental implementations. We will then focus on spin qubits and superconducting circuit qubits. We will discuss sources of loss and dephasing, and we will mention several strategies to increase the coherence of qubits. During the last few lectures, we will focus on advanced topics such as circuit quantum electrodynamics (cQED) and quantum optics in the microwave domain.

Empfehlungen
Grundlagenkenntnisse der Quantenmechanik

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzweiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Literatur
Wird in der Vorlesung genannt
3.203 Modul: Solid-State Optics, mit Übungen [M-PHYS-102144]

Verantwortung: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Optik und Photonik (Pflicht Optik und Photonik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte: 10
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Die Studierenden sollen durch die Vorlesung und begleitende Diskussionen im Rahmen der Übung in grundlegende theoretische Konzepte sowie makroskopische und mikroskopische Modelle zur Beschreibung der optischen Eigenschaften von Festkörpern eingeführt werden, darüber hinaus auch in die entsprechenden experimentellen Messmethoden. Insbesondere sollen sie die Lage versetzt werden, das erworbene Wissen auf konkrete Probleme im Bereich der experimentellen Festkörper-Optik anzuwenden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102145 - Solid-State Optics, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102408 - Solid-State Optics, ohne Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102409 - Solid-State Optics, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Maxwell’s equations, refractive index, dispersion, dielectric function, extinction, absorption, reflection, continuity conditions at interfaces, anisotropic media and layered systems, Drude–Lorentz model, reststrahlen bands, Bloch states and band structure, perturbation theory of light–matter interaction, band to band transitions, joint density of states, van Hove singularities, phonon and exciton polaritons, plasmons, metals, semiconductor heterostructures, low-dimensional systems, group theory and selection rules, nonlinear optics, high-excitation effects in semiconductors, measurement of optical functions: Fourier spectroscopy, ellipsometry, modulation spectroscopy, photoluminescence, reflectometry, absorptivity.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik und Quantenmechanik werden vorausgesetzt.

Anmerkungen
Für Studierende der KIT-Fakultät für Informatik gilt: Die Prüfungen in diesem Modul sind über Zulassungen vom ISS (KIT-Fakultät für Informatik) anzumelden. Dafür reicht eine E-Mail mit Matrikeln. und Name der gewünschten Prüfung an Beratung-informatik@informatik.kit.edu aus.

Arbeitsaufwand
300 Stunden, bestehend aus Präsenzzeiten (75) und Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (225)

Lehr- und Lernformen
4020011 Vorlesung 4 SWS; M. Hetterich
4020012 Übung 1 SWS; M. Hetterich

Literatur
3.204 Modul: Solid-State Optics, mit Übungen (NF) [M-PHYS-102145]

Verantwortung: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Optik und Photonik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102346 | Solid-State Optics, mit Übungen (NF) | 10 LP | Hetterich, Kalt |

Qualifikationsziele

Die Studierenden sollen durch die Vorlesung und begleitende Diskussionen im Rahmen der Übung in grundlegende theoretische Konzepte sowie makroskopische und mikroskopische Modelle zur Beschreibung der optischen Eigenschaften von Festkörpern eingeführt werden, darüber hinaus auch in die entsprechenden experimentellen Messmethoden. Insbesondere sollen sie die Lage versetzt werden, das erworbene Wissen auf konkrete Probleme im Bereich der experimentellen Festkörper-Optik anzuwenden.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102144 - Solid-State Optics, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102408 - Solid-State Optics, ohne Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102409 - Solid-State Optics, ohne Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Maxwell’s equations, refractive index, dispersion, dielectric function, extinction, absorption, reflection, continuity conditions at interfaces, anisotropic media and layered systems, Drude–Lorentz model, reststrahlen bands, Bloch states and band structure, perturbation theory of light–matter interaction, band to band transitions, joint density of states, van Hove singularities, phonon and exciton polaritons, plasmons, metals, semiconductor heterostructures, low-dimensional systems, group theory and selection rules, nonlinear optics, high-excitation effects in semiconductors, measurement of optical functions: Fourier spectroscopy, ellipsometry, modulation spectroscopy, photoluminescence, reflectometry, absorptivity.

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik und Quantenmechanik werden vorausgesetzt.

Arbeitsaufwand

300 Stunden, bestehend aus Präsenzzeiten (75) und Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (225)

Lehr- und Lernformen

4020011 Vorlesung 4 SWS; M. Hetterich
4020012 Übung 1 SWS; M. Hetterich

Literatur

3.205 Modul: Solid-State Optics, ohne Übungen [M-PHYS-102408]

Verantwortung: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Optik und Photonik (Pflicht Optik und Photonik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte 8
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Englisch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS-104773 | Solid-State Optics, ohne Übungen | 8 LP | Hetterich, Kalt |

Qualifikationsziele
Die Studierenden sollen durch die Vorlesung und begleitende Diskussionen in grundlegende theoretische Konzepte sowie makroskopische und mikroskopische Modelle zur Beschreibung der optischen Eigenschaften von Festkörpern eingeführt werden, darüber hinaus auch in die entsprechenden experimentellen Messmethoden. Insbesondere sollen sie die Lage versetzt werden, das erworbene Wissen auf konkrete Probleme im Bereich der experimentellen Festkörper-Optik anzuwenden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102145 - Solid-State Optics, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102409 - Solid-State Optics, ohne Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102144 - Solid-State Optics, mit Übungen darf nicht begonnen worden sein.

Inhalt
Maxwell's equations, refractive index, dispersion, dielectric function, extinction, absorption, reflection, continuity conditions at interfaces, anisotropic media and layered systems, Drude–Lorentz model, reststrahlen bands, Bloch states and band structure, perturbation theory of light–matter interaction, band to band transitions, joint density of states, van Hove singularities, phonon and exciton polaritons, plasmons, metals, semiconductor heterostructures, low-dimensional systems, group theory and selection rules, nonlinear optics, high-excitation effects in semiconductors, measurement of optical functions: Fourier spectroscopy, ellipsometry, modulation spectroscopy, photoluminescence, reflectometry, absorptivity.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik und Quantenmechanik werden vorausgesetzt.

Arbeitsaufwand
240 Stunden, bestehend aus Präsenzeiten (60) und Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (180)

Lehr- und Lernformen
4020011 Vorlesung 4 SWS; M. Hetterich

Literatur
- C. Klingshirn: Semiconductor Optics (Springer)
- H. Ibach and H. Lüth, Solid-State Physics
3.206 Modul: Solid-State Optics, ohne Übungen (NF) [M-PHYS-102409]

Verantwortung: PD Dr. Michael Hetterich
 Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
 Physikalisches Nebenfach / Optik und Photonik

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104774</td>
<td>8</td>
<td>Hetterich, Kalt</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Die Studierenden sollen durch die Vorlesung und begleitende Diskussionen in grundlegende theoretische Konzepte sowie makroskopische und mikroskopische Modelle zur Beschreibung der optischen Eigenschaften von Festkörpern eingeführt werden, darüber hinaus auch in die entsprechenden experimentellen Messmethoden. Insbesondere sollen sie die Lage versetzt werden, das erworbene Wissen auf konkrete Probleme im Bereich der experimentellen Festkörper-Optik anzuwenden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102144 - Solid-State Optics, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102145 - Solid-State Optics, mit Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102408 - Solid-State Optics, ohne Übungen darf nicht begonnen worden sein.

Inhalt
Maxwell’s equations, refractive index, dispersion, dielectric function, extinction, absorption, reflection, continuity conditions at interfaces, anisotropic media and layered systems, Drude–Lorentz model, reststrahlen bands, Bloch states and band structure, perturbation theory of light–matter interaction, band to band transitions, joint density of states, van Hove singularities, phonon and exciton polaritons, plasmons, metals, semiconductor heterostructures, low-dimensional systems, group theory and selection rules, nonlinear optics, high-excitation effects in semiconductors, measurement of optical functions: Fourier spectroscopy, ellipsometry, modulation spectroscopy, photoluminescence, reflectometry, absorptivity.

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik und Quantenmechanik werden vorausgesetzt.

Arbeitsaufwand
240 Stunden, bestehend aus Präsenzzeiten (60) und Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung (180)

Lehr- und Lernformen
4020011 Vorlesung 4 SWS; M. Hetterich

Literatur
C. Klingshirn: Semiconductor Optics (Springer)
H. Ibach and H. Lüth, Solid-State Physics
3.207 Modul: Spezialisierungsphase [M-PHYS-101396]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Spezialisierungsphase

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102481</td>
<td>15</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Die Studierenden erwerben wesentliche Arbeitstechniken für die Bearbeitung ihrer Masterarbeit, die Arbeitstechniken sind spezifisch für das jeweilige Spezialisierungsgebiet.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Der Bereich Physikalisches Schwerpunktfach muss erfolgreich abgeschlossen worden sein.
2. Der Bereich Physikalisches Ergänzungsfach muss erfolgreich abgeschlossen worden sein.
3. Der Bereich Physikalisches Nebenfach muss erfolgreich abgeschlossen worden sein.
4. Der Bereich Nichtphysikalisches Wahlpflichtfach muss erfolgreich abgeschlossen worden sein.
5. Der Bereich Physikalisches Fortgeschrittenenpraktikum muss erfolgreich abgeschlossen worden sein.
3.208 Modul: Spintransport in Nanostrukturen [M-PHYS-102293]

Verantwortung: Dr. Detlef Beckmann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Kondensierte Materie
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104586 Spintransport in Nanostrukturen | 6 LP Beckmann |

Qualifikationsziele

Der Studierende soll in die Grundbegriffe des spinpolarisierten Transports eingeführt werden, und deren Anwendung auf Transporteigenschaften in Nanostrukturen verstehen. In der Übung soll der Studierende konkrete Probleme aus diesem Themenfeld lösen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen

keine

Inhalt

In der Vorlesung werden zunächst Grundlagen des elektronischen Transports und Magnetismus eingeführt. Darauf aufbauend werden für die Spinelektronik wichtige magnetoresistive Effekte in nanoskaligen Strukturen besprochen (Riesenmagnetwiderstand, Spinakkumulation, Tunnelmagnetwiderstand). Weitere Themen sind Magnetisierungsdynamik (Micromagnetics, Spin Torque, Domänenwände, Spinwellen) und die Kopplung von Spin- und Wärmetransport (Spinkaloritronik).

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Lehr- und Lernformen

4021141 Vorlesung 2 SWS; D. Beckmann
4021142 Übung 1 SWS; D. Beckmann

Literatur

Wird in der Vorlesung genannt.
3.209 Modul: Supraleiter-Nanostrukturen [M-PHYS-102191]

Verantwortung: Dr. Detlef Beckmann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Kondensierte Materie (Wahl Kondensierte Materie)
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Kondensierte Materie
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)

Leistungspunkte 6
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS-104513 | Supraleiter-Nanostrukturen | 6 LP | Beckmann |

Qualifikationsziele
Der Studierende soll in die Grundbegriffe der Supraleitung eingeführt werden, und deren Anwendung auf Transporteigenschaften in Nanostrukturen verstehen. In der Übung soll der Studierende konkrete Probleme aus diesem Themenfeld lösen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104723 - Supraleiter-Nanostrukturen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135).

Lehr- und Lernformen
4021031 Vorlesung 2 SWS; D. Beckmann
4021032 Übung 1 SWS; D. Beckmann

Literatur
Literatur wird in der Vorlesung genannt.
3.210 Modul: Supraleiter-Nanostrukturen (NF) [M-PHYS-104723]

Verantwortung: Dr. Detlef Beckmann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Kondensierte Materie
Physikalisches Nebenfach / Nanophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-109621 | Supraleiter-Nanostrukturen (NF) | 6 LP | Beckmann |

Qualifikationsziele
Der Studierende soll in die Grundbegriffe der Supraleitung eingeführt werden, und deren Anwendung auf Transporteigenschaften in Nanostrukturen verstehen. In der Übung soll der Studierende konkrete Probleme aus diesem Themenfeld lösen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102191 - Supraleiter-Nanostrukturen darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135).

Lehr- und Lernformen
4021031 Vorlesung 2 SWS; D. Beckmann
4021032 Übung 1 SWS; D. Beckmann

Literatur
Literatur wird in der Vorlesung genannt.
Modul: Symmetrien und Gruppen [M-PHYS-102317]

Verantwortung: Prof. Dr. Ulrich Nierste

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte 8
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Verantwortung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104596</td>
<td>T-PHYS-104596</td>
<td>8 LP Nierste</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Erlernen der Methodik der Gruppentheorie Fähigkeit zur Lösung komplexer mathematischer Probleme wie der Klassifikation von Lie-Gruppen, Verständnis der Konzepte von erweiterten Eichtheorien

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102315 - Symmetrien, Gruppen und erweiterte Eichtheorien darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102316 - Symmetrien, Gruppen und erweiterte Eichtheorien (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102318 - Symmetrien und Gruppen (NF) darf nicht begonnen worden sein.

Inhalt
Lie-Gruppen und ihre Darstellungen, Lie-Algebren, Poincaré-Gruppe, diskrete Gruppen, Links-Rechts-Symmetrie, großvereinheitlichte Theorien

Empfehlungen
Gute Kenntnisse der Quantenmechanik I. Für das letzte Drittel, „erweiterte Eichtheorien“ sind Vorkenntnisse der Theoretischen Teilchenphysik erforderlich.

Lehr- und Lernformen
4025131 Vorlesung 4 SWS; U. Nierste
4025132 Übung 2 SWS; U. Nierste, M. Spinrath

Literatur
Wird in der Vorlesung angegeben.
Modul: Symmetrien und Gruppen (NF) [M-PHYS-102318]

Verantwortung: Prof. Dr. Ulrich Nierste

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104597 | Symmetrien und Gruppen (NF) | 8 LP | Nierste |

Qualifikationsziele

Erlernen der Methodik der Gruppentheorie Fähigkeit zur Lösung komplexer mathematischer Probleme wie der Klassifikation von Lie-Gruppen, Verständnis der Konzepte von erweiterten Eichtheorien

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102315 - Symmetrien, Gruppen und erweiterte Eichtheorien darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102316 - Symmetrien, Gruppen und erweiterte Eichtheorien (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102317 - Symmetrien und Gruppen darf nicht begonnen worden sein.

Inhalt

Lie-Gruppen und ihre Darstellungen, Lie-Algebren, Poincaré-Gruppe, diskrete Gruppen, Links-Rechts-Symmetrie, großvereinheitlichte Theorien

Empfehlungen

Gute Kenntnisse der Quantenmechanik I. Für das letzte Drittel, “erweiterte Eichtheorien” sind Vorkenntnisse der Theoretischen Teilchenphysik erforderlich.

Lehr- und Lernformen

4025131 Vorlesung 4 SWS; U. Nierste
4025132 Übung 2 SWS; U. Nierste, M. Spinrath

Literatur

Wird in der Vorlesung angegeben.
3.213 Modul: Symmetrien, Gruppen und erweiterte Eichtheorien [M-PHYS-102315]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102393 | Symmetrien, Gruppen und erweiterte Eichtheorien | 12 LP | Nierste |

Qualifikationsziele

Erlernen der Methodik der Gruppentheorie Fähigkeit zur Lösung komplexer mathematischer Probleme wie der Klassifikation von Lie-Gruppen, Verständnis der Konzepte von erweiterten Eichtheorien

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102316 - Symmetrien, Gruppen und erweiterte Eichtheorien (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102317 - Symmetrien und Gruppen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102318 - Symmetrien und Gruppen (NF) darf nicht begonnen worden sein.

Inhalt

Lie-Gruppen und ihre Darstellungen, Lie-Algebren, Poincaré-Gruppe, diskrete Gruppen, Links-Rechts-Symmetrie, großvereinheitlichte Theorien

Empfehlungen

Gute Kenntnisse der Quantenmechanik I. Für das letzte Drittel, “erweiterte Eichtheorien” sind Vorkenntnisse der Theoretischen Teilchenphysik erforderlich.

Arbeitsaufwand

360 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Lehr- und Lernformen

4025131Vorlesung 4 SWS; U. Nierste
4025132 Übung 2 SWS; U. Nierste, M. Spinrath

Literatur

Wird in der Vorlesung angegeben.
3.214 Modul: Symmetrien, Gruppen und erweiterte Eichtheorien (NF) [M-PHYS-102316]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102444 | Symmetrien, Gruppen und erweiterte Eichtheorien (NF) | 12 LP | Nierste |

Qualifikationsziele
Erlernen der Methodik der Gruppentheorie Fähigkeit zur Lösung komplexer mathematischer Probleme wie der Klassifikation von Lie-Gruppen, Verständnis der Konzepte von erweiterten Eichtheorien

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102315 - Symmetrien, Gruppen und erweiterte Eichtheorien darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102317 - Symmetrien und Gruppen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102318 - Symmetrien und Gruppen (NF) darf nicht begonnen worden sein.

Inhalt
Lie-Gruppen und ihre Darstellungen, Lie-Algebren, Poincaré-Gruppe, diskrete Gruppen, Links-Rechts-Symmetrie, großvereinheitlichte Theorien

Empfehlungen
Gute Kenntnisse der Quantenmechanik I. Für das letzte Drittel, “erweiterte Eichtheorien” sind Vorkenntnisse der Theoretischen Teilchenphysik erforderlich.

Arbeitsaufwand
360 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Lehr- und Lernformen
4025131 Vorlesung 4 SWS; U. Nierste
4025132 Übung 2 SWS; U. Nierste, M. Spinrath

Literatur
Wird in der Vorlesung angegeben.
3.215 Modul: Teilchenphysik I [M-PHYS-102114]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Thomas Müller
Prof. Dr. Günter Quast
Dr. Klaus Rabbertz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Pflichtbestandteil)
Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Pflichtbestandteil)

Leistungspunkte 8
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS-102369 | Teilchenphysik I | 8 LP | Husemann, Müller |

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102115 - Teilchenphysik I (NF) darf nicht begonnen worden sein.

Inhalt
Vorlesung:

- Grundbegriffe der Teilchenphysik
- Detektoren und Beschleuniger
- Grundlagen des Standardmodells
- Tests der elektroschwachen Theorie
- Flavour-Physik
- QCD
- Physik bei hohen Transversalimpulsen
- Higgs-Physik
- Physik massiver Neutrinos
- Physik jenseits des Standardmodells

Praktische Übungen:

- Aktuelle Methoden der Monte-Carlo-Simulation und Datenanalyse in der Teilchenphysik
- Messungen an modernen Silizium-Spurdetektoren.

Empfehlungen
Grundkenntnisse der experimentellen Teilchenphysik aus der Vorlesung Moderne Experimentalphysik III im Bachelorstudiengang Physik.

Anmerkungen
Für Studierende der KIT-Fakultät für Informatik gilt: Die Prüfungen in diesem Modul sind über Zulassungen vom ISS (KIT-Fakultät für Informatik) anzumelden. Dafür reicht eine E-Mail mit Matrikeln. und Name der gewünschten Prüfung an Beratung-informatik@informatik.kit.edu aus.
Arbeitsaufwand
c.a. 240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)

Literatur
Weitere Literaturhinweise werden in der Vorlesung gegeben.
3.216 Modul: Teilchenphysik I (NF) [M-PHYS-102115]

Verantwortung: Prof. Dr. Ulrich Husemann
 Prof. Dr. Thomas Müller
 Prof. Dr. Günter Quast
 Dr. Klaus Rabbertz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik

Leistungspunkte 8
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-102488 Teilchenphysik I (NF) 8 LP Husemann, Müller

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102114 - Teilchenphysik I darf nicht begonnen worden sein.

Inhalt
Vorlesung:

- Grundbegriffe der Teilchenphysik
- Detektoren und Beschleuniger
- Grundlagen des Standardmodells
- Tests der elektroschwachen Theorie
- Flavour-Physik
- QCD
- Physik bei hohen Transversalimpulsen
- Higgs-Physik
- Physik massiver Neutrinos
- Physik jenseits des Standardmodells

Praktische Übungen:

- Aktuelle Methoden der Monte-Carlo-Simulation und Datenanalyse in der Teilchenphysik
- Messungen an modernen Silizium-Spurdetektoren.

Empfehlungen
Grundkenntnisse der experimentellen Teilchenphysik aus der Vorlesung Moderne Experimentalphysik III im Bachelorstudiengang Physik.

Arbeitsaufwand
ca. 240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (180)
Literatur
Weitere Literaturhinweise werden in der Vorlesung gegeben.
3.217 Modul: Teilchenphysik II - Flavour-Physik, mit erw. Übungen [M-PHYS-102422]

Verantwortung: Prof. Dr. Florian Bernlochner
Dr. Pablo Goldenzweig

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)

Leistungspunkte 8

Turnus Jedes Wintersemester

Dauer 1 Semester

Sprache Deutsch

Level 4

Version 1

Pflichtbestandteile

| T-PHYS-104783 | Teilchenphysik II - Flavour-Physik, mit erw. Übungen | 8 LP | Bernlochner, Goldenzweig |

Qualifikationsziele
Wir wollen den Teilnehmern des Kurses mit der Flavour-Physik den Schlüssel zu einem besseren Verständnis der fundamentalen Naturgesetze an der Präzisionsfront nahebringen. Dabei soll es sowohl um die zugrunde liegenden Konzepte, als auch um praktische Erfahrungen gehen, die zu einem gelungenen Einstand in die eigene Forschung beitragen.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102155 - Teilchenphysik II - Flavour-Physik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102154 - Teilchenphysik II - Flavour-Physik, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-103183 - Teilchenphysik II - Flavour-Physik, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Kenntnisse der experimentellen Teilchenphysik aus der Vorlesung Moderne Experimentalphysik III im Bachelorstudiengang werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Literatur
Wird in der Vorlesung genannt.
3.218 Modul: Teilchenphysik II - Flavour-Physik, mit erw. Übungen (NF) [M-PHYS-103183]

Verantwortung: Prof. Dr. Florian Bernlochner
Dr. Pablo Goldenzweig

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Wir wollen den Teilnehmern des Kurses mit der Flavour-Physik den Schlüssel zu einem besseren Verständnis der fundamentalen Naturgesetze an der Präzisionsfront nahebringen. Dabei soll es sowohl um die zugrunde liegenden Konzepte, als auch um praktische Erfahrungen gehen, die zu einem gelungenen Einstand in die eigene Forschung beitragen.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102155 - Teilchenphysik II - Flavour-Physik, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102154 - Teilchenphysik II - Flavour-Physik, ohne erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102422 - Teilchenphysik II - Flavour-Physik, mit erw. Übungen darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Kenntnisse der experimentellen Teilchenphysik aus der Vorlesung Moderne Experimentalphysik III im Bachelorstudiengang werden vorausgesetzt.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Literatur
Wird in der Vorlesung genannt.
Qualifikationsziele
Wir wollen den Teilnehmern des Kurses mit der Flavour-Physik den Schlüssel zu einem besseren Verständnis der fundamentalen Naturgesetze an der Präzisionsfront nahebringen. Dabei soll es sowohl um die zugrunde liegenden Konzepte, als auch um praktische Erfahrungen gehen, die zu einem gelungenen Einstand in die eigene Forschung beitragen.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul **M-PHYS-102155 - Teilchenphysik II - Flavour-Physik, ohne erw. Übungen (NF)** darf nicht begonnen worden sein.
2. Das Modul **M-PHYS-102422 - Teilchenphysik II - Flavour-Physik, mit erw. Übungen** darf nicht begonnen worden sein.
3. Das Modul **M-PHYS-103183 - Teilchenphysik II - Flavour-Physik, mit erw. Übungen (NF)** darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Kenntnisse der experimentellen Teilchenphysik aus der Vorlesung Moderne Experimentalphysik III im Bachelorstudiengang werden vorausgesetzt.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Literatur
Wird in der Vorlesung genannt.
Qualifikationsziele
Wir wollen den Teilnehmern des Kurses mit der Flavour-Physik den Schlüssel zu einem besseren Verständnis der fundamentalen Naturgesetze an der Präzisionsfront nahebringen. Dabei soll es sowohl um die zugrunde liegenden Konzepte, als auch um praktische Erfahrungen gehen, die zu einem gelungenen Einstand in die eigene Forschung beitragen.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102154 - Teilchenphysik II - Flavour-Physik, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-103183 - Teilchenphysik II - Flavour-Physik, mit erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102422 - Teilchenphysik II - Flavour-Physik, mit erw. Übungen darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Kenntnisse der experimentellen Teilchenphysik aus der Vorlesung Moderne Experimentalphysik III im Bachelorstudiengang werden vorausgesetzt.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen

Literatur
Wird in der Vorlesung genannt.
3.221 Modul: Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen [M-PHYS-104088]

Verantwortung: Dr. Klaus Rabbertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpuntfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)

Leistungspunkte
Turnus
Dauer
Sprache
Level
Version
8
Jedes Sommersemester
1 Semester
Deutsch
4
1

Pflichtbestandteile
T-PHYS-108474 Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen 8 LP Rabbertz

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104086 - Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-104087 - Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104089 - Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180)

Lehr- und Lernformen
4022171 Vorlesung 2 SWS;K. Rabbertz, A. Meyer
4022172 Übung 1 SWS;K. Rabbertz, A. Meyer

Physik Master 2015 (Master of Science)
Modulhandbuch mit Stand vom 09.10.2019
Literatur

Modul: Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF) [M-PHYS-104089]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr. Klaus Rabbertz</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>Physikalisches Nebenfach / Experimentelle Teilchenphysik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-108475 | Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF) | 8 LP | Rabbertz |

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104086 - Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-104087 - Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104088 - Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180)

Lehr- und Lernformen
4022171 Vorlesung 2 SWS; K. Rabbertz, A. Meyer
4022172 Übung 1 SWS; K. Rabbertz, A. Meyer
Literatur

3.223 Modul: Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen [M-PHYS-104086]

Verantwortung: Dr. Klaus Rabbertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>LP</th>
<th>Modul: Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen</th>
<th>6</th>
<th>Rabbertz</th>
</tr>
</thead>
</table>
| T-PHYS-108472

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104087 - Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-104088 - Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104089 - Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)

Lehr- und Lernformen
4022171 Vorlesung 2 SWS; K. Rabbertz, A. Meyer
4022172 Übung 1 SWS; K. Rabbertz, A. Meyer
Literatur

3.224 Modul: Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF) [M-PHYS-104087]

Verantwortung: Dr. Klaus Rabbertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik

Leistungspunkte 6
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile
T-PHYS-108473 Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF) 6 LP Rabbertz

Qualifikationsziele

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104086 - Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-104088 - Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104089 - Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)

Lehr- und Lernformen
4022171 Vorlesung 2 SWS; K. Rabbertz, A. Meyer
4022172 Übung 1 SWS; K. Rabbertz, A. Meyer
Literatur

3.225 Modul: Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen [M-PHYS-104084]

| Verantwortung: | Dr. Matthias Mozer
| | Dr. Matthias Schröder |
| Einrichtung: | KIT-Fakultät für Physik |
| Bestandteil von: | Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentalphysik)
| | Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentalphysik) |

Leistungspunkte	8
Turnus	Jedes Sommersemester
Dauer	1 Semester
Sprache	Deutsch
Level	4
Version	1

Pflichtbestandteile

| T-PHYS-108470 | Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen | 8 LP | Mozer, Schröder |

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-104082 - Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104085 - Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Literatur

- M. Mozer: Electroweak Physics at the LHC, Springer (2016)
- R. Wolf: The Higgs Boson Discovery at the Large Hadron Collider, Springer 2015
3.226 Modul: Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen (NF) [M-PHYS-104085]

Verantwortung: Dr. Matthias Mozer
Dr. Matthias Schröder

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Experimentelle Teilchenphysik

Leistungspunkte: 8

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 4

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
<th>Verantwortende(r)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108471</td>
<td>Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen (NF)</td>
<td>8 LP</td>
<td>Mozer, Schröder</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-104082 - Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Arbeitsaufwand

240 Stunden bestehend aus Präsenzzeiten (60 Stunden), Nachbereitung der Vorlesungen inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (180 Stunden).

Literatur

- M. Mozer: Electroweak Physics at the LHC, Springer (2016)
- R. Wolf: The Higgs Boson Discovery at the Large Hadron Collider, Springer 2015
Verantwortung: Dr. Matthias Mozer
Dr. Matthias Schröder

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)
Physikalisches Ergänzungsfach / Experimentelle Teilchenphysik (Wahl Experimentelle Teilchenphysik)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108468</td>
<td>6 LP Mozer, Schröder</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-104082 - Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-104085 - Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135).

Literatur

- M. Mozer: Electroweak Physics at the LHC, Springer (2016)
- R. Wolf: The Higgs Boson Discovery at the Large Hadron Collider, Springer 2015
Qualifikationsziele

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

3. Das Modul M-PHYS-104085 - Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Empfehlungen

Arbeitsaufwand

180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135).

Literatur

- M. Mozer: Electroweak Physics at the LHC, Springer (2016)
- R. Wolf: The Higgs Boson Discovery at the Large Hadron Collider, Springer 2015
3.229 Modul: The ABC of DFT [M-PHYS-102984]

Verantwortung: Velimir Meded
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte 6
Turnus Unregelmäßig
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Einzelbestandteile

- T-PHYS-105960 The ABC of DFT

Erfolgskontrolle(n)

Vorstellung und Diskussion selbstständig erarbeiteter Lösungen von Übungsaufgaben, die u.a. mit den ELK und Orca Simulationswerkzeugen durchgeführt werden.

Qualifikationsziele

Verständnis grundlegender numerischer Verfahren in der Dichtefunktionaltheorie und die Fähigkeit zu ihrer Anwendung zur Lösung physikalischer Probleme der Festkörperphysik wie die Beschreibung von Ladungstransport oder Magnetismus. Schwerpunkte liegen im Erlangen der Fähigkeiten zur selbstständigen Simulationsdurchführung, darauffolgender Datenanalyse, physikalischer Interpretation und, falls möglich, Verknüpfung mit experimentellen Untersuchungen.

Zusammensetzung der Modulnote

Voraussetzungen

keine

Inhalt

With ever advancing computational power, it becomes possible to determine the electronic structure of increasingly complex systems relevant to solid state physics and materials science. Here we introduce Density Functional Theory (DFT) by explaining the basic underlying concepts, present examples of its application and its shortcomings and outline the most promising improvement paths. DFT will be applied to charge transport and magnetism related problems. As DFT makes it possible to treat fairly large systems (up to a few thousand of electrons) it enables direct comparison to experiment for many important applications. Both periodic, crystalline systems and localized single molecule in vacuum will be addressed with a special focus on systems with reduced dimensionality, such as surfaces and interfaces. Where applicable, comparisons to experiment and possible deployments will be presented. Some of the topics that will be addressed are:

- Basic concepts underpinning the DFT
- Calculations of band structure and density of states (DOS) of (hybrid) graphene materials.
- Treatment of magnetism within DFT, with examples of both bulk and molecular magnetism.
- Charge transport, with examples of both ballistic and disordered hopping transport.
- Beyond ground state DFT: Time Dependent DFT, GW, ...

Empfehlungen

Grundlagenkenntnisse der Festkörpertheorie, Quantenmechanik und der Thermodynamik werden vorausgesetzt.

Arbeitsaufwand

180 h bestehend aus Präsenzzeiten (60 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Literatur

Wird in der Vorlesung genannt.
3.230 Modul: Theoretical Nanooptics [M-PHYS-102295]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik)
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Optik und Photonik
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte: 6
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

T-PHYS-104587 Theoretical Nanooptics 6 LP Rockstuhl

Qualifikationsziele
The properties of light at the nanoscale can be controlled by various means. The aim of this lecture is to familiarize the students with the different possibilities that rely on nanostructured dielectric or metallic materials and to outline on solid mathematical grounds the analytical description of observable effects. The lecture is meant as a complementary source of education to experimental lecture. It shall provide the students with the necessary skills to work themselves in the field of theoretical nanooptics.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-103177 - Theoretical Nanooptics (NF) darf nicht begonnen worden sein.

Inhalt
- Dispersion relation to describe light in extended systems such as free space, interfaces, planar waveguides and waveguides with complicated geometrical cross sections.
- Description of the interaction of light with isolated objects such as spheres, cylinders, ellipsoids and prolates and oblates.
- Properties of plasmonic nanoparticles and the ability to tune their properties
- Notion of optical antennas and the discussion of their basic characteristics
- Description of the dynamics of wave propagation by perturbed eigenstates, i.e. coupled mode theory. Application to optical waveguide arrays.
- Discussion of metamaterials (unit cells, homogenization, light propagation, applications)
- Transformation optics
- Analytical modeling and phenomenological tools to describe nanooptical systems

Empfehlungen
Solid mathematical background, good knowledge of classical electromagnetism and theoretical optics.

Arbeitsaufwand
180 hours composed of active time (45), wrap-up of the lecture incl. preparation of the examination and the excercises

Literatur
L. Novotny and B. Hecht, Principle of Nano-Optics, Cambridge
S. A. Maier, Plasmonics, Springer
Qualifikationsziele
The properties of light at the nanoscale can be controlled by various means. The aim of this lecture is to familiarize the students with the different possibilities that rely on nanostructured dielectric or metallic materials and to outline on solid mathematical grounds the analytical description of observable effects. The lecture is meant as a complementary source of education to experimental lecture. It shall provide the students with the necessary skills to work themselves in the field of theoretical nanooptics.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102295 - Theoretical Nanooptics darf nicht begonnen worden sein.

Inhalt

- Dispersion relation to describe light in extended systems such as free space, interfaces, planar waveguides and waveguides with complicated geometrical cross sections.
- Description of the interaction of light with isolated objects such as spheres, cylinders, ellipsoids and prolaters and oblaters.
- Properties of plasmonic nanoparticles and the ability to tune their properties
- Notion of optical antennas and the discussion of their basic characteristics
- Description of the dynamics of wave propagation by perturbed eigenstates, i.e. coupled mode theory. Application to optical waveguide arrays.
- Discussion of metamaterials (unit cells, homogenization, light propagation, applications)
- Transformation optics
- Analytical modeling and phenomenological tools to describe nanooptical systems

Empfehlungen
Solid mathematical background, good knowledge of classical electromagnetism and theoretical optics.

Arbeitsaufwand
180 hours composed of active time (45), wrap-up of the lecture incl. preparation of the examination and the exercises

Literatur
L. Novotny und B. Hecht, Principle of Nano-Optics, Cambridge
S. A. Maier, Plasmonics, Springer
3.232 Modul: Theoretical Optics [M-PHYS-102277]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Schwerpunktfach / Optik und Photonik (Pflicht Optik und Photonik)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Optik und Photonik

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

| T-PHYS-104578 | Theoretische Optik | 6 LP | Rockstuhl |

Qualifikationsziele
The students deepen their knowledge about the theory and the mathematical tools in optics and photonics. They learn how to apply these tools to describe fundamental phenomena and how to predict observable quantities that reflect the actual physics from the theory by way of a corresponding purposeful mathematical analyses. They learn how to solve problems of both, interpretative and predictive nature with regards to model systems and real life situations.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102279 – Theoretical Optics (NF) darf nicht begonnen worden sein.

Inhalt

- Review of Electromagnetism (Maxwell’s Equations, Stress Tensor, Material Properties, Kramers-Kronig Relation, Wave Propagation, Poynting’s Theorem)
- Crystal Optics (Polarization, Anisotropic Media, Fresnel Equation, Applications)
- Classical Coherence Theory (Elementary Coherence Phenomena, Theory of Stochastic Processes, Correlation Functions)
- Quantum Optics and Quantum Optical Coherence Theory (Review of Quantum Mechanics, Quantization of the EM Field, Quantum Coherence Functions)

Empfehlungen
Solid mathematical background, good knowledge of classical electromagnetism and basic knowledge of quantum mechanics.

Anmerkungen
Für Studierende der KIT-Fakultät für Informatik gilt: Die Prüfungen in diesem Modul sind über Zulassungen vom ISS (KIT-Fakultät für Informatik) anzumelden. Dafür reicht eine E-Mail mit Matrikeln. und Name der gewünschten Prüfung an Beratung-informatik@informatik.kit.edu aus.

Arbeitsaufwand
180 hours composed of active time (45), wrap-up of the lecture incl. preparation of the examaintion and the examination

Literatur
"Classical Electrodynamics" John David Jackson
"Theoretical Optics: An Introduction" Hartmann Römer
"Introduction to Fourier Optics" Joseph W. Goodman
"Introduction to the Theory of Coherence and Polarization of Light" Emil Wolf
"The Quantum Theory of Light " Rodney Loudon
Qualifikationsziele
The students deepen their knowledge about the theory and the mathematical tools in optics and photonics. They learn how to apply these tools to describe fundamental phenomena and how to predict observable quantities that reflect the actual physics from the theory by way of a corresponding purposeful mathematical analyses. They learn how to solve problems of both, interpretative and predictive nature with regards to model systems and real life situations.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102277 - Theoretical Optics darf nicht begonnen worden sein.

Inhalt

- Review of Electromagnetism (Maxwell’s Equations, Stress Tensor, Material Properties, Kramers-Kronig Relation, Wave Propagation, Poynting’s Theorem)
- Crystal Optics (Polarization, Anisotropic Media, Fresnel Equation, Applications)
- Classical Coherence Theory (Elementary Coherence Phenomena, Theory of Stochastic Processes, Correlation Functions)
- Quantum Optics and Quantum Optical Coherence Theory (Review of Quantum Mechanics, Quantization of the EM Field, Quantum Coherence Functions)

Empfehlungen
Solid mathematical background, good knowledge of classical electromagnetism and basic knowledge of quantum mechanics.

Arbeitsaufwand
180 hours composed of active time (45), wrap-up of the lecture incl. preparation of the examaintion and the examination

Literatur
"Classical Electrodynamics" John David Jackson
"Theoretical Optics: An Introduction" Hartmann Römer
"Introduction to Fourier Optics" Joseph W. Goodman
"Introduction to the Theory of Coherence and Polarization of Light" Emil Wolf
"The Quantum Theory of Light " Rodney Loudon
3.234 Modul: Theoretical Quantum Optics [M-PHYS-105094]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik) (EV ab 01.10.2019)
- Physikalisches Schwerpunktfach / Optik und Photonik (Wahl Optik und Photonik) (EV ab 01.10.2019)
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie) (EV ab 01.10.2019)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik) (EV ab 01.10.2019)
- Physikalisches Ergänzungsfach / Optik und Photonik (EV ab 01.10.2019)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie (EV ab 01.10.2019)

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Englisch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-110303 Theoretical Quantum Optics 6 LP Rockstuhl

Qualifikationsziele
The students of quantum optics comprehend the physics of quantum optical phenomena, the necessary theoretical means for their description, and the application of quantum optical resources in different applications and technologies. They learn how to express quantum optical phenomena in a mathematical language and can apply routinely different techniques to study quantum optical phenomena in specific situations. They are trained to solve basic problems in quantum optics.

The students
- learn about the quantisation of electromagnetic fields,
- understands the details of different quantum states of light,
- get an overview over experiments that were important in the development of quantum optics,
- develop an understanding for the quantum optical description of the first and second order coherence functions, and
- understand and can routinely apply different means to describe the interaction of quantum states of light with quantum emitters.

Voraussetzungen
keine

Inhalt
- Quantization of the electromagnetic field
- Various quantum states of light fields: optical photon-number, coherent, squeezed, Schrödinger’s cat states
- Classical and quantum coherence theory: photon bunching and antibunching
- Quantum description of quantum interferometry: Mach-Zehnder interferometer with photons
- General description of open quantum system: master equation, Heisenberg-Langevin, and stochastic approaches
- Optical test of quantum mechanics: Hong-Ou-Mandel, quantum eraser, and Bell’s theorem experiments
- Interaction of a single atom with a classical field and quantum field
- From Rabi model to Jaynes-Cummings model: the most simplest model to describe the light-matter interaction
- Quantum master equation approach: description of finite life time of atoms
- Weak and strong couplings (spontaneous emission, Purcell effect, resonance fluorescence, lasers, and Rabi oscillation)
- Interaction of an ensemble of atoms with a quantum field (Dicke and Tavis-Cummings models, and superradiance)
- Quantum optical applications (quantum cryptography, quantum teleportation, quantum metrology, etc.)

Empfehlungen
Interest in theoretical physics, good knowledge in quantum mechanics and electrodynamics/optics

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (45), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen (135).
Literatur

- C. Gerry and P. Knight, *Introductory Quantum Optics*.
- M. O. Scully and M. S. Zubairy, *Quantum Optics*.
- M. Fox, *Quantum Optics: An Introduction*.
- D.F. Walls and G. J. Milburn, *Quantum Optics*.
- P. Meyrueis and M. Sargent, *Elements of Quantum Optics*.
- W. Schleich, *Quantum Optics in Phase Space*.
3.235 Modul: Theoretische molekulare Biophysik, mit Seminar [M-PHYS-102169]

Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte
8

Turnus
Unregelmäßig

Dauer
1 Semester

Sprache
Deutsch

Level
4

Version
1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102365</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
50% der in den Übungsbögen erreichbaren Punkte, Referat und Kurzvorträge im Rahmen der Vorlesung/Übung

Qualifikationsziele
Aufbau von Biopolymeren, Modelle und Simulation der Strukturbildung und Funktion von Biopolymeren, insbesondere Proteine und DNS. Kenntnis von Verfahren zur rechnergestützten Medikamentenentwicklung

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102170 - Theoretische molekulare Biophysik, mit Seminar (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102171 - Theoretische molekulare Biophysik, ohne Seminar darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102172 - Theoretische molekulare Biophysik, ohne Seminar (NF) darf nicht begonnen worden sein.

Inhalt
 Fragestellungen aus dem Grenzgebiet zwischen Biologie, Chemie und Physik gewinnen zunehmend Bedeutung in der interdisziplinären Forschung. Theoretische Methoden der Biophysik und Biochemie können wesentlich dazu beitragen, biochemische Prozesse zu verstehen und zunehmend auch quantitativ zu beschreiben. Überlappend mit dem sich entwickelnden Gebiet der Bioinformatik erlauben physikalische Modelle die Analyse und zunehmend auch die Vorhersage fundamentaler biologischer Abläufe.

Empfehlungen
Kenntnisse der Thermodynamik

Lehr- und Lernformen
2203031 Theoretische molekulare Biophysik
2203032 Übungen zu Theoretische molekulare Biophysik

Literatur
Daume, Molecular Biophysics, Brandon & Tooze: Introduction to Protein Structure Weitere Titel werden in der Vorlesung genannt.
Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Theorie der Kondensierten Materie

Leistungspunkte: 8
Turnus: Unregelmäßig
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-102420 Theoretische molekulare Biophysik, mit Seminar (NF) 8 LP Schug, Wenzel

Erfolgskontrolle(n)
50% der in den Übungsbögen erreichbaren Punkte, Referat und Kurzvorträge im Rahmen der Vorlesung/Übung

Qualifikationsziele
Aufbau von Biopolymeren, Modelle und Simulation der Strukturbildung und Funktion von Biopolymeren, insbesondere Proteine und DNS. Kenntnis von Verfahren zur rechnergestützten Medikamentenentwicklung

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102169 - Theoretische molekulare Biophysik, mit Seminar darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102171 - Theoretische molekulare Biophysik, ohne Seminar darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102172 - Theoretische molekulare Biophysik, ohne Seminar (NF) darf nicht begonnen worden sein.

Inhalt
Fragenstellungen aus dem Grenzgebiet zwischen Biologie, Chemie und Physik gewinnen zunehmend Bedeutung in der interdisziplinären Forschung. Theoretische Methoden der Biophysik und Biochemie können wesentlich dazu beitragen, biochemische Prozesse zu verstehen und zunehmend auch quantitativ zu beschreiben. Überlappend mit dem sich entwickelnden Gebiet der Bioinformatik erlauben physikalische Modelle die Analyse und zunehmend auch die Vorhersage fundamentaler biologischer Abläufe.

Empfehlungen
Kenntnisse der Thermodynamik

Lehr- und Lernformen
2203031 Theoretische molekulare Biophysik
2203032 Übungen zu Theoretische molekulare Biophysik

Literatur
Daume, Molecular Biophysics, Brandon & Tooze: Introduction to Protein Structure Weitere Titel werden in der Vorlesung genannt.
3.237 Modul: Theoretische molekulare Biophysik, ohne Seminar [M-PHYS-102171]

Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Nanophysik (Wahl Nanophysik)
Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
Physikalisches Ergänzungsfach / Nanophysik (Wahl Nanophysik)
Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-104473 | Theoretische molekulare Biophysik, ohne Seminar | 6 LP | Schug, Wenzel |

Erfolgskontrolle(n)

50% der in den Übungsblättern erreichbaren Punkte

Qualifikationsziele

Aufbau von Biopolymeren, Modelle und Simulation der Strukturbildung und Funktion von Biopolymeren, insbesondere Proteine und DNS. Kenntnis von Verfahren zur rechnergestützten Medikamentenentwicklung

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102169 - Theoretische molekulare Biophysik, mit Seminar darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102170 - Theoretische molekulare Biophysik, mit Seminar (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102172 - Theoretische molekulare Biophysik, ohne Seminar (NF) darf nicht begonnen worden sein.

Inhalt

Fragestellungen aus dem Grenzgebiet zwischen Biologie, Chemie und Physik gewinnen zunehmend Bedeutung in der interdisziplinären Forschung. Theoretische Methoden der Biophysik und Biochemie können wesentlich dazu beitragen, biochemische Prozesse zu verstehen und zunehmend auch quantitativ zu beschreiben. Überlappend mit dem sich entwickelnden Gebiet der Bioinformatik erlauben physikalische Modelle die Analyse und zunehmend auch die Vorhersage fundamentaler biologischer Abläufe.

Empfehlungen

Kenntnisse der Thermodynamik

Lehr- und Lernformen

2203031 Theoretische molekulare Biophysik
2203032 Übungen zu Theoretische molekulare Biophysik

Literatur

Daume, Molecular Biophysics, Brandon & Tooze: Introduction to Protein Structure Weitere Titel werden in der Vorlesung genannt.
3.238 Modul: Theoretische molekulare Biophysik, ohne Seminar (NF) [M-PHYS-102172]

Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Nanophysik
Physikalisches Nebenfach / Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-PHYS-104474 Theoretische molekulare Biophysik, ohne Seminar (NF) 6 LP Schug, Wenzel

Erfolgskontrolle(n)

50% der in den Übungsblättern erreichbaren Punkte

Qualifikationsziele

Aufbau von Biopolymeren, Modelle und Simulation der Strukturbildung und Funktion von Biopolymeren, insbesondere Proteine und DNS. Kenntnis von Verfahren zur rechnergestützten Medikamentenentwicklung

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102169 - Theoretische molekulare Biophysik, mit Seminar darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102170 - Theoretische molekulare Biophysik, mit Seminar (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102171 - Theoretische molekulare Biophysik, ohne Seminar darf nicht begonnen worden sein.

Inhalt

Fragestellungen aus dem Grenzgebiet zwischen Biologie, Chemie und Physik gewinnen zunehmend Bedeutung in der interdisziplinären Forschung. Theoretische Methoden der Biophysik und Biochemie können wesentlich dazu beitragen, biochemische Prozesse zu verstehen und zunehmend auch quantitativ zu beschreiben. Überlappend mit dem sich entwickelnden Gebiet der Bioinformatik erlauben physikalische Modelle die Analyse und zunehmend auch die Vorhersage fundamentaler biologischer Abläufe.

Empfehlungen

Kenntnisse der Thermodynamik

Lehr- und Lernformen
2203031 Theoretische molekulare Biophysik
2203032 Übungen zu Theoretische molekulare Biophysik

Literatur
Daume, Molecular Biophysics, Brandon & Tooze: Introduction to Protein Structure Weitere Titel werden in der Vorlesung genannt.
3.239 Modul: Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen [M-PHYS-102033]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Pflicht Theoretische Teilchenphysik)
Physikalischess Ergänzungsfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 LP</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102544 | Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen | 12 LP Melnikov, Steinhauser, Zeppenfeld |

Qualifikationsziele

Der/die Studierende soll in die Grundbegriffe der Relativistischen Quantenfeldtheorie eingeführt werden, die relevanten theoretischen Konzepte beherrschen und die Rechenmethoden anwenden lernen.

Zusammensetzung der Modulnote

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102034 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102035 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102036 - Theoretische Teilchenphysik I, Grundlagen, ohne Übungen darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102037 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102038 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Klassische Feldtheorie; Kanonische Quantisierung von von Boson-, Fermion- und Vektorfeldern; Störungstheorie, Greensche Funktionen und Feynmandiagramme; Berechnung von Wirkungsquerschnitten; Quantenelektrodynamik als Eichtheorie; Spontane Symmetriebrechung

Empfehlungen

Grundlagenkenntnisse der Elektrodynamik, Quantenmechanik und Relativitätstheorie (im Umfang bis Theorie E)

Arbeitsaufwand

360 h bestehend aus Präsenzzeiten (90 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Literatur

- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory
3.240 Modul: Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) [M-PHYS-102037]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102540 | Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) | 12 LP | Melnikov, Steinhauser, Zeppenfeld |

Qualifikationsziele

Der/die Studierende soll in die Grundbegriffe der Relativistischen Quantenfeldtheorie eingeführt werden, die relevanten theoretischen Konzepte beherrschen und die Rechenmethoden anwenden lernen.

Zusammensetzung der Modulnote

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102033 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102034 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102035 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102036 - Theoretische Teilchenphysik I, Grundlagen, ohne Übungen darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102038 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Klassische Feldtheorie; Kanonische Quantisierung von von Boson-, Fermion- und Vektorfeldern; Störungstheorie, Greensche Funktionen und Feynmandiagramme; Berechnung von Wirkungsquerschnitten; Quantenelektrodynamik als Eichtheorie; Spontane Symmetriebrechung

Empfehlungen

Grundlagenkenntnisse der Elektrodynamik, Quantenmechanik und Relativitätstheorie (im Umfang bis Theorie E)

Arbeitsaufwand

360 h bestehend aus Präsenzzeiten (90 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Literatur

- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory
3.241 Modul: Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen [M-PHYS-102035]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Pflicht Theoretische Teilchenphysik)
Physikalischer Ergänzungsfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102546 | Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen | 8 LP | Melnikov, Steinhauser, Zeppenfeld |

Qualifikationsziele
Der/die Studierende soll in die Grundbegriffe der Relativistischen Quantenfeldtheorie eingeführt werden, die relevanten theoretischen Konzepte beherrschen und die Rechenmethoden anwenden lernen.

Zusammensetzung der Modulnote
Entsprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkts-, Ergänzungsooder Nebenfach.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102033 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102034 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102036 - Theoretische Teilchenphysik I, Grundlagen, ohne Übungen darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102037 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102038 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Klassische Feldtheorie; Kanonische Quantisierung von von Boson-, Fermion- und Vektorfeldern; Störungstheorie, Greensche Funktionen und Feynmandiagramme; Berechnung von Wirkungsquerschnitten; Quantenelektrodynamik als Eichtheorie; Spontane Symmetriebrechung

Empfehlungen
Grundlagenkenntnisse der Elektrodynamik, Quantenmechanik und Relativitätstheorie (im Umfang bis Theorie E)

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten (60 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung

Literatur
- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory
3.242 Modul: Theoretische Teilchenphysik I, Grundlagen, mit Übungen [M-PHYS-102034]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Pflicht Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Leistungspunkte: 8
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-102545 Theoretische Teilchenphysik I, Grundlagen, mit Übungen
8 LP Melnikov, Steinhauser, Zeppenfeld

Qualifikationsziele
Der/die Studierende soll in die Grundbegriffe der Relativistischen Quantenfeldtheorie eingeführt werden, die relevanten theoretischen Konzepte beherrschen und die Rechenmethoden anwenden lernen.

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102033 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102035 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102036 - Theoretische Teilchenphysik I, Grundlagen, ohne Übungen darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102037 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102038 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Klassische Feldtheorie; Kanonische Quantisierung von von Boson-, Fermion- und Vektorfeldern; Störungstheorie, Greensche Funktionen und Feynmandiagramme; Berechnung von Wirkungsquerschnitten; Quantenelektrodynamik als Eichtheorie; Spontane Symmetriebrechung

Empfehlungen
Grundlagenkenntnisse der Elektrodynamik, Quantenmechanik und Relativitätstheorie (im Umfang bis Theorie E)

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten (60 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Literatur
- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory
Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauer
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

Leistungspunkte 8

Turnus Jedes Sommersemester

Dauer 1 Semester

Sprache Deutsch

Level 4

Version 1

Pflichtbestandteile

T-PHYS-102541 Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) 8 LP Melnikov, Steinhauer, Zeppenfeld

Qualifikationsziele
Der/die Studierende soll in die Grundbegriffe der Relativistischen Quantenfeldtheorie eingeführt werden, die relevanten theoretischen Konzepte beherrschen und die Rechenmethoden anwenden lernen.

Zusammensetzung der Modulnote

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102033 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102034 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102035 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102036 - Theoretische Teilchenphysik I, Grundlagen, ohne Übungen darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102037 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt
Klassische Feldtheorie; Kanonische Quantisierung von von Boson-, Fermion- und Vektorfeldern; Störungstheorie, Greensche Funktionen und Feynmandiagramme; Berechnung von Wirkungsquerschnitten; Quantenelektrodynamik als Eichtheorie; Spontane Symmetriebrechung

Empfehlungen
Grundlagenkenntnisse der Elektrodynamik, Quantenmechanik und Relativitätstheorie (im Umfang bis Theorie E)

Arbeitsaufwand
240 h bestehend aus Präsenzzeiten (60 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Literatur
- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory
3.244 Modul: Theoretische Teilchenphysik I, Grundlagen, ohne Übungen [M-PHYS-102036]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Qualifikationsziele

Der/die Studierende soll in die Grundbegriffe der Relativistischen Quantenfeldtheorie eingeführt werden, die relevanten theoretischen Konzepte beherrschen und die Rechenmethoden anwenden lernen.

Zusammensetzung der Modulnote

Entprechend den Regeln der Prüfungsordnung und des Studienplans je nach Verwendung als Schwerpunkts-, Ergänzungsort Nebenfach.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102033 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102034 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102035 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102037 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) darf nicht begonnen worden sein.
5. Das Modul M-PHYS-102038 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) darf nicht begonnen worden sein.

Inhalt

Klassische Feldtheorie; Kanonische Quantisierung von von Boson-, Fermion- und Vektorfeldern; Störungstheorie, Greensche Funktionen und Feynmandiagramme; Berechnung von Wirkungsquerschnitten; Quantenelektrodynamik als Eichtheorie; Spontane Symmetriebrechung

Empfehlungen

Grundlagenkenntnisse der Elektrodynamik, Quantenmechanik und Relativitätstheorie (im Umfang bis Theorie E)

Arbeitsaufwand

180 h bestehend aus Präsenzzeiten (45 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung

Literatur

- M. Peskin and D. Schroeder, An Introduction to Quantum Field Theory
- L. Ryder, Quantum Field Theory
3.245 Modul: Theoretische Teilchenphysik II, ohne Übungen [M-PHYS-102048]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühleitner
Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102554 | Theoretische Teilchenphysik II, ohne Übungen | 8 LP | Zeppenfeld |

Qualifikationsziele
Studierende sollen in die Grundbegriffe von nicht-abelschen Eichtheorien und ihre Anwendung in der Teilchenphysik eingeführt werden und die relevanten theoretischen Konzepte und Rechenmethoden beherrschen lernen. In der Übung sollen die Studierenden konkrete Probleme der Theoretischen Teilchenphysik lösen lernen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102044 - Theoretische Teilchenphysik II, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102046 - Theoretische Teilchenphysik II, mit Übungen darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Theoretische Teilchenphysik I
Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Schwerpunktfach / Theoretische Teilchenphysik (Wahl Theoretische Teilchenphysik)
Physikalisches Ergänzungsfach / Theoretische Teilchenphysik

Pflichtbestandteile
T-PHYS-102552 Theoretische Teilchenphysik II, mit Übungen
<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Studierende sollen in die Grundbegriffe von nicht-abelschen Eichtheorien und ihre Anwendung in der Teilchenphysik eingeführt werden und die relevanten theoretischen Konzepte und Rechenmethoden beherrschen lernen. In der Übung sollen die Studierenden konkrete Probleme der Theoretischen Teilchenphysik lösen lernen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine
Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Das Modul M-PHYS-102044 - Theoretische Teilchenphysik II, mit Übungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102048 - Theoretische Teilchenphysik II, ohne Übungen darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Theoretische Teilchenphysik I
3.247 Modul: Theoretische Teilchenphysik II, mit Übungen (NF) [M-PHYS-102044]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theoretische Teilchenphysik

Leistungspunkte 12
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Bezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102548</td>
<td>Theoretische Teilchenphysik II, mit Übungen (NF)</td>
<td>12 LP Zeppenfeld</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Studierende sollen in die Grundbegriffe von nicht-abelschen Eichtheorien und ihre Anwendung in der Teilchenphysik eingeführt werden und die relevanten theoretischen Konzepte und Rechenmethoden beherrschen lernen. In der Übung sollen die Studierenden konkrete Probleme der Theoretischen Teilchenphysik lösen lernen unter Anwendung des in der Vorlesung vermittelten Faktenwissens.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102046 - Theoretische Teilchenphysik II, mit Übungen darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102048 - Theoretische Teilchenphysik II, ohne Übungen darf nicht begonnen worden sein.

Inhalt

Empfehlungen
Theoretische Teilchenphysik I
3.248 Modul: Theorie der Kondensierten Materie I, Grundlagen [M-PHYS-102054]

Verantwortung: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Pflicht Theorie der Kondensierten Materie)
Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102559 | Theorie der Kondensierten Materie I, Grundlagen | 8 LP | Shnirman |

Qualifikationsziele
Einführung in die Theorie der kondensierten Materie sowie weitere Vertiefung in dem Gebiet; Erlangen von Wissen über wichtigste Phänomene und Konzepte.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102051 - Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102052 - Theorie der Kondensierten Materie I, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt
Vorlesungen und Übungen vermitteln bzw. vertiefen die grundlegenden Konzepte der Theorie der kondensierten Materie, wobei kristallinen Festkörpern besondere Aufmerksamkeit geschenkt wird. Die inhaltlichen Schwerpunkte der Vorlesung sind:

- Kristallgitter, Elektronen im periodischen Potential, Dynamik von Bloch-Elektronen;
- Elektronische Transporteigenschaften von Festkörpern, Boltzmann-Gleichung;
- Festkörper im äußeren Magnetfeld: Pauli-Paramagnetismus, Landau-Diamagnetismus, de Haas-van Alphen-Effekt
- Elektron-Elektron-Wechselwirkung, Stoner-Theorie des Ferromagnetismus; Landau-Theorie von Fermi-Flüssigkeiten;
- Phononen und Elektron-Phonon-Wechselwirkung;
- Supraleitung: BCS-Theorie, Elektrodynamik von Supraleitern, Ginzburg-Landau-Theorie

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, der statistischen Physik und der Thermodynamik werden vorausgesetzt.

Literatur

- C. Kittel, Quantum Theory of Solids.
- A. A. Abrikosov, Fundamentals of the Theory of Metals
Modul: Theorie der Kondensierten Materie I, Grundlagen (NF) [M-PHYS-102052]

Verantwortung: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102557 | Theorie der Kondensierten Materie I, Grundlagen (NF) | 8 LP | Shnirman |

Qualifikationsziele

Einführung in die Theorie der kondensierten Materie sowie weitere Vertiefung in dem Gebiet; Erlangen von Wissen über wichtigste Phänomene und Konzepte.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102051 - Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.

Inhalt

Vorlesungen und Übungen vermitteln bzw. vertiefen die grundlegenden Konzepte der Theorie der kondensierter Materie, wobei kristallinen Festkörpern besondere Aufmerksamkeit geschenkt wird. Die inhaltlichen Schwerpunkte der Vorlesung sind:

- Kristallgitter, Elektronen im periodischen Potential, Dynamik von Bloch-Elektronen;
- Elektronische Transporteigenschaften von Festkörpern, Boltzmann-Gleichung;
- Festkörper im äußeren magnetfeld: Pauli-Paramagnetismus, Landau-Diamagnetismus, de Haas-van Alphen-Effekt
- Elektron-Elektron-Wechselwirkung, Stoner-Theorie des Ferromagnetismus; Landau-Theorie von Fermi-Flüssigkeiten;
- Phononen und Elektron-Phonon-Wechselwirkung;
- Supraleitung: BCS-Theorie, Elektrodynamik von Supraleitern, Ginzburg-Landau-Theorie

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, der statistischen Physik und der Thermodynamik werden vorausgesetzt.

Literatur

- C. Kittel, Quantum Theory of Solids.
- A. A. Abrikosov, Fundamentals of the Theory of Metals
Verantwortung: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Pflicht Theorie der Kondensierten Materie)
Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte: 12
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102558</td>
<td>Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen</td>
<td>12</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>4</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Qualifikationsziele
Einführung in die Theorie der kondensierten Materie sowie weitere Vertiefung in dem Gebiet; Erlangen von Wissen über wichtigste Phänomene und Konzepte.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102051 - Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102052 - Theorie der Kondensierten Materie I, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt
Vorlesungen und Übungen vermitteln bzw. vertiefen die grundlegenden Konzepte der Theorie der kondensierter Materie, wobei kristallinen Festkörpern besondere Aufmerksamkeit geschenkt wird. Die inhaltlichen Schwerpunkte der Vorlesung sind:

- Kristallgitter, Elektronen im periodischen Potential, Dynamik von Bloch-Elektronen;
- Elektronische Transporteigenschaften von Festkörpern, Boltzmann-Gleichung;
- Festkörper im äußeren Magnetfeld: Pauli-Paramagnetismus, Landau-Diamagnetismus, de Haas-van Alphen-Effekt
- Elektron-Elektron-Wechselwirkung, Stoner-Theorie des Ferromagnetismus; Landau-Theorie von Fermi-Flüssigkeiten;
- Phononen und Elektron-Phonon-Wechselwirkung;
- Supraleitung: BCS-Theorie, Elektrodynamik von Supraleitern, Ginzburg-Landau-Theorie

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, der statistischen Physik und der Thermodynamik werden vorausgesetzt.

Literatur
- C. Kittel, Quantum Theory of Solids.
- A. A. Abrikosov, Fundamentals of the Theory of Metals
Verantwortung: Prof. Dr. Markus Garst
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theorie der Kondensierten Materie

Leistungspunkte 12
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen (NF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102556</td>
<td>12 LP Shnirman</td>
</tr>
</tbody>
</table>

Qualifikationsziele
Einführung in die Theorie der kondensierten Materie sowie weitere Vertiefung in dem Gebiet; Erlangen von Wissen über wichtigste Phänomene und Konzepte.

Voraussetzungen
keine

Modellierende Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102052 - Theorie der Kondensierten Materie I, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt
Vorlesungen und Übungen vermitteln bzw. vertiefen die grundlegenden Konzepte der Theorie der kondensierter Materie, wobei kristallinen Festkörpern besondere Aufmerksamkeit geschenkt wird. Die inhaltlichen Schwerpunkte der Vorlesung sind:

- Kristallgitter, Elektronen im periodischen Potential, Dynamik von Bloch-Elektronen;
- Elektronische Transporteigenschaften von Festkörpern, Boltzmann-Gleichung;
- Festkörper im äußeren Magnetfeld: Pauli-Paramagnetismus, Landau-Diamagnetismus, de Haas-van Alphen-Effekt
- Elektron-Elektron-Wechselwirkung, Stoner-Theorie des Ferromagnetismus; Landau-Theorie von Fermi-Flüssigkeiten;
- Phononen und Elektron-Phonon-Wechselwirkung;
- Supraleitung: BCS-Theorie, Elektrodynamik von Supraleitern, Ginzburg-Landau-Theorie

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, der statistischen Physik und der Thermodynamik werden vorausgesetzt.

Literatur
- C. Kittel, Quantum Theory of Solids.
- A. A. Abrikosov, Fundamentals of the Theory of Metals

Modul: Theorie der Kondensierten Materie II: Vielteilchentheorie, ausgewählte Themen [M-PHYS-103331]

Verantwortung:
- Prof. Dr. Markus Garst
- Dr. Boris Narozhnny
- Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>2</th>
<th>Turnus</th>
<th>Jedes Sommersemester</th>
<th>Dauer</th>
<th>1 Semester</th>
<th>Sprache</th>
<th>Deutsch</th>
<th>Level</th>
<th>4</th>
<th>Version</th>
<th>1</th>
</tr>
</thead>
</table>

Pflichtbestandteile

| T-PHYS-106676 | Theorie der Kondensierten Materie II: Vielteilchentheorie, ausgewählte Themen | 2 LP | Garst, Narozhnny, Schmalian |

Qualifikationsziele

Die Studierenden kennen und beherrschen die Grundlagen der feldtheoretischen Methoden der Untersuchung von Vielteilchensystemen. Sie erlernen die Modellbildung für Probleme im Bereich der Kondensierten Materie und können den Formalismus der Green'schen Funktionen auf diese Modelle anwenden.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-102312 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.
4. Das Modul M-PHYS-102314 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt

Voraussichtliche Struktur der Vorlesung:

1. Green'sche Funktionen für nichtwechselwirkende Teilchen
2. Vielteilchen-Green-Funktionen
3. Feynman-Diagrammatik (wechselwirkende Fermionen, Fermi-Flüssigkeit, Kollektive Anregungen)

Empfehlungen

In der Regel soll diese Vorlesung nach der Theorie der Kondensierten Materie I besucht werden.

Lehr- und Lernformen

4024111 Vorlesung 1 SWS; B. Narozhnny

Literatur

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
3.253 Modul: Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen [M-PHYS-102313]

Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte 8
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| T-PHYS-104591 | Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen | 8 LP | Garst, Narozhnyy, Schmalian |

Qualifikationsziele
Die Studierenden kennen und beherrschen die Grundlagen der feldtheoretischen Methoden der Untersuchung von Vielteilchensystemen. Sie erlernen die Modellbildung für Probleme im Bereich der Kondensierten Materie und können den Formalismus der Green'schen Funktionen auf diese Modelle anwenden. Ausserdem haben die Studierenden die Kompetenz, das Erlernte auf kompliziertere Systeme anzuwenden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-102312 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102314 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt
Voraussichtliche Struktur der Vorlesung:

1. Green'sche Funktionen für nichtwechselwirkende Teilchen
2. Vielteilchen-Green-Funktionen
3. Feynman-Diagrammatik (wechselwirkende Fermionen, Fermi-Flüssigkeit, Kollektive Anregungen)
4. Green'sche Funktionen und Diagramm-Technik bei endlichen Temperaturen (Matsubara-Diagrammatik)
5. Funktionale Formulierung der Vielteilchentheorie
6. Supraleitende Systeme
7. Nichteichgewicht-Systeme und Keldysh-Diagrammatik
8. Vielteilchensysteme in einer Dimension
9. Kondo-Effekt
10. Stark korrelierte Elektronen: Hubbard-Modell und Mott-Metall-Isolator-Übergang
11. Einführung in die mesoskopische Physik

Empfehlungen
In der Regel soll diese Vorlesung nach der Theorie der Kondensierten Materie I besucht werden.

Lehr- und Lernformen
4024111 Vorlesung 3 SWS; Schamalian
4024112 Übung 1 SWS; Schamalian
Literatur

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
3.254 Modul: Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) [M-PHYS-102314]

Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theorie der Kondensierten Materie

Pflichtbestandteile

| T-PHYS-104592 | Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) | 8 LP | Garst, Narozhnyy, Schmalian |

Qualifikationsziele

Die Studierenden kennen und beherrschen die Grundlagen der feldtheoretischen Methoden der Untersuchung von Vielteilchensystemen. Sie erlernen die Modellbildung für Probleme im Bereich der Kondensierten Materie und können den Formalismus der Green'schen Funktionen auf diese Modelle anwenden. Ausserdem haben die Studierenden die Kompetenz, das Erlernte auf kompliziertere Systeme anzuwenden.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-102312 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.

Inhalt

Voraussichtliche Struktur der Vorlesung:

1. Green'sche Funktionen für nichtwechselwirkende Teilchen
2. Vielteilchen-Green-Funktionen
3. Feynman-Diagrammatik (wechselwirkende Fermionen, Fermi-Flüssigkeit, Kollektive Anregungen)
4. Green'sche Funktionen und Diagramm-Technik bei endlichen Temperaturen (Matsubara-Diagrammatik)
5. Funktionale Formulierung der Vielteilchentheorie
6. Supraleitende Systeme
7. Nichtgleichgewicht-Systeme und Keldysh-Diagrammatik
8. Vielteilchensysteme in einer Dimension
9. Kondo-Effekt
10. Stark korrelierte Elektronen: Hubbard-Modell und Mott-Metall-Isolator-Übergang
11. Einführung in die mesoskopische Physik

Empfehlungen

In der Regel soll diese Vorlesung nach der Theorie der Kondensierten Materie I besucht werden.

Arbeitsaufwand

240 h bestehend aus Präsenzzeiten (60 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen

4024111 Vorlesung 3 SWS; Schamalian
4024112 Übung 1 SWS; Schamalian
Literatur

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- Physikalisches Schwerpunktfach / Theorie der Kondensierten Materie (Wahl Theorie der Kondensierten Materie)
- Physikalisches Ergänzungsfach / Theorie der Kondensierten Materie

Leistungspunkte 12
Turnus Jedes Sommersemester
Dauer 1 Semester
Sprache Deutsch
Level 4
Version 1

Pflichtbestandteile

| Modul | Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen | 12 LP | Garst, Narozhnyy, Schmalian |

Qualifikationsziele

Voraussetzungen

keine

Modellierter Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102312 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) darf nicht begonnen worden sein.
2. Das Modul M-PHYS-102313 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102314 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt

Voraussichtliche Struktur der Vorlesung:

1. Greensche Funktionen für nichtwechselwirkende Teilchen
2. Vielteilchen-Green-Funktionen
3. Feynman-Diagrammatik (wechselwirkende Fermionen, Fermi-Flüssigkeit, Kollektive Anregungen)
4. Greensche Funktionen und Diagramm-Technik bei endlichen Temperaturen (Matsubara-Diagrammatik)
5. Funktionale Formulierung der Vielteilchentheorie
6. Supraleitende Systeme
7. Nichtgleichgewicht-Systeme und Keldysh-Diagrammatik
8. Vielteilchensysteme in einer Dimension
9. Kondo-Effekt
10. Stark korrelierte Elektronen: Hubbard-Modell und Mott-Metall-Isolator-Übergang
11. Einführung in die mesoskopische Physik

Empfehlungen

In der Regel soll diese Vorlesung nach der Theorie der Kondensierten Materie I besucht werden.

Arbeitsaufwand

360 h bestehend aus Präsenzzeiten (90 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen
Lehr- und Lernformen
4024111 Vorlesung 4 SWS; Schamalian
4024112 Übung 2 SWS; Schamalian

Literatur

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
3.256 Modul: Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) [M-PHYS-102312]

Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Nebenfach / Theorie der Kondensierten Materie

Leistungspunkte: 12
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 4
Version: 1

Pflichtbestandteile
T-PHYS-102562 Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) 12 LP Garst, Narozhnyy, Schmalian

Qualifikationsziele
Die Studierenden kennen und beherrschen die Grundlagen der feldtheoretischen Methoden der Untersuchung von Vielteilchensystemen. Sie erlernen die Modellbildung für Probleme im Bereich der Kondensierten Materie und können den Formalismus der Green'schen Funktionen auf diese Modelle anwenden. Ausserdem haben die Studierenden die Kompetenz, das Erlernte auf kompliziertere Systeme anzuwenden.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

2. Das Modul M-PHYS-102313 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen darf nicht begonnen worden sein.
3. Das Modul M-PHYS-102314 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) darf nicht begonnen worden sein.

Inhalt
Voraussichtliche Struktur der Vorlesung:

1. Green'sche Funktionen für nichtwechselwirkende Teilchen
2. Vielteilchen-Green-Funktionen
3. Feynman-Diagrammatik (wechselwirkende Fermionen, Fermi-Flüssigkeit, Kollektive Anregungen)
4. Green'sche Funktionen und Diagramm-Technik bei endlichen Temperaturen (Matsubara-Diagrammatik)
5. Funktionale Formulierung der Vielteilchentheorie
6. Supraleitende Systeme
7. Nichtgleichgewicht-Systeme und Keldysh-Diagrammatik
8. Vielteilchensysteme in einer Dimension
9. Kondo-Effekt
10. Stark korrelierte Elektronen: Hubbard-Modell und Mott-Metall-Isolator-Übergang
11. Einführung in die mesoskopische Physik

Empfehlungen
In der Regel soll diese Vorlesung nach der Theorie der Kondensierten Materie I besucht werden.

Arbeitsaufwand
360 h bestehend aus Präsenzzeiten (90 h), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Bearbeitung der Übungen

Lehr- und Lernformen
4024111 Vorlesung 4 SWS; Schamalian
4024112 Übung 2 SWS; Schamalian
Literatur

- A.A. Abrikosov, L.P. Gorkov, I.E. Dzyaloshinskii, Methods of QFT in statistical physics
- L.D. Landau, E.M. Lifschitz, Statistische Physik, Teil II (Lehrbuch der theoretischen Physik, Bd IX)
- G.D. Mahan, Many-particle physics
- A.L. Fetter, J.D. Valecka, Quantum theory of many-particle systems.
- J.W. Negele, H. Orland, Quantum many-particle systems.
- J.R. Schrieffer, Theory of superconductivity.
- A. Altland, B. Simons, Condensed matter field theory.
- T. Giamarchi, Quantum physics in one dimension.
- A. Kamenev, Field theory of non-equilibrium systems.
3.257 Modul: Theorie seismischer Wellen [M-PHYS-102367]

Verantwortung: Prof. Dr. Friedemann Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Physikalisches Ergänzungsfach / Geophysik

Leistungspunkte: 6

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Englisch

Level: 4

Version: 2

Pflichtbestandteile

Pflichtbestandteile

T-PHYS-104736 Theorie seismischer Wellen 6 LP Wenzel

Erfolgskontrolle(n)

To pass the module, the oral exam (approx. 45 minutes) must be passed. As prerequisites the examinations of other type must be passed, based on successful participation of the exercises. Each exercise deals with a specific topic (e.g., stress and strain tensors, Zoeppritz equations, or rays) and is based on solving a given theoretical problem by means of calculus. In some cases equations and solutions need to be visualized using Matlab (or equivalent tools).

Qualifikationsziele

The students know the fundamental laws and equations of linear elasticity and wave propagation. They understand wave propagation phenomena such as source effects, reflection and transmission or the effects of anisotropy, absorption, dispersion and scattering and can describe them in mathematical terms. They are able to apply the concepts and equations to theoretical problems and relate the theory to phenomena observed in field data.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102657 - Theorie seismischer Wellen (NF) darf nicht begonnen worden sein.

Inhalt

- Theory of elasticity, stress and strain, elastic tensor, fundamental laws and equations
- Anisotropic elastic wave equation and various simplifications
- Mathematical description of sources, near-field and far-field terms
- Boundary conditions
- Reflection and transmission of plane waves at plane interfaces, Zoeppritz equations
- Surface waves, dispersion relation, phase and group velocity
- Introduction to ray theory, eikonal and transport equations and their solutions
- Absorption and dispersion
- Wave propagation in anisotropic media
- Scattering

Empfehlungen

Knowledge of differential and vector calculus is essential. Familiarity with Matlab (alternatively Python or Mathematica) is beneficial for certain exercises.

Literatur

3.258 Modul: Theorie seismischer Wellen (NF) [M-PHYS-102657]

Verantwortung: Prof. Dr. Friedemann Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Physikalisches Nebenfach / Geophysik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Englisch</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

To pass the module, the examinations of other type must be passed, based on successful participation of the exercises. Each exercise deals with a specific topic (e.g., stress and strain tensors, Zoeppritz equations, or rays) and is based on solving a given theoretical problem by means of calculus. In some cases equations and solutions need to be visualized using Matlab (or equivalent tools).

Qualifikationsziele

The students know the fundamental laws and equations of linear elasticity and wave propagation. They understand wave propagation phenomena such as source effects, reflection and transmission or the effects of anisotropy, absorption, dispersion and scattering and can describe them in mathematical terms. They are able to apply the concepts and equations to theoretical problems and relate the theory to phenomena observed in field data.

Voraussetzungen

keine

Modellierter Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-102367 - Theorie seismischer Wellen darf nicht begonnen worden sein.

Inhalt

- Theory of elasticity, stress and strain, elastic tensor, fundamental laws and equations
- Anisotropic elastic wave equation and various simplifications
- Mathematical description of sources, near-field and far-field terms
- Boundary conditions
- Reflection and transmission of plane waves at plane interfaces, Zoeppritz equations
- Surface waves, dispersion relation, phase and group velocity
- Introduction to ray theory, eikonal and transport equations and their solutions
- Absorption and dispersion
- Wave propagation in anisotropic media
- Scattering

Empfehlungen

Knowledge of differential and vector calculus is essential. Familiarity with Matlab (alternatively Python or Mathematica) is beneficial for certain exercises.

Lehr- und Lernformen

V+Ü, 3 SWS

Literatur

3.259 Modul: Überfachliche Qualifikationen [M-PHYS-101394]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Einmalig</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahl überfachliche Qualifikationen (mind. 4 LP)

<table>
<thead>
<tr>
<th>Modulcode</th>
<th>Modulbeschreibung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-104675</td>
<td>Platzhalter Überfachliche Qualifikation 2 LP - benotet</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-104677</td>
<td>Platzhalter Überfachliche Qualifikation 2 LP - unbenotet</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.1 Teilleistung: Advanced Numerical Weather Prediction [T-PHYS-109139]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4052051 | Advanced Numerical Weather Prediction | 2 SWS | Vorlesung (V) | Knippertz |

Voraussetzungen
none
4.2 Teilleistung: Advanced Topics in Flavour Physics [T-PHYS-108476]

Verantwortung: Dr. Monika Blanke
Prof. Dr. Ulrich Nierste

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104090 - Advanced Topics in Flavour Physics

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 4
Turnus: Unregelmäßig
Version: 1

Voraussetzungen: keine
4.3 Teilleistung: Allgemeine Relativitätstheorie [T-PHYS-102395]

Verantwortung: Prof. Dr. Frans Klinkhamer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102319 - Allgemeine Relativitätstheorie

Teilleistungsart

- Prüfungsleistung mündlich

Leistungspunkte 10

Turnus Unregelmäßig

Version 1

Voraussetzungen

- keine
4.4 Teilleistung: Allgemeine Relativitätstheorie (NF) [T-PHYS-102446]

Verantwortung: Prof. Dr. Frans Klinkhamer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102320 - Allgemeine Relativitätstheorie (NF)

Teilleistungsart: Studienleistung
Leistungspunkte: 10
Turnus: Unregelmäßig
Version: 1

Voraussetzungen
keine
4.5 Teilleistung: Allgemeine Relativitätstheorie II [T-PHYS-106678]

Verantwortung: Prof. Dr. Frans Klinkhamer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103333 - Allgemeine Relativitätstheorie II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- oder Übungskennzahl</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4026131</td>
<td>General Relativity II</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Klinkhamer</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4026132</td>
<td>Exercises to General Relativity II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Klinkhamer, Emelyanov</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.6 Teilleistung: Allgemeine Relativitätstheorie II (NF) [T-PHYS-106679]

Verantwortung: Prof. Dr. Frans Klinkhamer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103334 - Allgemeine Relativitätstheorie II (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4026131</th>
<th>General Relativity II</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Klinkhamer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4026132</td>
<td>Exercises to General Relativity II</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Klinkhamer, Emelyanov</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4 TEILLEISTUNGEN

4.7 Teilleistung: Array Processing [T-PHYS-104733]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Joachim Ritter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102366 - Array Processing</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
4

Version
1

Voraussetzungen
keine
4.8 Teilleistung: Array Processing (NF) [T-PHYS-105570]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102656 - Array Processing (NF)

Voraussetzungen
keine
4.9 Teilleistung: Astroteilchenphysik I [T-PHYS-102432]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102075 - Astroteilchenphysik I

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 8
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Form</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022011</td>
<td>Astroteilchenphysik I: Dunkle Materie</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Drexlin, Valerius</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022012</td>
<td>Übungen zur Astroteilchenphysik I: Dunkle Materie</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Drexlin, Hiller, Seitz-Moskaliuk</td>
</tr>
</tbody>
</table>

Voraussetzungen:
keine
4.10 Teilleistung: Astroteilchenphysik I (NF) [T-PHYS-104379]

Verantwortung: Prof. Dr. Guido Drexlin
 Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102076 - Astroteilchenphysik I (NF)

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4022011</td>
</tr>
<tr>
<td>WS 19/20 4022012</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.11 Teilleistung: Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen [T-PHYS-105109]

Verantwortung: Prof. Dr. Ralph Engel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102526 - Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Astroteilchenphysik II - Gammastrahlung</td>
<td>2 SWS Vorlesung (V) Engel, Unger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übungen zu Astroteilchenphysik II - Gammastrahlung</td>
<td>2 SWS Übung (Ü) Engel, Veberic</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.12 Teilleistung: Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF) [T-PHYS-106318]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Ralph Engel</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-103185 - Astroteilchenphysik II - Gammastrahlung, mit erw. Übungen (NF)</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4022131</th>
<th>Astroteilchenphysik II - Gammastrahlung</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Engel, Unger</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022132</td>
<td>Übungen zu Astroteilchenphysik II - Gammastrahlung</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Engel, Veberic</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.13 Teilleistung: Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen [T-PHYS-102383]

Verantwortung:	Prof. Dr. Ralph Engel
Einrichtung:	KIT-Fakultät für Physik
Bestandteil von:	M-PHYS-102080 - Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstalung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022131</td>
<td>Astroteilchenphysik II - Gammastrahlung</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Engel, Unger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022132</td>
<td>Übungen zu Astroteilchenphysik II - Gammastrahlung</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Engel, Veberic</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.14 Teilleistung: Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen (NF) [T-PHYS-104382]

Verantwortung: Prof. Dr. Ralph Engel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102084 - Astroteilchenphysik II - Gammastrahlung, ohne erw. Übungen (NF)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022131</td>
<td>Astroteilchenphysik II - Gammastrahlung</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Engel, Unger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022132</td>
<td>Übungen zu Astroteilchenphysik II - Gammastrahlung</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Engel, Veberic</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.15 Teilleistung: Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen [TPHYS-105108]

Verantwortung: Prof. Dr. Ralph Engel
Dr. Markus Roth
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102525 - Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.16 Teilleistung: Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF) [T-PHYS-106317]

Verantwortung: Prof. Dr. Ralph Engel
Dr. Markus Roth

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103184 - Astroteilchenphysik II - Kosmische Strahlung, mit erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>4022041</th>
<th>Astroteilchenphysik II: Kosmische Strahlung</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Engel, Veberic</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022042</td>
<td>Übungen zu Astroteilchenphysik II: Kosmische Strahlung</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Engel, Unger</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.17 Teilleistung: Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen [T-PHYS-102382]

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 6

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem.</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Leistung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022041</td>
<td>Astroteilchenphysik II: Kosmische Strahlung</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Engel, Veberic</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022042</td>
<td>Übungen zu Astroteilchenphysik II: Kosmische Strahlung</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Engel, Unger</td>
</tr>
</tbody>
</table>

Voraussetzungen
- keine
4.18 Teilleistung: Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF) [T-PHYS-104380]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Ralph Engel
Markus Roth

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102082 - Astroteilchenphysik II - Kosmische Strahlung, ohne erw. Übungen (NF)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022041</td>
<td>Astroteilchenphysik II: Kosmische Strahlung</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Engel, Veberic</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022042</td>
<td>Übungen zu Astroteilchenphysik II: Kosmische Strahlung</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Engel, Unger</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.19 Teilleistung: Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen [T-PHYS-105110]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102527 - Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
</tr>
<tr>
<td>4022111 Astroteilchenphysik II - Teilchen und Sterne</td>
</tr>
<tr>
<td>SS 2019</td>
</tr>
<tr>
<td>4022112 Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.20 Teilleistung: Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF) [T-PHYS-106319]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103186 - Astroteilchenphysik II - Teilchen und Sterne, mit erw. Übungen (NF)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2</td>
<td>V</td>
<td>Drexlin, Valerius</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2</td>
<td>Ü</td>
<td>Drexlin, Seitz-Moskaliuk</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.21 Teilleistung: Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen [T-PHYS-102498]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102081 - Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

- SS 2019 4022111 Astroteilchenphysik II - Teilchen und Sterne 2 SWS Vorlesung (V) Drexlin, Valerius
- SS 2019 4022112 Übungen zu Astroteilchenphysik II - Teilchen und Sterne 2 SWS Übung (Ü) Drexlin, Seitz-Moskaliuk

Voraussetzungen

keine
4.22 Teilleistung: Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF) [T-PHYS-104383]

- **Verantwortung:** Prof. Dr. Guido Drexlin
 Dr. Kathrin Valerius
- **Einrichtung:** KIT-Fakultät für Physik
- **Bestandteil von:** M-PHYS-102086 - Astroteilchenphysik II - Teilchen und Sterne, ohne erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022111</td>
<td>Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Drexlin, Valerius</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022112</td>
<td>Übungen zu Astroteilchenphysik II - Teilchen und Sterne</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Drexlin, Seitz-Moskaliuk</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.23 Teilleistung: Atmospheric Aerosols [T-PHYS-108938]

Verantwortung: Dr. Ottmar Möhler
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Teilleistungsart
<table>
<thead>
<tr>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Studienleistung</th>
<th>Entsprechende SWS</th>
<th>Art</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Atmospheric Aerosols</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Möhler</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Exercises to Atmospheric Aerosols</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Möhler, Kaufmann</td>
</tr>
</tbody>
</table>

Voraussetzungen
None
Teilleistung: Atmospheric Radiation [T-PHYS-107696]

Verantwortung: Dr. Michael Höpfner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4052071 Atmospheric Radiation</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101545 - Strahlung darf nicht begonnen worden sein.

Anmerkungen
Diese Teilleistung wird ab dem Wintersemester 2017/2018 in englisch angeboten.
4.25 Teilleistung: Beschleunigerphysik, mit erw. Übungen [T-PHYS-109904]

Verantwortung: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104869 - Beschleunigerphysik, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4028111</td>
<td>Beschleunigerphysik</td>
<td>4</td>
<td>V</td>
<td>Müller, Bernhard</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4028112</td>
<td>Praktische Übungen an KARA zur Vorlesung Beschleunigerphysik</td>
<td>1</td>
<td>Ü</td>
<td>Müller, Blomley, Schreiber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028011</td>
<td>Beschleunigerphysik</td>
<td>4</td>
<td>V</td>
<td>Müller, Bernhard</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028012</td>
<td>Praktische Übungen an KARA zur Beschleunigerphysik</td>
<td>1</td>
<td>Ü</td>
<td>Müller, Blomley, Schreiber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen

keine
4.26 Teilleistung: Beschleunigerphysik, mit erw. Übungen (NF) [T-PHYS-109903]

Verantwortung: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104870 - Beschleunigerphysik, mit erw. Übungen (NF)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Studienleistung</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4028111 Beschleunigerphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Müller, Bernhard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>4028112 Praktische Übungen an KARA zur Vorlesung Beschleunigerphysik</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Müller, Blomley, Schreiber</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028011 Beschleunigerphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Müller, Bernhard</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028012 Praktische Übungen an KARA zur Beschleunigerphysik</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Müller, Blomley, Schreiber</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen

keine
4.27 Teilleistung: Beschleunigerphysik, ohne erw. Übungen [T-PHYS-109905]

Verantwortung: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104871 - Beschleunigerphysik, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4028111</td>
<td>Beschleunigerphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Müller, Bernhard</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028011</td>
<td>Beschleunigerphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Müller, Bernhard</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine
4.28 Teilleistung: Beschleunigerphysik, ohne erw. Übungen (NF) [T-PHYS-109906]

Verantwortung: Dr. Axel Bernhard
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104872 - Beschleunigerphysik, ohne erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Leistungspunkt</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4028111</td>
<td>Beschleunigerphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Müller, Bernhard</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028011</td>
<td>Beschleunigerphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Müller, Bernhard</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine
4.29 Teilleistung: Climate Modeling & Dynamics with ICON [T-PHYS-108928]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Dr. Aiko Voigt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4052151</td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ginete Werner Pinto, Voigt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4052152</td>
<td>Exercises to Climate Modeling & Dynamics with ICON</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Ginete Werner Pinto, Voigt, Choudhary, Lentink</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Successful participation in the exercises.

Voraussetzungen
None
4.30 Teilleistung: Cloud Physics [T-PHYS-107694]

Verantwortung: Prof. Dr. Corinna Hoose
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4052081</td>
<td>Cloud Physics</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Hoose</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4052082</td>
<td>Exercises to Cloud Physics</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hoose, NN</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Es müssen mehr als 50% der Punkte aus den Übungen erreicht und mind. 1x vorgerechnet werden.

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101543 - Wolkenphysik darf nicht begonnen worden sein.

Anmerkungen

Diese Teilleistung wird ab dem Wintersemester 2017/2018 in englisch angeboten.
4.31 Teilleistung: Computational Condensed Matter Physics [T-PHYS-109895]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104862 - Computational Condensed Matter Physics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>12</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4023161</td>
<td>Computational Condensed Matter Physics</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Wenzel, Schug</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4023162</td>
<td>Übungen zu Computational Condensed Matter Physics</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Wenzel, Schug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Quantenmechanik und Festkörpertheorie.
4.32 Teilleistung: Computational Condensed Matter Physics (NF) [T-PHYS-109894]

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104863 - Computational Condensed Matter Physics (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4023161</td>
<td>Computational Condensed Matter Physics</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Wenzel, Schug</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4023162</td>
<td>Übungen zu Computational Condensed Matter Physics</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Wenzel, Schug</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen

keine

Empfehlungen

Kenntnisse der Quantenmechanik und Festkörpertheorie.
4.33 Teilleistung: Computational Photonics, with ext. Exercises [T-PHYS-103633]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101933 - Computational Photonics, with ext. Exercises

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 8
Turnus: Unregelmäßig
Version: 1

Voraussetzungen: keine
4.34 Teilleistung: Computational Photonics, with ext. Exercises (NF) [T-PHYS-106132]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103090 - Computational Photonics, with ext. Exercises (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
4.35 Teilleistung: Computational Photonics, without ext. Exercises [T-PHYS-106131]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103089 - Computational Photonics, without ext. Exercises

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>
4.36 Teilleistung: Computational Photonics, without ext. Exercises (NF) [T-PHYS-106326]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103193 - Computational Photonics, without ext. Exercises (NF)

Voraussetzungen
keine

Verantwortung: Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105139 - Critical and Fluctuation Phenomena in Condensed-Matter Physics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 4024061 | Critical and fluctuation phenomena in condensed-matter physics | 4 SWS | Vorlesung (V) | Mirlin, Gornyi |

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Empfehlungen

4.38 Teilleistung: Critical and Fluctuation Phenomena in Condensed-Matter Physics (NF) [T-PHYS-110391]

Verantwortung: Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105140 - Critical and Fluctuation Phenomena in Condensed-Matter Physics (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 4024061 | Critical and fluctuation phenomena in condensed-matter physics | 4 SWS | Vorlesung (V) | Mirlin, Gornyi |

Erfolgskontrolle(n)
Falls dieses Modul als Nebenfach verwendet wird, werden die Leistungspunkte durch eine Studienleistung (Kurzvorträge im Rahmen der Vorlesung) erworben.

Empfehlungen
4.39 Teilleistung: Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen [T-PHYS-102378]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102121 - Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4022071</td>
</tr>
<tr>
<td>WS 19/20 4022072</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.40 Teilleistung: Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF) [T-PHYS-102431]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102122 - Detektoren für Teilchen- und Astroteilchenphysik, mit erw. Übungen (NF)

Teilleistungsart Studienleistung
Leistungspunkte 8
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Hartmann, Schröder</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hartmann, Schröder</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.41 Teilleistung: Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen [T-PHYS-104453]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102119 - Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehraufgabe</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Hartmann, Schröder</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hartmann, Schröder</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.42 Teilleistung: Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF) [T-PHYS-104454]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102120 - Detektoren für Teilchen- und Astroteilchenphysik, ohne erw. Übungen (NF)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Dozenten (Fakultät)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022071</td>
<td>Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Hartmann, Schröder</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022072</td>
<td>Übungen zu Detektoren für Teilchen- und Astroteilchenphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hartmann, Schröder</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.43 Teilleistung: Dunkle Materie - Theoretische Aspekte [T-PHYS-105957]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Thomas Schwetz-Mangold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102981 - Dunkle Materie - Theoretische Aspekte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>6</td>
</tr>
<tr>
<td>Turnus</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Teilleistung: Dunkle Materie - Theoretische Aspekte (NF) [T-PHYS-106320]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103187 - Dunkle Materie - Theoretische Aspekte (NF)

Voraussetzungen
keine
4.45 Teilleistung: Effektive Feldtheorien [T-PHYS-106672]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103328 - Effektive Feldtheorien

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Teileistung: Effektive Feldtheorien (NF) [T-PHYS-106673]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103329 - Effektive Feldtheorien (NF)

Voraussetzungen
keine
4.47 Teilleistung: Einführung in das wissenschaftliche Arbeiten [T-PHYS-102480]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101397 - Einführung in das wissenschaftliche Arbeiten

Teilleistungsart: Studienleistung
Leistungspunkte: 15
Version: 1

Voraussetzungen:
keine
Teilleistung: Einführung in die Flavourphysik, Grundlagen [T-PHYS-105963]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102987 - Einführung in die Flavourphysik, Grundlagen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 10
Turnus: Unregelmäßig
Version: 1

Voraussetzungen: keine
4.49 Teilleistung: Einführung in die Flavourphysik, Grundlagen (NF) [T-PHYS-106322]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103189 - Einführung in die Flavourphysik, Grundlagen (NF)

Voraussetzungen
keine
4.50 Teilleistung: Einführung in die Flavourphysik, Grundlagen und Vertiefungen [T-PHYS-105962]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102986 - Einführung in die Flavourphysik, Grundlagen und Vertiefungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>12</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.51 Teilleistung: Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF) [T-PHYS-106321]

- **Verantwortung:** Prof. Dr. Ulrich Nierste
- **Einrichtung:** KIT-Fakultät für Physik
- **Bestandteil von:** M-PHYS-103188 - Einführung in die Flavourphysik, Grundlagen und Vertiefungen (NF)

Voraussetzungen
keine
Teilleistung: Einführung in die Kosmologie [T-PHYS-102384]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102175 - Einführung in die Kosmologie

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 6
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsbereich</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022021</td>
<td>Einführung in die Kosmologie</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Drexlin, Schlösser</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022022</td>
<td>Übungen zur Einführung in die Kosmologie</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Drexlin, Hiller, Schlösser</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.53 Teilleistung: Einführung in die Kosmologie (NF) [T-PHYS-102433]

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102176 - Einführung in die Kosmologie (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 19/20</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4022021</td>
<td>Einführung in die Kosmologie</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Drexlin, Schlösser</td>
</tr>
<tr>
<td>WS 19/20 4022022</td>
<td>Übungen zur Einführung in die Kosmologie</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Drexlin, Hiller, Schlösser</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.54 Teilleistung: Einführung in die Supersymmetrie [T-PHYS-108477]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Dieter Zeppenfeld</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-104091 - Einführung in die Supersymmetrie</td>
</tr>
</tbody>
</table>

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
6

Turnus
Unregelmäßig

Version
1

Voraussetzungen
keine
4.55 Teilleistung: Einführung in die Theoretische Kosmologie [T-PHYS-109887]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104855 - Einführung in die Theoretische Kosmologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4022201</th>
<th>Einführung in die Theoretische Kosmologie</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Schwetz-Mangold</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022202</td>
<td>Übungen zu Einführung in die Theoretische Kosmologie</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Schwetz-Mangold, Todarello</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen

keine

Empfehlungen

Grundkenntnisse in Allgemeiner Relativitätstheorie sind empfehlenswert, es werden aber alle benötigten Konzepte eingeführt. Elementare Kenntnisse der Teilchenphysik sind hilfreich.
4.56 Teilleistung: Einführung in die Theoretische Kosmologie (NF) [T-PHYS-109888]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104856 - Einführung in die Theoretische Kosmologie (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lernfeld</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozent/-innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022201</td>
<td>Einführung in die Theoretische Kosmologie</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Schwetz-Mangold</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022202</td>
<td>Übungen zu Einführung in die Theoretische Kosmologie</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Schwetz-Mangold, Todarello</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen

keine

Empfehlungen

Grundkenntnisse in Allgemeiner Relativitätstheorie sind empfehlenswert, es werden aber alle benötigten Konzepte eingeführt. Elementare Kenntnisse der Teilchenphysik sind hilfreich.
4.57 Teilleistung: Einführung in die Theoretische Teilchenphysik, mit erw. Übungen [T-PHYS-104536]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102221 - Einführung in die Theoretische Teilchenphysik, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4026021</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Melnikov</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4026022</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Melnikov, Jaquier, Broennum-Hansen</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.58 Teilleistung: Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF) [T-PHYS-104791]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner
 Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102424 - Einführung in die Theoretische Teilchenphysik, mit erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsaufzählung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Melnikov</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Melnikov, Jaquier, Broennum-Hansen</td>
</tr>
</tbody>
</table>

Voraussetzungen

die keine
4.59 Teilleistung: Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen [T-PHYS-104792]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102425 - Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 8
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4026021</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Melnikov</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4026022</td>
<td>Übungen zu Einführung in die Theoretische Teilchenphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Melnikov, Jaquier, Broennum-Hansen</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.60 Teilleistung: Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF) [T-PHYS-104793]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner
 Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102426 - Einführung in die Theoretische Teilchenphysik, ohne erw. Übungen (NF)

Teilleistungsart	Studienleistung	Leistungspunkte	Version
 | | 8 | 1 |

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsform (V)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4026021</td>
<td>Einführung in die Theoretische Teilchenphysik</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Melnikov</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4026022</td>
<td>Übungen zu Einführung in die Teilchenphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Melnikov, Jaquier, Broennum-Hansen</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.61 Teilleistung: Einführung in die Vulkanologie, Prüfung [T-PHYS-103644]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101866 - Einführung in die Vulkanologie, benotet

Teilleistungsart
- Prüfungsleistung anderer Art

Leistungspunkte
- 1

Version
- 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4060251</td>
<td></td>
<td>Introduction to Volcanology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4060252</td>
<td></td>
<td>Exercises to Introduction to Volcanology</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Voraussetzungen
Erfolgreiche Teilnahme an "Einführung in die Vulkanologie, Studienleistung"

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103553 - Einführung in die Vulkanologie, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.62 Teilleistung: Einführung in die Vulkanologie, Studienleistung [T-PHYS-103553]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101866 - Einführung in die Vulkanologie, benotet
M-PHYS-101944 - Einführung in die Vulkanologie, unbenotet

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4060251</td>
<td>Introduction to Volcanology</td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
<td>Gottschämmer, Rietbrock</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4060252</td>
<td>Exercises to Introduction to Volcanology</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Gottschämmer, Rietbrock</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.63 Teilleistung: Elektronenmikroskopie I, mit Übungen [T-PHYS-105965]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102989 - Elektronenmikroskopie I, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Veranstaltungseinheit</th>
<th>SWS</th>
<th>Art</th>
<th>Pünktlichkeit</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4027111</td>
<td>Elektronenmikroskopie I</td>
<td>2</td>
<td>V</td>
<td>Gerthsen</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>4027112</td>
<td>Übungen zu Elektronenmikroskopie I</td>
<td>2</td>
<td>Ü</td>
<td>Gerthsen</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.64 Teilleistung: Elektronenmikroskopie I, mit Übungen (NF) [T-PHYS-105968]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102991 - Elektronenmikroskopie I, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4027111</td>
<td>Elektronenmikroskopie I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gerthsen</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4027112</td>
<td>Übungen zu Elektronenmikroskopie I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Gerthsen</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4 4.65 Teilleistung: Elektronenmikroskopie I, ohne Übungen [T-PHYS-105967]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102990 - Elektronenmikroskopie I, ohne Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4027111 | Elektronenmikroskopie I | 2 SWS | Vorlesung (V) | Gerthsen |

Voraussetzungen

keine
Teilleistung: Elektronenmikroskopie I, ohne Übungen (NF) [T-PHYS-105969]

Verantwortung: Prof. Dr. Dagmar Gerthsen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102992 - Elektronenmikroskopie I, ohne Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4027111 | Elektronenmikroskopie I | 2 SWS | Vorlesung (V) | Gerthsen |

Voraussetzungen

keine
4.67 Teilleistung: Elektronenmikroskopie II, mit Übungen [T-PHYS-102349]

Verantwortung: Prof. Dr. Dagmar Gerthsen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102227 - Elektronenmikroskopie II, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.68 Teilleistung: Elektronenmikroskopie II, mit Übungen (NF) [T-PHYS-106306]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103172 - Elektronenmikroskopie II, mit Übungen (NF)

Voraussetzungen
keine
4.69 Teilleistung: Elektronenmikroskopie II, ohne Übungen [T-PHYS-105817]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102844 - Elektronenmikroskopie II, ohne Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine

Physik Master 2015 (Master of Science)
Modulhandbuch mit Stand vom 09.10.2019
421
4.70 Teilleistung: Elektronenmikroskopie II, ohne Übungen (NF) [T-PHYS-106307]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103173 - Elektronenmikroskopie II, ohne Übungen (NF)

Voraussetzungen
keine
4.71 Teilleistung: Elektronenoptik, mit Übungen [T-PHYS-102362]

- **Verantwortung:** Maximilian Haider
 - Roland Janzen
- **Einrichtung:** KIT-Fakultät für Physik
- **Bestandteil von:** M-PHYS-102321 - Elektronenoptik, mit Übungen

Teilleistungsart
- Prüfungsleistung mündlich

Leistungspunkte
- 6

Turnus
- Unregelmäßig

Version
- 1

Voraussetzungen
- keine
4.72 Teilleistung: Elektronenoptik, mit Übungen (NF) [T-PHYS-106308]

Verantwortung: Maximilian Haider
Roland Janzen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103174 - Elektronenoptik, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.73 Teilleistung: Elektronenoptik, ohne Übungen [T-PHYS-105818]

| Verantwortung | Maximilian Haider
	Roland Janzen
Einrichtung	KIT-Fakultät für Physik
Bestandteil von	M-PHYS-102845 - Elektronenoptik, ohne Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.74 Teilleistung: Elektronenoptik, ohne Übungen (NF) [T-PHYS-106309]

Verantwortung: Maximilian Haider
Roland Janzen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103175 - Elektronenoptik, ohne Übungen (NF)

Voraussetzungen
keine
4.75 Teilleistung: Elektronik für Physiker [T-PHYS-104479]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102184 - Elektronik für Physiker

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kursnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022061</td>
<td>Elektronik für Physiker (Analogelektronik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022066</td>
<td>Elektronik für Physiker (Digitalelektronik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Weber, Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.76 Teilleistung: Elektronik für Physiker (NF) [T-PHYS-104480]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102185 - Elektronik für Physiker (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022061</td>
<td>Elektronik für Physiker (Analogelektronik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022066</td>
<td>Elektronik für Physiker (Digitalelektronik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Weber, Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.77 Teilleistung: Elektronik für Physiker: Analogelektronik [T-PHYS-104475]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102179 - Elektronik für Physiker: Analogelektronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022061</td>
<td>Elektronik für Physiker (Analogelektronik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Weber, Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.78 Teilleistung: Elektronik für Physiker: Analogelektronik (NF) [T-PHYS-104476]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102180 - Elektronik für Physiker: Analogelektronik (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>4022061</td>
</tr>
<tr>
<td>Elektronik für Physiker (Analogelektronik)</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>4022067</td>
</tr>
<tr>
<td>Praktische Übungen zur Elektronik für Physiker</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.79 Teilleistung: Elektronik für Physiker: Digitalelektronik [T-PHYS-104477]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102182 - Elektronik für Physiker: Digitalelektronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semestr</th>
<th>Modul Code</th>
<th>Modul Name</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022066</td>
<td>Elektronik für Physiker (Digitalelektronik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Weber, Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.80 Teilleistung: Elektronik für Physiker: Digitalelektronik (NF) [T-PHYS-104478]

Verantwortung: Dr. Klaus Rabbertz
Prof. Dr. Marc Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102183 - Elektronik für Physiker: Digitalelektronik (NF)

Leistungsarten

<table>
<thead>
<tr>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Codenummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022066</td>
<td>Elektronik für Physiker (Digitalelektronik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Weber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022067</td>
<td>Praktische Übungen zur Elektronik für Physiker</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Weber, Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.81 Teilleistung: Elektronische Eigenschaften von Festkörpern I, mit Übungen [T-PHYS-102577]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber
Prof. Dr. Georg Weiß
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102089 - Elektronische Eigenschaften von Festkörpern I, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 19/20</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4021011</td>
<td>Elektronische Eigenschaften von Festkörpern I</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Wulfhekel, Böhmer</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 4021012</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern I</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Wulfhekel, Böhmer, NN</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.82 Teilleistung: Elektronische Eigenschaften von Festkörpern I, mit Übungen (NF) [T-PHYS-102575]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber
Prof. Dr. Georg Weiß
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102087 - Elektronische Eigenschaften von Festkörpern I, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4021011</td>
<td>Elektronische Eigenschaften von Festkörpern I</td>
<td>4 SWS Vorlesung (V) Wulfhekel, Böhmer</td>
</tr>
<tr>
<td>WS 19/20 4021012</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern I</td>
<td>1 SWS Übung (Ü) Wulfhekel, Böhmer, NN</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
4.83 Teilleistung: Elektronische Eigenschaften von Festkörpern I, ohne Übungen [T-PHYS-102578]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber
Prof. Dr. Georg Weiß
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102090 - Elektronische Eigenschaften von Festkörpern I, ohne Übungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.84 Teilleistung: Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF) [T-PHYS-102576]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber
Prof. Dr. Georg Weiß
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102088 - Elektronische Eigenschaften von Festkörpern I, ohne Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
</table>
| **WS 19/20**
4021011
Elektronische Eigenschaften von Festkörpern I
4 SWS
Vorlesung (V)
Wulfhekel, Böhmer |

Voraussetzungen
keine
4.85 Teilleistung: Elektronische Eigenschaften von Festkörpern II, mit Übungen [T-PHYS-104422]

Verantwortung: Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102108 - Elektronische Eigenschaften von Festkörpern II, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungskennzahl</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Übungstitel</th>
<th>SWS</th>
<th>Professoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4021111</td>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>Ustinov</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4021112</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern II</td>
<td>2</td>
<td>-</td>
<td>-</td>
<td>Ustinov, Rotzinger</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.86 Teilleistung: Elektronische Eigenschaften von Festkörpern II, mit Übungen (NF) [T-PHYS-104420]

Verantwortung: Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102106 - Elektronische Eigenschaften von Festkörpern II, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4021111</th>
<th>Elektronische Eigenschaften von Festkörpern II</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Ustinov</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4021112</td>
<td>Übungen zu Elektronische Eigenschaften von Festkörpern II</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Ustinov, Rotzinger</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.87 Teilleistung: Elektronische Eigenschaften von Festkörpern II, ohne Übungen [T-PHYS-104423]

| Verantwortung: | Dr. Johannes Rotzinger
	Prof. Dr. Alexey Ustinov
Einrichtung:	KIT-Fakultät für Physik
Bestandteil von:	M-PHYS-102109 - Elektronische Eigenschaften von Festkörpern II, ohne Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4021111</td>
</tr>
<tr>
<td>4021111</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Elektronische Eigenschaften von Festkörpern II</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.88 Teilleistung: Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF) [T-PHYS-104421]

Verantwortung: Dr. Johannes Rotzinger
Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102107 - Elektronische Eigenschaften von Festkörpern II, ohne Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4021111</th>
<th>Elektronische Eigenschaften von Festkörpern II</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Ustinov</th>
</tr>
</thead>
</table>

Voraussetzungen

keine
4.89 Teilleistung: Elektronische Eigenschaften von Nanostrukturen [T-PHYS-102534]

Verantwortung: Dr. Detlef Beckmann
Dr. Regina Hoffmann-Vogel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102291 - Elektronische Eigenschaften von Nanostrukturen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 8
Version: 1

Voraussetzungen: keine
4.90 Teilleistung: Elektronische Eigenschaften von Nanostrukturen (NF) [T-PHYS-102535]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Detlef Beckmann
Dr. Regina Hoffmann-Vogel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102292 - Elektronische Eigenschaften von Nanostrukturen (NF)

Voraussetzungen

keine
4.91 Teilleistung: Energetics [T-PHYS-107695]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 4052131 | Energetics | 2 SWS | Vorlesung (V) | Fink |

Erfolgskontrolle(n)
keine

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:
1. Die Teilleistung T-PHYS-101546 - Energetik darf nicht begonnen werden sein.

Anmerkungen
Diese Teilleistung wird ab dem Wintersemester 2017/2018 in englisch angeboten.
4.92 Teilleistung: Energy Meteorology [T-PHYS-109141]

Verantwortung: Prof. Dr. Stefan Emeis
 Prof. Dr. Joaquim José Ginete Werner Pinto

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
 M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Voraussetzungen
None
4.93 Teilleistung: Exam on Selected Topics in Meteorology (Second Major) [T-PHYS-109380]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>14</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Oral Exam

Voraussetzungen
None
Modellierte Voraussetzungen
Es muss eine von 3 Bedingungen erfüllt werden:

1. Es müssen die folgenden Bedingungen erfüllt werden:
 2. Die Teilleistung T-PHYS-108610 - Turbulent Diffusion muss erfolgreich abgeschlossen worden sein.

2. Die Teilleistung T-PHYS-109177 - Physics of Planetary Atmospheres muss erfolgreich abgeschlossen worden sein.

2. Es müssen die folgenden Bedingungen erfüllt werden:
 1. Es müssen 2 von 6 Bedingungen erfüllt werden:
 1. Die Teilleistung T-PHYS-109140 - Meteorological Hazards muss erfolgreich abgeschlossen worden sein.
 6. Die Teilleistung T-PHYS-108931 - Middle Atmosphere in the Climate System muss erfolgreich abgeschlossen worden sein.

2. Es muss eine von 6 Bedingungen erfüllt werden:
 2. Die Teilleistung T-PHYS-108610 - Turbulent Diffusion muss erfolgreich abgeschlossen worden sein.

3. Es müssen die folgenden Bedingungen erfüllt werden:
 1. Es muss eine von 8 Bedingungen erfüllt werden:
 1. Die Teilleistung T-PHYS-109140 - Meteorological Hazards muss erfolgreich abgeschlossen worden sein.
 6. Die Teilleistung T-PHYS-108931 - Middle Atmosphere in the Climate System muss erfolgreich abgeschlossen worden sein.

2. Es müssen 2 von 6 Bedingungen erfüllt werden:
 2. Die Teilleistung T-PHYS-108610 - Turbulent Diffusion muss erfolgreich abgeschlossen worden sein.
4.94 Teilleistung: Experimentelle Biophysik II, mit Seminar [T-PHYS-102532]

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
14

Version
1

Verantwortung: Prof. Dr. Ulrich Nienhaus

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102165 - Experimentelle Biophysik II, mit Seminar

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Prüfungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4020121</td>
<td>2</td>
<td>Experimentelle Biophysik Ilia</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>SS 2019 4020122</td>
<td>2</td>
<td>Übungen zu Experimentelle</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biophysik II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019 4020124</td>
<td>2</td>
<td>Seminar zu Experimentelle</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Biophysik II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019 4020125</td>
<td>2</td>
<td>Experimentelle Biophysik Ilb</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nienhaus</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.95 Teilleistung: Experimentelle Biophysik II, mit Seminar (NF) [T-PHYS-102533]

Verantwortung: Prof. Dr. Ulrich Nienhaus
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102166 - Experimentelle Biophysik II, mit Seminar (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>14</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4020121</td>
<td>Experimentelle Biophysik IIa</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4020124</td>
<td>Seminar zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Seminar (S)</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4020125</td>
<td>Experimentelle Biophysik IIb</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nienhaus</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
Teilleistung: Experimentelle Biophysik II, ohne Seminar [T-PHYS-104471]

Verantwortung: Prof. Dr. Ulrich Nienhaus
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102167 - Experimentelle Biophysik II, ohne Seminar

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4020121</td>
</tr>
<tr>
<td>SS 2019 4020122</td>
</tr>
<tr>
<td>SS 2019 4020125</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.97 Teilleistung: Experimentelle Biophysik II, ohne Seminar (NF) [T-PHYS-104472]

Verantwortung: Prof. Dr. Ulrich Nienhaus
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102168 - Experimentelle Biophysik II, ohne Seminar (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4020121</td>
<td>Experimentelle Biophysik IIa</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nienhaus</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4020122</td>
<td>Übungen zu Experimentelle Biophysik II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Nienhaus, Guigas</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4020125</td>
<td>Experimentelle Biophysik Iib</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Nienhaus</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.98 Teilleistung: Extended Higgs Sectors Beyond the Standard Model [T-PHYS-109307]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104542 - Extended Higgs Sectors Beyond the Standard Model

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 10
Turnus: Unregelmäßig
Version: 1

Voraussetzungen: keine
4.99 Teilleistung: Extended Higgs Sectors Beyond the Standard Model (NF) [T-PHYS-109308]

<table>
<thead>
<tr>
<th>Verantwortung</th>
<th>Prof. Dr. Milada Margarete Mühlleitner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von</td>
<td>M-PHYS-104543 - Extended Higgs Sectors Beyond the Standard Model (NF)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.100 Teilleistung: Festkörperspektroskopie, mit Übungen [T-PHYS-110292]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Dr. Frank Weber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105074 - Festkörperspektroskopie, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstyp</th>
<th>SWS</th>
<th>Übungstitel</th>
<th>Vorbereitungstyp</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4021071</td>
<td>Vorlesung (V)</td>
<td>2 SWS</td>
<td>Solid-State Spectroscopy</td>
<td>Le Tacon, Weber</td>
<td>mündlich</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4021072</td>
<td>Übung (Ü)</td>
<td>2 SWS</td>
<td>Exercises to Solid-State Spectroscopy</td>
<td>Le Tacon, Weber</td>
<td>mündlich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Voraussetzungen

keine

Empfehlungen

Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik, sowie der Thermodynamik und Statistischen Physik werden vorausgesetzt.
4.101 Teilleistung: Field Theories of Condensed Matter: Conformal Field Theory [T-PHYS-109320]

Verantwortung: Dr. Igor Gornyi
Dr. Boris Narozhnyy

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104548 - Field Theories of Condensed Matter: Conformal Field Theory

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
8

Turnus
Unregelmäßig

Dauer
1 Sem.

Version
1

Voraussetzungen
keine
4.102 Teilleistung: Flavour Physics in the Standard Model and beyond [T-PHYS-110281]

Verantwortung: Dr. Monika Blanke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105064 - Flavour Physics in the Standard Model and beyond

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4025051</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkts- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Empfehlungen
Grundkenntnisse des Standardmodells der Teilchenphysik, insbesondere der starken und schwachen Wechselwirkung sowie des Yukawa-Sektors, z.B. aus der Vorlesung "Einführung in die Theoretische Teilchenphysik". Es wird empfohlen, parallel die Vorlesung zur experimentellen Flavourphysik zu besuchen.
4.103 Teilleistung: Full-waveform inversion [T-PHYS-109272]

Verantwortung: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104522 - Full-waveform Inversion, unbenotet

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungcode</th>
<th>Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4060181</td>
<td>Full-waveform inversion 1 SWS Vorlesung (V) Bohlen, Pan</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4060182</td>
<td>Exercises on Full-waveform inversion 1 SWS Übung (Ü) Bohlen, Pan</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.104 Teilleistung: Full-waveform inversion (graded) [T-PHYS-110614]

Verantwortung: Prof. Dr. Thomas Bohlen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105235 - Full-waveform inversion, benotet

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.105 Teilleistung: Geological Hazards and Risk [T-PHYS-103525]

Verantwortung: Dr. Ellen Gottschämm

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101833 - Naturgefahren und Risiken

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prüfungsleistung anderer Art</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>4060121</td>
</tr>
<tr>
<td>Geological Hazards and Risk</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>4060122</td>
</tr>
<tr>
<td>Exercises on Geological Hazards and Risk</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.106 Teilleistung: Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Prüfung [T-PHYS-103674]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101873 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung T-PHYS-103572 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Studienleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.107 Teilleistung: Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, Studienleistung [T-PHYS-103572]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101873 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, benotet
M-PHYS-101953 - Geophysikalische Bewertung und Gefährdungspotential mediterraner Vulkane, unbenotet

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung "Einführung in die Vulkanologie, Studienleistung".

- Grundlagen der Vulkanologie
- Zusammenhang von Vulkanismus und Tektonik
- Zusammensetzung von unterschiedlichen Magmen und Gründe dafür (Aufstiegswege, Differentiation)
- Vulkanische Förderprodukte
- Vulkanbauten
- Eruptionsmechanismen, Eruptionsverhalten
- Grundverständnis des Monitoring von Vulkanen, Kenntnis der Aufgaben von Vulkanobservatorien und deren historischer Entwicklung
- physikalische und mathematische Grundlagen

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103553 - Einführung in die Vulkanologie, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.108 Teilleistung: Geophysikalische Erkundung von Vulkanfeldern, Prüfung [T-PHYS-103672]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101951 - Geophysikalische Erkundung von Vulkanfeldern, benotet

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung T-PHYS-103573 - Geophysikalische Erkundung von Vulkanfeldern, Studienleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.109 Teilleistung: Geophysikalische Erkundung von Vulkanfeldern, Studienleistung [T-PHYS-103573]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101874 - Geophysikalische Erkundung von Vulkanfeldern, unbenotet
M-PHYS-101951 - Geophysikalische Erkundung von Vulkanfeldern, benotet

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung "Einführung in die Vulkanologie, Studienleistung".

• Grundlagen der Vulkanologie
• Zusammenhang von Vulkanismus und Tektonik
• Zusammensetzung von unterschiedlichen Magmen und Gründe dafür (Aufstiegsweg, Differentiation)
• Vulkanische Förderprodukte
• Vulkanbauten
• Eruptionsmechanismen, Eruptionsverhalten
• Grundverständnis des Monitoring von Vulkannen, Kenntnis der Aufgaben von Vulkanobservatorien und deren historischer Entwicklung
• physikalische und mathematische Grundlagen
4.110 Teilleistung: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Prüfung [T-PHYS-103673]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101952 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, benotet

Voraussetzungen
Erfolgreiche Teilnahme an der Teilleistung T-PHYS-103571 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

4.111 Teilleistung: Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, Studienleistung [T-PHYS-103571]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-101872 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, unbenotet
- M-PHYS-101952 - Geophysikalische Tiefenerkundung an Vulkanen am Beispiel des Vogelsbergs, benotet

Vorleistungen
Erfolgreiche Teilnahme an der Teilleistung "Einführung in die Vulkanologie, Studienleistung"

- Grundlagen der Vulkanologie
- Zusammenhang von Vulkanismus und Tektonik
- Zusammensetzung von unterschiedlichen Magmen und Gründe dafür (Aufstiegsweg, Differentiation)
- Vulkanische Förderprodukte
- Vulkanbauten
- Eruptionsmechanismen, Eruptionsverhalten
- Grundverständnis des Monitoring von Vulkanen, Kenntnis der Aufgaben von Vulkanobservatorien und deren historischer Entwicklung
- physikalische und mathematische Grundlagen
4.112 Teilleistung: Grundlagen der Nanotechnologie I [T-PHYS-102529]

Verantwortung: Prof. Dr. Gernot Goll
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102097 - Grundlagen der Nanotechnologie I

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4021041</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.113 Teilleistung: Grundlagen der Nanotechnologie I (NF) [T-PHYS-102528]

Verantwortung: Prof. Dr. Gernot Goll
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102096 - Grundlagen der Nanotechnologie I (NF)

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4021041</td>
<td>Grundlagen der Nanotechnologie I</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.14 Teilleistung: Grundlagen der Nanotechnologie II [T-PHYS-102531]

Verantwortung: Prof. Dr. Gernot Goll
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102100 - Grundlagen der Nanotechnologie II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4021151 | Grundlagen der Nanotechnologie II | 2 SWS | Vorlesung (V) | Goll |

Voraussetzungen
keine
4.115 Teilleistung: Grundlagen der Nanotechnologie II (NF) [T-PHYS-102530]

Verantwortung: Prof. Dr. Gernot Goll
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102099 - Grundlagen der Nanotechnologie II (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4021151 | Grundlagen der Nanotechnologie II | 2 SWS | Vorlesung (V) | Goll |

Voraussetzungen

keine
4.116 Teilleistung: Hadronische Wechselwirkungen [T-PHYS-110279]

Verantwortung: Dr. Stefan Gieseke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105063 - Hadronische Wechselwirkungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 19/20</th>
<th>Leistung</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4026051 Hadronische Wechselwirkungen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Gieseke, Ulrich</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Voraussetzungen

keine

Empfehlungen

Grundlegende Kenntnisse der Teilchenphysik sind empfehlenswert
4.117 Teilleistung: Halbleiterphysik, mit Übungen [T-PHYS-102343]

Verantwortung: Prof. Dr. Heinz Kalt
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102131 - Halbleiterphysik, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Leistung</th>
<th>Leistungsperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4020111</td>
<td>Halbleiterphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Kalt</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4020112</td>
<td>Übungen zu Halbleiterphysik</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Kalt, N.</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.118 Teilleistung: Halbleiterphysik, mit Übungen (NF) [T-PHYS-102301]

Verantwortung: Prof. Dr. Heinz Kalt
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102130 - Halbleiterphysik, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Vorlesungslehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4020111</td>
<td>Halbleiterphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Kalt</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4020112</td>
<td>Übungen zu Halbleiterphysik</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Kalt, N.</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.119 Teilleistung: Halbleiterphysik, ohne Übungen [T-PHYS-104590]

Verantwortung: Prof. Dr. Heinz Kalt
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102301 - Halbleiterphysik, ohne Übungen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Vorlesung</th>
<th>KWS</th>
<th>Kalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4020111</td>
<td>Halbleiterphysik</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.120 Teilleistung: Halbleiterphysik, ohne Übungen (NF) [T-PHYS-104589]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Heinz Kalt
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102300 - Halbleiterphysik, ohne Übungen (NF)

Lehrveranstaltungen

| SS 2019 | 4020111 | Halbleiterphysik | 4 SWS | Vorlesung (V) | Kalt |

Voraussetzungen
keine
4.121 Teilleistung: Hauptseminar: Aktuelle Experimente der Quantenphysik [T-PHYS-109971]

Verantwortung: Prof. Dr. David Hunger
Prof. Dr. Matthieu Le Tacon
Prof. Dr. Wolfgang Wernsdorfer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4013114</td>
<td>Hauptseminar: Aktuelle Experimente in der Quantenphysik</td>
<td>2</td>
<td>Hauptseminar (HS)</td>
<td>Wernsdorfer, Hunger, Le Tacon</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.122 Teilleistung: Hauptseminar: Astroteilchenphysik [T-PHYS-110293]

Verantwortung: Prof. Dr. Guido Drexlin
Prof. Dr. Ralph Engel
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4013224</td>
<td>Hauptseminar: Astroteilchenphysik</td>
<td>2 SWS</td>
<td>Hauptseminar (HS) Drexlin, Engel, Valerius, Eitel, Huege, Roth, Ulrich</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.123 Teilleistung: Hauptseminar: Astroteilchenphysik - Das Universum bei höchsten Energien [T-PHYS-104550]

Verantwortung: Prof. Dr. Guido Drexlin
Prof. Dr. Ralph Engel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4013234</td>
<td>Hauptseminar: Astroteilchenphysik - Das Universum bei höchsten Energien</td>
<td>2</td>
<td>Engel, Huege, Roth, Ulrich</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine

Verantwortung: Prof. Dr. Johannes Bluemer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik

Teilleistungsart

Studienleistung

Leistungspunkte

4

Version

1

Voraussetzungen

keine

Verantwortung: Prof. Dr. Guido Drexlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4013224</td>
</tr>
<tr>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
- M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik

Voraussetzungen: keine
4.127 Teilleistung: Hauptseminar: Beschleuniger und Synchrotronstrahlung [T-PHYS-104559]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik

Voraussetzungen
keine
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Michael Feindt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik

Voraussetzungen

keine
4.129 Teilleistung: Hauptseminar: Biophysik der Sinneswahrnehmungen [T-PHYS-104573]

Verantwortung: Prof. Dr. Georg Weiß
Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
- M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.130 Teilleistung: Hauptseminar: Elektronenmikroskopie und deren Anwendung in der Festkörperforschung [T-PHYS-105794]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Dagmar Gerthsen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie</td>
</tr>
<tr>
<td></td>
<td>M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.131 Teilleistung: Hauptseminar: Elektronenmikroskopie und Elektronenoptik [T-PHYS-108436]

Verantwortung: Prof. Dr. Dagmar Gerthsen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4013714</th>
<th>Hauptseminar: Elektronenmikroskopie und Elektronenoptik</th>
<th>2 SWS</th>
<th>Hauptseminar (HS)</th>
<th>Gerthsen, Haider, Kübel, Schneider</th>
</tr>
</thead>
</table>

Voraussetzungen

keine
4.132 Teilleistung: Hauptseminar: Elektronenoptik [T-PHYS-104523]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Maximilian Haider
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik

Voraussetzungen:
keine
4.133 Teilleistung: Hauptseminar: Elementare Quanteneffekte der Kondensierten Materie [T-PHYS-104538]

Verantwortung:
Prof. Dr. Alexander Mirlin
Prof. Dr. Jörg Schmalian
Prof. Dr. Alexander Shnirman

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierten Materie

<table>
<thead>
<tr>
<th>Teilleistungsart: Studienleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.134 Teilleistung: Hauptseminar: Experimente mit einzelnen Photonen [T-PHYS-107891]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
- M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik

Voraussetzungen
keine
4.135 Teilleistung: Hauptseminar: Experimentelle Methoden der Teilchenphysik [T-PHYS-104547]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
- M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.136 Teilleistung: Hauptseminar: Experimentelle Methoden der Festkörperphysik [T-PHYS-104543]

| Verantwortung: | Prof. Dr. Alexey Ustinov
	Prof. Dr. Georg Weiß
Einrichtung:	KIT-Fakultät für Physik
Bestandteil von:	M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.137 Teilleistung: Hauptseminar: Experimentelle und Theoretische Grundlagen der Elementarteilchenphysik [T-PHYS-104537]

Verantwortung: Dr. Stefan Gieseke
Prof. Dr. Günter Quast
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Voraussetzungen
keine
4.138 Teilleistung: Hauptseminar: Experimentelle und Theoretische Methoden der Colliderphysik [T-PHYS-109976]

Verantwortung: Dr. Stefan Gieseke
Dr. Klaus Rabbertz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
- M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Version: 1

Lehrveranstaltungen

| SS 2019 | 4013644 | Hauptseminar: Experimentelle und Theoretische Methoden der Colliderphysik | 2 SWS | Hauptseminar (HS) | Gieseke, Rabbertz |

Voraussetzungen
keine
4.139 Teilleistung: Hauptseminar: Experimentelle und Theoretische Methoden der Teilchenphysik [T-PHYS-106525]

Verantwortung: Dr. Stefan Gieseke
 Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
- M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Voraussetzungen
keine

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>
4.140 Teilleistung: Hauptseminar: Festkörperphysik bei Tiefen Temperaturen [T-PHYS-109972]

Verantwortung:
Prof. Dr. Georg Weiß
Prof. Dr. Wulf Wulfhekel

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4013124</th>
<th>Hauptseminar: Festkörperphysik bei tiefen Temperaturen</th>
<th>2 SWS</th>
<th>Hauptseminar (HS)</th>
<th>Weiß, Wulfhekel</th>
</tr>
</thead>
</table>

Voraussetzungen

keine
4.141 Teilleistung: Hauptseminar: Flavourphysik [T-PHYS-109973]

Verantwortung: Prof. Dr. Florian Bernlochner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4013244</th>
<th>Hauptseminar: Flavourphysik</th>
<th>2 SWS</th>
<th>Hauptseminar (HS)</th>
<th>Bernlochner, Goldenzweig, Cao, Sutcliff</th>
</tr>
</thead>
</table>

Voraussetzungen

keine

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie

Voraussetzungen
keine
4.143 Teilleistung: Hauptseminar: From the Smallest to the Largest Scales - Understanding the Matter Content of the Universe [T-PHYS-109975]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Teilleistung: Hauptseminar: General Relativity [T-PHYS-106126]

Teilleistungsart

Studienleistung

Leistungspunkte

4

Version

1

Verantwortung:
Prof. Dr. Frans Klinkhamer

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Voraussetzungen
keine
4.145 Teilleistung: Hauptseminar: General Relativity II [T-PHYS-109974]

Verantwortung: Prof. Dr. Frans Klinkhamer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Lehrveranstaltungen

| SS 2019 | 4013614 | Hauptseminar: General Relativity II | 2 SWS | Hauptseminar (HS) | Klinkhamer, Emelyanov, Queiruga |

Voraussetzungen

deine
4.146 Teilleistung: Hauptseminar: Halbleiter-Nanostrukturen [T-PHYS-104540]

Verantwortung: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik

Voraussetzungen
keine

Teilleistungsart	**Leistungspunkte**	**Version**
Studienleistung | 4 | 1
4.147 Teilleistung: Hauptseminar: Hunting New Physics in the Higgs Sector [T-PHYS-104522]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
- M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Teilleistungsart
- Studienleistung

Leistungspunkte
- 4

Version
- 1

Voraussetzungen
- keine
4.148 Teilleistung: Hauptseminar: Konformationsdynamik in Biomolekülen [T-PHYS-104544]

Verantwortung: Prof. Dr. Ulrich Nienhaus
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
- M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik
- M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie

Teilleistungsart
Studienleistung

Leistungspunkte
4

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4013014</td>
</tr>
<tr>
<td>Hauptseminar: Konformationsdynamik in Biomolekülen: Experiment und Theorie</td>
<td>2 SWS</td>
</tr>
<tr>
<td>Hauptseminar (HS)</td>
<td>Nienhaus, Wenzel, Kobitski</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.149 Teilleistung: Hauptseminar: Konzepte und Bauelemente des Quantencomputers [T-PHYS-104574]

Verantwortung: Prof. Dr. Gerd Schön
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Version: 1

Voraussetzungen: keine
Teilleistung: Hauptseminar: Konzepte und Physik des Quantencomputers [T-PHYS-105792]

Verantwortung: Prof. Dr. Gerd Schön

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
- M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen:
keine
4.151 Teilleistung: Hauptseminar: Lichtoptische Nanoskopie [T-PHYS-104560]

Verantwortung: Prof. Dr. Ulrich Nienhaus
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik

Lehrveranstaltungen

| WS 19/20 | 4013014 | Hauptseminar: Lichtoptische Nanoskopie | 2 SWS | Hauptseminar (HS) | Nienhaus, Kobitski |

Voraussetzungen
keine
4.152 Teilleistung: Hauptseminar: Magnetismus [T-PHYS-106125]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik

Teilleistungsart
Studienleistung

Leistungspunkte
4

Version
1

Voraussetzungen
keine

Verantwortung: Dr. Andreas Naber
 Prof. Dr. Martin Wegener

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
- M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Version: 1

Voraussetzungen:
- keine
4.154 Teilleistung: Hauptseminar: Methoden der Virtuellen Materialentwicklung [T-PHYS-108877]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
- M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie

Voraussetzungen: keine
4.155 Teilleistung: Hauptseminar: Miracles in Quantum Field Theory [T-PHYS-107567]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Kirill Melnikov</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik</td>
</tr>
<tr>
<td></td>
<td>M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie</td>
</tr>
</tbody>
</table>

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Version: 1

Voraussetzungen: keine
Teilleistung: Hauptseminar: Models and Searches for Lorentz Violation [T-PHYS-104575]

Verantwortung: Prof. Dr. Frans Klinkhamer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Voraussetzungen
keine
4.157 Teilleistung: Hauptseminar: Moderne Teilchenbeschleuniger und Forschung mit Photonen [T-PHYS-106129]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Prof. Dr. Anke-Susanne Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
- M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
- M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung Code</th>
<th>Veranstaltung</th>
<th>Wochenstunden (WS)</th>
<th>Lehrveranstaltungsform (LV)</th>
<th>Verantwortliche (A)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4013814</td>
<td>Hauptseminar: Moderne Teilchenbeschleuniger und Forschung mit Photonen</td>
<td>2</td>
<td>Hauptseminar (HS)</td>
<td>Müller, Baumbach, Bernhard, Stankov</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.158 Teilleistung: Hauptseminar: Nanoelektronik und Quantentransport [T-PHYS-104542]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Gerd Schön
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
- M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie

Voraussetzungen
keine
4.159 Teilleistung: Hauptseminar: Neutronen- und Röntgenstrahlung in der Festkörperphysik [T-PHYS-109977]

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4013814</th>
<th>Hauptseminar: Neutronen und Röntgenstrahlung in der Festkörperphysik</th>
<th>2 SWS</th>
<th>Hauptseminar (HS)</th>
<th>Baumbach, Hofmann</th>
</tr>
</thead>
</table>

Voraussetzungen

keine
4.160 Teilleistung: Hauptseminar: Optoelektronik - Grundlagen und Bauelemente [T-PHYS-105789]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

| Verantwortung: | PD Dr. Michael Hetterich
 | Prof. Dr. Heinz Kalt |
|----------------|-------------------------|
| Einrichtung: | KIT-Fakultät für Physik |
| Bestandteil von: | M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
 | M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
 | M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik |

Lehrveranstaltungen

| SS 2019 | 4013034 | Hauptseminar: Optoelektronik: Grundlagen und Bauelemente | 2 SWS | Hauptseminar (HS) | Kalt, Hetterich |

Voraussetzungen

keine
4.161 Teilleistung: Hauptseminar: Phasenübergänge in Festkörpern mit Korrelierten Elektronen [T-PHYS-108434]

Verantwortung: Prof. Dr. Matthieu Le Tacon
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.162 Teilleistung: Hauptseminar: Physics and Mathematics of Scattering Amplitudes
[T-PHYS-106128]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Voraussetzungen
keine
4.163 Teilleistung: Hauptseminar: Physics beyond the Standard Model at the LHC and ee Colliders [T-PHYS-106127]

Verantwortung: Prof. Dr. Milada Margarete Mühlleitner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Voraussetzungen
keine
4.164 Teilleistung: Hauptseminar: Physik tiefer Temperaturen [T-PHYS-104549]

Verantwortung: Dr. Detlef Beckmann
Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie

Teilleistungsart
Studienleistung

Leistungspunkte
4

Version
1

Voraussetzungen
keine
4.165 Teilleistung: Hauptseminar: Plasmonik [T-PHYS-105788]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik
- M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie

Voraussetzungen:
keine
Teilleistung: Hauptseminar: Quanteneffekte in Dünnen Schichten [T-PHYS-108876]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Turnus: Unregelmäßig
Version: 1

Voraussetzungen: keine
4.17 Teilleistung: Hauptseminar: Quantenoptik [T-PHYS-106523]

Verantwortung: Prof. Dr. David Hunger
Dr. Andreas Naber
Prof. Dr. Carsten Rockstuhl
Prof. Dr. Martin Wegener

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik
M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie

Teilleistungsart Studienleistung
Leistungspunkte 4
Version 1

Lehrveranstaltungen

| SS 2019 | 4013024 | Hauptseminar: Quantenoptik | 2 SWS | Hauptseminar (HS) | Hunger, Naber, Rockstuhl, Wegener |

Voraussetzungen
keine
4.168 Teilleistung: Hauptseminar: Quantenoptik und Spindynamik auf der Nanoskala [T-PHYS-107565]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
- M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik
- M-PHYS-102205 - Hauptseminar im Themenfeld Optik und Photonik

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Version: 1

Voraussetzungen: keine
Teilleistung: Hauptseminar: Quantentechnologie (Spins, Tunnelsysteme, NV-Zentren, Supraleitende Qubits etc.) [T-PHYS-108433]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Georg Weiß
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
M-PHYS-102204 - Hauptseminar im Themenfeld Nanophysik

Voraussetzungen
keine
Teilleistung: Hauptseminar: Schlüsselexperimente der Festkörperphysik [T-PHYS-105790]

Verantwortung: Prof. Dr. Matthieu Le Tacon
 Prof. Dr. Georg Weiß

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie

Teilleistungsart: Studienleistung
Leistungspunkte: 4
Version: 1

Voraussetzungen
keine
4.171 Teilleistung: Hauptseminar: Spezielle Relativitätstheorie [T-PHYS-105793]

Verantwortung: Prof. Dr. Frans Klinkhamer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Kursnummer</th>
<th>Kurs</th>
<th>Lehrstunden</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4013614</td>
<td>Hauptseminar: Special Relativity</td>
<td>2 SWS</td>
<td>Hauptseminar (HS)</td>
<td>Klinkhamer, Emelyanov, Fernandez Queiruga</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.172 Teilleistung: Hauptseminar: Standardmodell der Teilchenphysik: Experiment und Theorie [T-PHYS-108435]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
- M-PHYS-102208 - Hauptseminar im Themenfeld Theoretische Teilchenphysik

Voraussetzungen: keine
4.173 Teilleistung: Hauptseminar: Synchrotronstrahlung [T-PHYS-104558]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie
- M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik
- M-PHYS-102207 - Hauptseminar im Themenfeld Experimentelle Astroteilchenphysik

Teilleistungsart
- Studienleistung

Leistungspunkte
- 4

Version
- 1

Voraussetzungen
keine
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung:
Dr. Matthias Mozer
Prof. Dr. Thomas Müller
PD Dr. Roger Wolf

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik

Voraussetzungen
keine
4.175 Teilleistung: Hauptseminar: Teilchenphysik und Experimentelle Methoden [T-PHYS-105791]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Anke-Susanne Müller
Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102206 - Hauptseminar im Themenfeld Experimentelle Teilchenphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4013214 | Hauptseminar: Teilchenphysik und experimentelle Methoden | 2 SWS | Hauptseminar (HS) | Husemann, Müller, Bernhard |

Voraussetzungen

keine

Verantwortung: Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102209 - Hauptseminar im Themenfeld Theorie der Kondensierte Materie

Teilleistungsart

Studienleistung

Leistungspunkte

4

Version

1

Voraussetzungen

keine
4.177 Teilleistung: Hauptseminar: Tieftemperaturphysik [T-PHYS-107564]

Verantwortung: Prof. Dr. Alexey Ustinov
Prof. Dr. Georg Weiß

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102203 - Hauptseminar im Themenfeld Kondensierte Materie

Teilleistungsart
Studienleistung

Leistungspunkte
4

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>WS 19/20</th>
<th>4013114</th>
<th>Hauptseminar: Tieftemperaturphysik</th>
<th>2 SWS</th>
<th>Hauptseminar (HS)</th>
<th>Weiβ, Lisenfeld, Rotzinger, Seiler</th>
</tr>
</thead>
</table>

Voraussetzungen
keine
4.178 Teilleistung: Hydrodynamik [T-PHYS-109897]

Verantwortung: Prof. Dr. Jörg Schmalian
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104864 - Hydrodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Hydrodynamik</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Schmalian, Narozhnyy</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übungen zu Hydrodynamik</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Schmalian, Narozhnyy</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Kurzvorträgen in Rahmen der Vorlesung

Voraussetzungen
keine

Empfehlungen
Grundlagenkenntnisse in Festkörperphysik, Quantenmechanik und Statistischer Physik werden vorausgesetzt
4.179 Teilleistung: Hydrodynamik (NF) [T-PHYS-109896]

Verantwortung: Prof. Dr. Jörg Schmalian
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104865 - Hydrodynamik (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4024141 | Hydrodynamik | 3 SWS | Vorlesung (V) | Schmalian, Narozhnyy |
| SS 2019 | 4024142 | Übungen zu Hydrodynamik | 1 SWS | Übung (Ü) | Schmalian, Narozhnyy |

Erfolgskontrolle(n)
Kurzvorträgen in Rahmen der Vorlesung

Voraussetzungen
keine

Empfehlungen
Grundlagenkenntnisse in Festkörperphysik, Quantenmechanik und Statistischer Physik werden vorausgesetzt
4.180 Teilleistung: Induced Seismicity, Prüfung [T-PHYS-103677]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101959 - Induced Seismicity, benotet

Erfolgskontrolle(n)
The procedure will be announced in the lecture.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103575 - Induced Seismicity, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.181 Teilleistung: Induced Seismicity, Studienleistung [T-PHYS-103575]

Verantwortung: Prof. Dr. Joachim Ritter
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-101878 - Induced Seismicity, unbenotet
- M-PHYS-101959 - Induced Seismicity, benotet

Teilleistungsart
Studienleistung

Leistungspunkte
3

Turnus
Unregelmäßig

Version
1

Voraussetzungen
keine
4.182 Teilleistung: Integrated Atmospheric Measurements [T-PHYS-109902]

Verantwortung: Prof. Dr. Christoph Kottmeier
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Lehrveranstaltungen

| SS 2019 | 4052131 | Integrated Atmospheric Measurements | 2 SWS | Vorlesung (V) | Kottmeier |

Erfolgskontrolle(n)
Short presentation on selected contents must be held.

Voraussetzungen
None
Teilleistung: Inversion & Tomographie [T-PHYS-104737]

Verantwortung: Prof. Dr. Thomas Bohlen
Prof. Dr. Joachim Ritter

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102368 - Inversion & Tomographie

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte 8
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modulform (F)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4060231</td>
<td>Inversion and Tomography</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Ritter, Gaßner</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4060232</td>
<td>Exercises to Inversion and Tomography</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Ritter, Gaßner</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.184 Teilleistung: Inversion & Tomographie (NF) [T-PHYS-105572]

Verantwortung: Prof. Dr. Thomas Bohlen
Prof. Dr. Joachim Ritter

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102658 - Inversion & Tomographie (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Studiennummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4060231</td>
<td>Inversion and Tomography</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ritter, Gaßner</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4060232</td>
<td>Exercises to Inversion and Tomography</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Ritter, Gaßner</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.185 Teilleistung: Masterarbeit [T-PHYS-104370]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102068 - Masterarbeit

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschlussarbeit</td>
<td>30</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

- **Bearbeitungszeit**: 6 Monate
- **Maximale Verlängerungsfrist**: 3 Monate
- **Korrekturfrist**: 8 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.
4.186 Teilleistung: Messmethoden und Techniken der Experimentalphysik, mit erw. Übungen [T-PHYS-102376]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Frank Hartmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102517 - Messmethoden und Techniken in der Experimentalphysik, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ulrich, Bornschein, Hartmann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hartmann, Bornschein, Ulrich</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.187 Teilleistung: Messmethoden und Techniken der Experimentalphysik, mit erw. Übungen (NF) [T-PHYS-105106]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Frank Hartmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102519 - Messmethoden und Techniken in der Experimentalphysik, mit erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltungscode</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart (V)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ulrich, Bornschein, Hartmann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hartmann, Bornschein, Ulrich</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.188 Teilleistung: Messmethoden und Techniken der Experimentalphysik, ohne erw. Übungen [T-PHYS-105105]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Frank Hartmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102518 - Messmethoden und Techniken in der Experimentalphysik, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltungsnummer</th>
<th>Lehrveranstaltung</th>
<th>Lehrveranstaltungsstunden (SWS)</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022151</td>
<td>Messmethoden und Techniken in der Experimentalphysik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Ulrich, Bornschein, Hartmann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022152</td>
<td>Übungen zu Messmethoden und Techniken in der Experimentalphysik</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Hartmann, Bornschein, Ulrich</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.189 Teilleistung: Messmethoden und Techniken der Experimentalphysik, ohne erw. Übungen (NF) [T-PHYS-106327]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Frank Hartmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103194 - Messmethoden und Techniken in der Experimentalphysik, ohne erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SWS</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4022151</td>
<td>2</td>
<td>Ulrich, Bornschein, Hartmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SS 2019 4022152</td>
<td>2</td>
<td>Hartmann, Bornschein, Ulrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.190 Teilleistung: Meteorological Hazards [T-PHYS-109140]

Verantwortung: Prof. Dr. Michael Kunz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Erfolgskontrolle(n)
None

Voraussetzungen
None

Empfehlungen
Knowledge from the module Introduction to Meteorology is required.

Anmerkungen
Keine
4.191 Teilleistung: Methods of Data Analysis [T-PHYS-109142]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Peter Knippertz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4052171</td>
<td>Methods of Data Analysis</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ginete Werner Pinto, Knippertz, Lerch</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4052172</td>
<td>Exercises to Methods of Data Analysis</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Ginete Werner Pinto, Knippertz, Ehmele, Lerch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Successful participation in the exercises.

Voraussetzungen
None
4.192 Teilleistung: Middle Atmosphere in the Climate System [T-PHYS-108931]

Verantwortung: Dr. Michael Höpfner
Dr. Miriam Sinnhuber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 4052061 | Middle Atmosphere in the Climate System | 2 SWS | Vorlesung (V) | Höpfner, Sinnhuber |

Voraussetzungen

None
4.193 Teilleistung: Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum [T-PHYS-106133]

Verantwortung:
Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-103091 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4028061</td>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Baumbach</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028062</td>
<td>Übungen zu Modern X-ray Physics I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Baumbach, Jakob, Zuber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028063</td>
<td>Praktikum zu Modern X-ray Physics I</td>
<td>2 SWS</td>
<td>Praktikum (P)</td>
<td>Baumbach, Jakob, Zuber</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.194 Teilleistung: Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF) [T-PHYS-106304]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103170 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, mit Praktikum (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>Praktikum</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4028061</td>
<td>4028062</td>
<td>4028063</td>
</tr>
<tr>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering</td>
<td>Vorlesung (V)</td>
<td>Übung (Ü)</td>
<td>Praktikum (P)</td>
</tr>
<tr>
<td>2 SWS</td>
<td>2 SWS</td>
<td>2 SWS</td>
<td>Baumbach, Jakob, Zuber</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.195 Teilleistung: Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum [T-PHYS-102352]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102229 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4028061</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028062</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.196 Teilleistung: Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum (NF) [T-PHYS-106303]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103169 - Modern X-ray Physics I: Coherent X-ray Imaging and Scattering, ohne Praktikum (NF)

Teilleistungsart
Studienleistung

Leistungspunkte
8

Turnus
Jedes Wintersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4028061</td>
<td>Modern X-ray Physics I: Coherent X-ray Imaging and Scattering</td>
<td>2 SWS</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028062</td>
<td>Übungen zu Modern X-ray Physics I</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.197 Teilleistung: Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation [T-PHYS-102353]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102232 - Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 2019/20</th>
<th>Vorlesungsvermerk</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>4028071</td>
<td>Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td>2 SWS</td>
<td>Baumbach, Stankov</td>
<td></td>
</tr>
<tr>
<td>4028072</td>
<td>Übungen zu Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td>2 SWS</td>
<td>Baumbach, Stankov</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.198 Teilleistung: Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation (NF) [T-PHYS-106305]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Dr. Svetoslav Stankov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103171 - Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation (NF)

Teilleistungsart: Studienleistung
Leistungspunkte: 8
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Typ</th>
<th>Vorlesende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4028071</td>
<td>Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Baumbach, Stankov</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4028072</td>
<td>Übungen zu Modern X-ray Physics II: Condensed Matter Physics with Synchrotron Radiation</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Baumbach, Stankov</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
Teilleistung: Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum [T-PHYS-105819]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach, Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102846 - Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4028131 | Modern X-ray Physics III: Optical Coherence, Imaging and Computed Tomography | 2 SWS | Vorlesung (V) | Baumbach, Hofmann, Zuber |
| SS 2019 | 4028132 | Übungen zu Modern X-ray Physics III | 2 SWS | Übung (Ü) | Baumbach, Hofmann |

Voraussetzungen

keine
4.200 Teilleistung: Modern X-Ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum (NF) [T-PHYS-105820]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102847 - Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, mit Praktikum (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstyp</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4028131</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Modern X-ray Physics III: Optical Coherence, Imaging and Computed Tomography</td>
<td>Baumbach, Hofmann, Zuber</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4028132</td>
<td>Übung (Ü)</td>
<td>2</td>
<td>Übungen zu Modern X-ray Physics III</td>
<td>Baumbach, Hofmann</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.201 Teilleistung: Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum [T-PHYS-102354]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102322 - Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4028131 | Modern X-ray Physics III: Optical Coherence, Imaging and Computed Tomography | 2 SWS | Vorlesung (V) | Baumbach, Hofmann, Zuber |
| SS 2019 | 4028132 | Übungen zu Modern X-ray Physics III | 2 SWS | Übung (Ü) | Baumbach, Hofmann |

Voraussetzungen

keine
4.202 Teilleistung: Modern X-Ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum (NF) [T-PHYS-104598]

Verantwortung: Prof. Dr. Gerd Tilo Baumbach
Ralf Hofmann

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102323 - Modern X-ray Physics III: Optical Coherence, Imaging, and Computed Tomography, ohne Praktikum (NF)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4028131</th>
<th>Modern X-ray Physics III: Optical Coherence, Imaging and Computed Tomography</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Baumbach, Hofmann, Zuber</th>
</tr>
</thead>
</table>

| SS 2019 | 4028132 | Übungen zu Modern X-ray Physics III | 2 SWS | Übung (Ü) | Baumbach, Hofmann |

Voraussetzungen
keine
4 TEILLEISTUNGEN

4.203 Teilleistung: Moderne Methoden der Datenanalyse, mit erw. Übungen [T-PHYS-102495]

Verantwortung: Prof. Dr. Florian Bernlochner
Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102127 - Moderne Methoden der Datenanalyse, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4022141</th>
<th>Moderne Methoden der Datenanalyse</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Bernlochner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2 SWS</td>
<td>Praktikum (P)</td>
<td>Chwalek, Bernlochner</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.204 Teilleistung: Moderne Methoden der Datenanalyse, mit erw. Übungen (NF) [T-PHYS-102496]

Verantwortung: Prof. Dr. Florian Bernlochner
 Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102128 - Moderne Methoden der Datenanalyse, mit erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022141</td>
<td>Moderne Methoden der Datenanalyse</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Bernlochner</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2</td>
<td>Praktikum (P)</td>
<td>Chwalek, Bernlochner</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.205 Teilleistung: Moderne Methoden der Datenanalyse, ohne erw. Übungen [T-PHYS-102494]

Verantwortung: Prof. Dr. Florian Bernlochner
 Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102125 - Moderne Methoden der Datenanalyse, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4022141</th>
<th>Moderne Methoden der Datenanalyse</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Bernlochner</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022142</td>
<td>Moderne Methoden der Datenanalyse: Computerpraktikum</td>
<td>2 SWS</td>
<td>Praktikum (P)</td>
<td>Chwalek, Bernlochner</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.206 Teilleistung: Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF) [T-PHYS-102497]

Verantwortung: Prof. Dr. Florian Bernlochner
Prof. Dr. Günter Quast

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102126 - Moderne Methoden der Datenanalyse, ohne erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

| Lehrveranstaltungen | | | |
|---------------------|------------------|----------|
| **SS 2019** | 4022141 | |
| Moderne Methoden der Datenanalyse | 2 SWS | Vorlesung (V) | Bernlochner |
| **SS 2019** | 4022142 | |
| Moderne Methoden der Datenanalyse: Computerpraktikum | 2 SWS | Praktikum (P) | Chwalek, Bernlochner |

Voraussetzungen

keine
4.207 Teilleistung: Molekulare Elektronik [T-PHYS-109305]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104540 - Molekulare Elektronik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekulare Elektronik</td>
<td>[T-PHYS-109306]</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104541 - Molekulare Elektronik (NF)

Voraussetzungen
keine
4.209 Teilleistung: Molekülspektroskopie [T-CHEMBIO-104639]

Verantwortung: PD Dr. Andreas-Neil Unterreiner
Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102337 - Molekülspektroskopie

Teilleistungsart
Prüfungsleistung schriftlich
Leistungspunkte: 6
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 19/20</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 5213</td>
<td>Molekülspektroskopie</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Schuster</td>
<td></td>
</tr>
<tr>
<td>WS 19/20 5214</td>
<td>Übungen zur Vorlesung Molekülspektroskopie</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Schuster</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.210 Teilleistung: Monte Carlo Ereignisgeneratoren [T-PHYS-109892]

Verantwortung: Dr. Stefan Gieseke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104860 - Monte Carlo Ereignisgeneratoren

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Woche</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4025141</td>
<td>Monte Carlo Ereignisgeneratoren</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Gieseke</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4025142</td>
<td>Übungen zu Monte Carlo Ereignisgeneratoren</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Gieseke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine

Empfehlungen
Grundelegende Kenntnisse der Teilchenphysik sind empfehlenswert
4.211 Teilleistung: Monte Carlo Ereignisgeneratoren (NF) [T-PHYS-109893]

Verantwortung: Dr. Stefan Gieseke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104861 - Monte Carlo Ereignisgeneratoren (NF)

Teilleistungsart: Studienleistung
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4025141</td>
<td>Vorlesung (V)</td>
<td>2</td>
<td>Gieseke</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4025142</td>
<td>Übung (Ü)</td>
<td>1</td>
<td>Gieseke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine

Empfehlungen
Grundelegende Kenntnisse der Teilchenphysik sind empfehlenswert
4.212 Teilleistung: Nanomagnetism, Quantum Magnetism and Spin Bath Physics [T-PHYS-107626]

<table>
<thead>
<tr>
<th>Verantwortung</th>
<th>Prof. Dr. Wolfgang Wernsdorfer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von</td>
<td>M-PHYS-103782 - Nanomagnetism, Quantum Magnetism and Spin Bath Physics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>4</td>
</tr>
<tr>
<td>Turnus</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.213 Teilleistung: Nanomagnetism, Quantum Magnetism and Spin Bath Physics (NF) [T-PHYS-107627]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103783 - Nanomagnetism, Quantum Magnetism and Spin Bath Physics (NF)

Teilleistungsart

- Studienleistung

Leistungspunkte

- 4

Turnus

- Unregelmäßig

Version

- 1

Voraussetzungen

- keine
4.214 Teilleistung: Nanomaterials, mit Übungen [T-PHYS-110285]

Verantwortung: Dr. Thomas Reisinger
 Prof. Dr. Wolfgang Wernsdorfer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105068 - Nanomaterials, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungscode Beschreibung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4021061</td>
<td>Nanomaterials</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4021062</td>
<td>Exercises to Nanomaterials</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Voraussetzungen
keine

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.
4.215 Teilleistung: Nanomaterials, mit Übungen (NF) [T-PHYS-110286]

Verantwortung: Dr. Thomas Reisinger
 Prof. Dr. Wolfgang Wernsdorfer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105069 - Nanomaterials, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4021061</td>
<td>Nanomaterials</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4021062</td>
<td>Exercises to Nanomaterials</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Wernsdorfer, Reisinger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Es müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Thomas Reisinger
Prof. Dr. Wolfgang Wernsdorfer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-105071 - Nanomaterials, ohne Übungen

Lehrveranstaltungen

| WS 19/20 | 4021061 | Nanomaterials | 2 SWS | Vorlesung (V) | Wernsdorfer, Reisinger |

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich) erworben.

Voraussetzungen
keine

Empfehlungen
Grundlagenkenntnisse der Festkörperphysik, Quantenmechanik und der Thermodynamik werden vorausgesetzt.
4.217 Teilleistung: Nano-Optics [T-PHYS-102282]

Verantwortung: Dr. Andreas Naber
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102146 - Nano-Optics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4020021</td>
<td>Nano-Optics</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Naber</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4020022</td>
<td>Übungen zu Nano-Optics</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Naber</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.218 Teilleistung: Nano-Optics (NF) [T-PHYS-102360]

Verantwortung: Dr. Andreas Naber
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102147 - Nano-Optics (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4020021</td>
<td>Nano-Optics</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Naber</td>
</tr>
<tr>
<td>WS 19/20 4020022</td>
<td>Übungen zu Nano-Optics</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Naber</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.219 Teilleistung: Neutrinophysik - theoretische Aspekte [T-PHYS-104514]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Thomas Schwetz-Mangold</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102192 - Neutrinophysik - Theoretische Aspekte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>8</td>
</tr>
<tr>
<td>Turnus</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>Version</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td></td>
</tr>
<tr>
<td>4022091</td>
<td>Neutrinophysik - theoretische Aspekte</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zu Neutrinophysik - theoretische Aspekte</td>
</tr>
<tr>
<td>4022092</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Schwetz-Mangold</td>
</tr>
<tr>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td></td>
<td>Schwetz-Mangold</td>
</tr>
</tbody>
</table>

| Voraussetzungen | keine |
4.220 Teilleistung: Neutrinophysik - Theoretische Aspekte (NF) [T-PHYS-104637]

Verantwortung: Prof. Dr. Thomas Schwetz-Mangold
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102330 - Neutrinophysik - Theoretische Aspekte (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
4.221 Teilleistung: Nonlinear Optics [T-ETIT-101906]

Verantwortung: Prof. Dr.-Ing. Christian Koos

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100430 - Nonlinear Optics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Turnus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2309468</td>
<td>Nonlinear Optics</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Koos</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2309469</td>
<td>Nonlinear Optics (Tutorial)</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Koos</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 20 Minuten). Die individuellen Termine für die mündliche Prüfung werden regelmäßig angeboten.

Voraussetzungen

keine

Empfehlungen

Solide Kenntnisse in Mathematik und Physik; Grundkenntnisse in Optik und Photonik

Anmerkungen

Die Modulnote ist die Note der mündlichen Prüfung.

Allerdings gibt es ein Bonus-System, das auf den Problem-Sets basiert, die in den Tutorials gelöst werden: Im Laufe des Tutorials werden ohne vorherige Ankündigung 3 Problem-Sets gesammelt und benotet. Wenn für jeden dieser Problem-Sets mehr als 70% der Aufgaben richtig gelöst sind, wird ein Bonus von 0,3 Noten auf die Abschlussnote der mündlichen Prüfung gewährt.
4.222 Teilleistung: Oberflächenphysik, mit Übungen [T-PHYS-102512]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102134 - Oberflächenphysik, mit Übungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
</table>
| SS 2019 4021121 | Oberflächenphysik
4 SWS Vorlesung (V) Wulfhekel, Zakeri-Lori
| SS 2019 4021122 | Übungen zu Oberflächenphysik
1 SWS Übung (Ü) Wulfhekel, Zakeri-Lori, Balashov

Voraussetzungen
keine
4.223 Teilleistung: Oberflächenphysik, mit Übungen (NF) [T-PHYS-102510]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102136 - Oberflächenphysik, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Leistungsarten</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4021121</td>
<td>Oberflächenphysik</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Wulfhekel, Zakeri-Lori</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4021122</td>
<td>Übungen zu Oberflächenphysik</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Wulfhekel, Zakeri-Lori, Balashov</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.224 Teilleistung: Oberflächenphysik, ohne Übungen [T-PHYS-102513]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102133 - Oberflächenphysik, ohne Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4021121 | Oberflächenphysik | 4 SWS | Vorlesung (V) | Wulfhekel, Zakeri-Lori |

Voraussetzungen

keine
4.225 Teilleistung: Oberflächenphysik, ohne Übungen (NF) [T-PHYS-102511]

Verantwortung: Prof. Dr. Wulf Wulfhekel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102135 - Oberflächenphysik, ohne Übungen (NF)

Voraussetzungen
keine
4.226 Teilleistung: Ocean-Atmosphere Interactions [T-PHYS-108932]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Voraussetzungen
None

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>
4.227 Teilleistung: Photovoltaik [T-ETIT-101939]

Verantwortung: Prof. Dr.-Ing. Michael Powalla

Einrichtung: KIT-Fakultät für Elektrotechnik und Informationstechnik

Bestandteil von: M-ETIT-100513 - Photovoltaik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 2313737 | Photovoltaik | 4 SWS | Vorlesung (V) | Powalla, Lemmer |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung. Die Modulnote ist die Note dieser schriftlichen Prüfung.

Voraussetzungen

"M-ETIT-100524 - Solar Energy" darf nicht begonnen sein.
4.228 Teilleistung: Physics of Planetary Atmospheres [T-PHYS-109177]

Verantwortung: Prof. Dr. Thomas Leisner
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Erfolgskontrolle(n)
- If this module is part of the Specialization or Compulsory Subject, credits are earned through the associated exam (oral, written or otherwise).
- Otherwise, the exercises, computer exercises, internships or, if necessary, graduation lectures must be successfully completed.

Voraussetzungen
None

Empfehlungen
Basic knowledge of physics, physical chemistry and fluid dynamics at Bachelor level.

Anmerkungen
240 hours consisting of attendance times (60 hours), follow-up of the lecture incl. Exam preparation and editing exercises (180 hours).
4.229 Teilleistung: Physik der Lithosphäre, Prüfung [T-PHYS-103678]

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101960 - Physik der Lithosphäre, benotet

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-103574 - Physik der Lithosphäre, Studienleistung muss erfolgreich abgeschlossen worden sein.
4.230 Teilleistung: Physik der Lithosphäre, Studienleistung [T-PHYS-103574]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Ellen Gottschämmer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101875 - Physik der Lithosphäre, unbenotet
M-PHYS-101960 - Physik der Lithosphäre, benotet

Voraussetzungen
keine
4.231 Teilleistung: Physik der Quanteninformation [T-PHYS-109898]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104866 - Physik der Quanteninformation

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulnummer</th>
<th>Modultitel</th>
<th>SWS</th>
<th>Veranstaltungsmodus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4024131</td>
<td>Physik der Quanteninformation</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Shnirman</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4024132</td>
<td>Übungen zu Physik der Quanteninformation</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Shnirman</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen

keine

Empfehlungen

Grundlagenkenntnisse in der Quantenmechanik I und II werden vorausgesetzt; Vorkenntnisse aus der Statistischen Physik und TKM I sind nützlich.
4.232 Teilleistung: Physik der Quanteninformation (NF) [T-PHYS-109900]

Verantwortung: Prof. Dr. Alexander Shnirman

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104867 - Physik der Quanteninformation (NF)

Teilleistungsart
Studienleistung
Leistungspunkte 6
Turnus Unregelmäßig
Dauer 1 Sem.
Version 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4024131</td>
<td>Physik der Quanteninformation</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4024132</td>
<td>Übungen zu Physik der Quanteninformation</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt-oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine

Empfehlungen
Grundlagenkenntnisse in der Quantenmechanik I und II werden vorausgesetzt; Vorkenntnisse aus der Statistischen Physik und TKM I sind nützlich.
4.233 Teilleistung: Physik seismischer Messinstrumente [T-PHYS-104727]

Verantwortung: Dr. Thomas Forbriger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102358 - Physik seismischer Messinstrumente

Lehrveranstaltungen				
WS 19/20 4060051	Physics of seismic instruments	2 SWS	Vorlesung (V)	Forbriger
WS 19/20 4060052	Exercise on physics of seismic instruments	1 SWS	Übung (Ü)	Forbriger, Ciesielski, Rietbrock

Voraussetzungen
keine
4.234 Teilleistung: Physik seismischer Messinstrumente (NF) [T-PHYS-105567]

Verantwortung: Dr. Thomas Forbriger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102653 - Physik seismischer Messinstrumente (NF)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.235 Teilleistung: Physikalisches Fortgeschrittenenpraktikum [T-PHYS-102479]

Verantwortung: Dr. Andreas Naber
Dr. Christoph Sürgers
Dr. Joachim Wolf

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101395 - Physikalisches Fortgeschrittenenpraktikum

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung Code</th>
<th>Veranstaltung Name</th>
<th>SWS</th>
<th>Form (P)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4011333</td>
<td>Physikalisches Fortgeschrittenenpraktikum für Masterstudenten (Kurs 1)</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4011343</td>
<td>Physikalisches Fortgeschrittenenpraktikum für Masterstudenten (Kurs 2).</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4011349</td>
<td>Vorbesprechung zum Praktikum Moderne Physik und zum Physikalischen Fortgeschrittenenpraktikum für Masterstudenten</td>
<td>SWS</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4011333</td>
<td>Physikalisches Fortgeschrittenenpraktikum für Masterstudenten</td>
<td>4</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4011349</td>
<td>Vorbesprechung zum Praktikum Moderne Physik und zum Physikalischen Fortgeschrittenenpraktikum für Masterstudenten</td>
<td>SWS</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.236 Teilleistung: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 1 TL, 8 LP ben [T-PHYS-104384]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102091 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 1 TL

Voraussetzungen
keine

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103129 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 2 TL

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.238 Teilleistung: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 2 TL, 4 LP ben [T-PHYS-106221]

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103129 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 2 TLen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.239 Teilleistung: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL, 2 LP ben [T-PHYS-106225]

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103130 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TLen

Voraussetzungen
keine
4.240 Teilleistung: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL, 3 LP ben [T-PHYS-106223]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>KIT-Fakultät für Physik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-103130 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TLen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>3</td>
</tr>
<tr>
<td>Turnus</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103130 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 3 TL

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>3</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.242 Teilleistung: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben [T-PHYS-106226]

<table>
<thead>
<tr>
<th>Einrichtung</th>
<th>KIT-Fakultät für Physik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-103131 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TLen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung anderer Art</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte</td>
<td>2</td>
</tr>
<tr>
<td>Turnus</td>
<td>Unregelmäßig</td>
</tr>
<tr>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine

Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103131 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.244 Teilleistung: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben [T-PHYS-106228]

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103131 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TLen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
4.245 Teilleistung: Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL, 2 LP ben [T-PHYS-106227]

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103131 - Platzhalter Nichtphys. Wahlpflichtfach, Modul mit 4 TL

Voraussetzungen
keine
4.246 Teilleistung: Platzhalter Überfachliche Qualifikation 2 LP - benotet [T-PHY-104675]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-101394 - Überfachliche Qualifikationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Einrichtung: Universität gesamt
Bestandteil von: M-PHYS-101394 - Überfachliche Qualifikationen

Voraussetzungen: keine
Teilleistung: Precision Tests of the Standard Model at low Energies [T-PHYS-109909]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104873 - Precision Tests of the Standard Model at low Energies

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Unregelmäßig</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4026141 | Precision Tests of the Standard Model at low Energies | 2 SWS | Vorlesung (V) | Melnikov |

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine

Empfehlungen
Gute Kenntnisse auf dem Gebiet der Quantenfeldtheorie, mindestens auf dem Level von TTP I.
4.249 Teilleistung: QCD und Colliderphysik, mit Übungen [T-PHYS-106670]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103326 - QCD und Colliderphysik, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen:
keine
4.251 Teilleistung: Quantenoptik auf der Nanoskala [T-PHYS-106669]

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103325 - Quantenoptik auf der Nanoskala

Voraussetzungen
keine
4.252 Teilleistung: Quantenoptik auf der Nanoskala (NF) [T-PHYS-106675]

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103330 - Quantenoptik auf der Nanoskala (NF)

Voraussetzungen
die Lehre

Teilleistungsart
Studienleistung
Leistungspunkte
4
Turnus
Unregelmäßig
Version
1
4.253 Teilleistung: Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen [T-PHYS-108478]

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104092 - Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Veranstaltung (V/U)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>4021161</td>
<td>Quantum Optics at the Nano Scale</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Hunger</td>
<td></td>
</tr>
<tr>
<td>4021162</td>
<td>Übungen zu Quantum Optics at the Nano Scale</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Hunger, N.</td>
<td></td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.254 Teilleistung: Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen (NF) [T-PHYS-108479]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung:
Prof. Dr. David Hunger

Einrichtung:
KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-104093 - Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, mit Übungen (NF)

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4021161</td>
<td>Quantum Optics at the Nano Scale</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Hunger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4021162</td>
<td>Übungen zu Quantum Optics at the Nano Scale</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Hunger, N.</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Teileistung: Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen [T-PHYS-108480]

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104094 - Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4021161</th>
<th>Quantum Optics at the Nano Scale</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Hunger</th>
</tr>
</thead>
</table>

Voraussetzungen

keine
4.256 Teilleistung: Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen (NF) [T-PHYS-108481]

Teilleistungsart Studienleistung
Leistungspunkte 6
Turnus Unregelmäßig
Version 1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4021161</td>
<td>Quantum Optics at the Nano Scale</td>
<td>3 SWS</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Verantwortung: Prof. Dr. David Hunger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104095 - Quantenoptik auf der Nanoskala: Grundlagen und Anwendungen, ohne Übungen (NF)

Verantwortung: Dr. Ioan Pop
Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103092 - Quantum Machines: Design and Implementation in Solid State Devices

Voraussetzungen
keine

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
<tr>
<td>Teilleistungsart</td>
<td>Leistungspunkte</td>
<td>Turnus</td>
<td>Version</td>
</tr>
<tr>
<td>-----------------</td>
<td>----------------</td>
<td>--------</td>
<td>---------</td>
</tr>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Ioan Pop
Prof. Dr. Alexey Ustinov

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103176 - Quantum Machines: Design and Implementation in Solid State Devices (NF)

Voraussetzungen
keine
Teilleistung: Quantum Physics in One Dimension [T-PHYS-108482]

Verantwortung: Dr. Igor Gornyi
Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104097 - Quantum Physics in One Dimension

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
8

Turnus
Unregelmäßig

Version
1

Voraussetzungen
keine
4.260 Teilleistung: Quantum Physics in One Dimension (NF) [T-PHYS-108483]

Verantwortung: Dr. Igor Gornyi
 Prof. Dr. Alexander Mirlin

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104098 - Quantum Physics in One Dimension (NF)

Voraussetzungen
keine

Teilleistungsart: Studienleistung
Leistungspunkte: 8
Turnus: Unregelmäßig
Version: 1
4.261 Teilleistung: Reflexionsseismisches Processing [T-PHYS-104735]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102364 - Reflexionsseismisches Processing

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4060111</td>
<td>Seisms</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4060112</td>
<td>Exercises on Seisms</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Hertweck, Bohlen, Athanasopoulos</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.262 Teilleistung: Reflexionsseismisches Processing (NF) [T-PHYS-105568]

Verantwortung: Prof. Dr. Thomas Bohlen

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102654 - Reflexionsseismisches Processing (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrveranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Seismics</td>
<td>2</td>
<td>Bohlen, Hertweck</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Exercises on Seismics</td>
<td>2</td>
<td>Hertweck, Bohlen, Athanasopoulos</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.263 Teilleistung: Remote Sensing of Atmospheric State Variables [T-PHYS-109133]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Johannes Orphal
Dr. Björn-Martin Sinnhuber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Erfolgskontrolle(n):
More than 50% of the points from the exercises must be achieved.

Voraussetzungen:
None
4.264 Teilleistung: Seismic Data Processing, coursework [T-PHYS-108686]

Verantwortung: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-104186 - Seismic Data Processing with final report (graded)
M-PHYS-104188 - Seismic Data Processing with final report (ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.265 Teilleistung: Seismic Data Processing, final report (graded) [T-PHYS-108656]

Verantwortung: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104186 - Seismic Data Processing with final report (graded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4060321 | Seismic Data Processing | 1 SWS | Vorlesung (V) | Bohlen, Hertweck, Athanasopoulos |
| SS 2019 | 4060322 | Exercises to Seismic Data Processing | 2 SWS | Übung (Ü) | Bohlen, Hertweck, Athanasopoulos |

Voraussetzungen
Successfull participation on "Seismic Data Processing, course achievement"

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-108686 - Seismic Data Processing, coursework muss erfolgreich abgeschlossen worden sein.
4.266 Teilleistung: Seismic Data Processing, final report (ungraded) [T-PHYS-108657]

Verantwortung: Prof. Dr. Thomas Bohlen
Dr. Thomas Hertweck

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104188 - Seismic Data Processing with final report (ungraded)

Teilleistungsart
Studienleistung

Leistungspunkte
4

Version
1

Voraussetzungen
Successful participation on "Seismic Data Processing, course achievement"

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-108686 - Seismic Data Processing, coursework muss erfolgreich abgeschlossen worden sein.
Teilleistung: Seismology [T-PHYS-110603]

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105225 - Seismology

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 8
Turnus: Jedes Wintersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Rietbrock, Gottschämmer, Gaßner</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.268 Teilleistung: Seismology (NF) [T-PHYS-110604]

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105226 - Seismology (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4060171</td>
<td>Seismology</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4060172</td>
<td>Exercises on Seismology</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Rietbrock, Gottschämmer, Gaßner</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.269 Teilleistung: Seminar on IPCC Assessment Report [T-PHYS-107692]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Corinna Hoose
Patrick Ludwig

Einrichtung: KIT-Fakultät für Physik

Bestandteil von:
M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 4052194 | Seminar on IPCC Assessment Report | 2 SWS | Hauptseminar (HS) | Ginete Werner Pinto, Ludwig |

Erfolgskontrolle(n)

Study of a chapter of the current IPCC report with subsequent presentation (~ 20-25 min) and submission of a written summary (1 page).

Voraussetzungen

keine

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101540 - Hauptseminar IPCC Sachstandsbericht darf nicht begonnen worden sein.

Anmerkungen

Diese Teilleistung wird ab dem Wintersemester 2017/2018 in englisch angeboten.
4.270 Teilleistung: Simulation nanoskaliger Systeme, mit Seminar [T-PHYS-105131]

Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102553 - Simulation nanoskaliger Systeme, mit Seminar

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen: keine
Verantwortung: Prof. Dr. Wolfgang Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103192 - Simulation nanoskaliger Systeme, mit Seminar (NF)

4.271 Teilleistung: Simulation nanoskaliger Systeme, mit Seminar (NF) [T-PHYS-106325]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.272 Teilleistung: Simulation nanoskaliger Systeme, ohne Seminar [T-PHYS-102504]

Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung:KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102331 - Simulation nanoskaliger Systeme, ohne Seminar

Teilleistungsart: Prüfungsleistung mündlich

Leistungspunkte: 6

Turnus: Unregelmäßig

Version: 1

Voraussetzungen: keine
4.273 Teilleistung: Simulation nanoskaliger Systeme, ohne Seminar (NF) [T-PHYS-106324]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung
Prof. Dr. Wolfgang Wenzel

Einrichtung
KIT-Fakultät für Physik

Bestandteil von
M-PHYS-103191 - Simulation nanoskaliger Systeme, ohne Seminar (NF)

Voraussetzungen
keine
Teilleistung: Solid State Quantum Technologies [T-PHYS-109890]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104858 - Solid State Quantum Technologies (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Sem.</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4021131</th>
<th>Solid State Quantum Technologies</th>
<th>2 SWS</th>
<th>Veranstaltung (Veranst.)</th>
<th>Wernsdorfer, Borisov</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4021132</td>
<td>Übungen zu Solid State Quantum Technologies</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Wernsdorfer, Borisov</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine

Empfehlungen
Grundlagenkenntnisse der Quantenmechanik
Teilleistung: Solid State Quantum Technologies [T-PHYS-109889]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104857 - Solid State Quantum Technologies

Teilleistungsart
Prüfungsleistung mündlich

Leistungspunkte
8

Turnus
Jedes Sommersemester

Dauer
1 Sem.

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4021131</td>
<td>Solid State Quantum Technologies</td>
<td>2 SWS</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4021132</td>
<td>Übungen zu Solid State Quantum Technologies</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Falls dieses Modul Teil des Schwerpunkt- oder Ergänzungsfachs ist, werden die Leistungspunkte durch die zugehörige Prüfung (mündlich, schriftlich oder anderer Art) erworben. Ansonsten müssen die Übungen, Computerübungen, Praktika oder ggf. Abschlussvorträge erfolgreich absolviert werden.

Voraussetzungen
keine

Empfehlungen
Grundlagenkenntnisse der Quantenmechanik
4.276 Teilleistung: Solid-State Optics, mit Übungen [T-PHYS-102279]

Verantwortung: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102144 - Solid-State Optics, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Kalt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4020012</td>
<td>Übungen zu Solid-State-Optics.</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Kalt</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.277 Teilleistung: Solid-State Optics, mit Übungen (NF) [T-PHYS-102346]

Verantwortung: PD Dr. Michael Hetterich
 Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102145 - Solid-State Optics, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Kalt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4020012</td>
<td>Übungen zu Solid-State-Optics.</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Kalt</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
Verantwortung: PD Dr. Michael Hetterich
Pro. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102408 - Solid-State Optics, ohne Übungen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4020011</td>
<td>Solid-State-Optics</td>
<td>4 SWS</td>
<td>Vorlesung (V) Kalt</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.279 Teilleistung: Solid-State Optics, ohne Übungen (NF) [T-PHYS-104774]

Verantwortung: PD Dr. Michael Hetterich
Prof. Dr. Heinz Kalt

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102409 - Solid-State Optics, ohne Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>4020011</th>
<th>Solid-State-Optics</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Kalt</th>
</tr>
</thead>
</table>

Voraussetzungen

keine
4.280 Teilleistung: Spezialisierungsphase [T-PHYS-102481]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101396 - Spezialisierungsphase

Teilleistungsart: Studienleistung
Leistungspunkte: 15
Version: 1

Voraussetzungen
keine
4.281 Teilleistung: Spintransport in Nanostrukturen [T-PHYS-104586]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Dr. Detlef Beckmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102293 - Spintransport in Nanostrukturen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Modulnummer</th>
<th>Wöchentliche Stundenzahl (SWS)</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Spintransport in Nanostrukturen</td>
<td>4021141</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Beckmann</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übungen zu Spintransport in Nanostrukturen</td>
<td>4021142</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Beckmann</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.282 Teilleistung: Success Control on Selected Topics in Meteorology (Minor) [T-PHYS-109379]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

Erfolgskontrolle(n)
Coursework

Voraussetzungen
None

Modellierte Voraussetzungen
Es muss eine von 2 Bedingungen erfüllt werden:

1. Es müssen 2 von 14 Bedingungen erfüllt werden:
 2. Die Teilleistung T-PHYS-109140 - Meteorological Hazards muss erfolgreich abgeschlossen worden sein.
 3. Die Teilleistung T-PHYS-108610 - Turbulent Diffusion muss erfolgreich abgeschlossen worden sein.
 11. Die Teilleistung T-PHYS-108931 - Middle Atmosphere in the Climate System muss erfolgreich abgeschlossen worden sein.

2. Die Teilleistung T-PHYS-109177 - Physics of Planetary Atmospheres muss erfolgreich abgeschlossen worden sein.
4.283 Teilleistung: Supraleiter-Nanostrukturen [T-PHYS-104513]

Verantwortung: Dr. Detlef Beckmann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102191 - Supraleiter-Nanostrukturen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung mündlich</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4021031</td>
<td>Supraleiter-Nanostrukturen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Beckmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4021032</td>
<td>Übungen zu Supraleiter-Nanostrukturen</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Beckmann</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
Teilleistung: Supraleiter-Nanostrukturen (NF) [T-PHYS-109621]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Detlef Beckmann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104723 - Supraleiter-Nanostrukturen (NF)

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4021031</td>
</tr>
<tr>
<td>WS 19/20 4021032</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.285 Teilleistung: Symmetrien und Gruppen [T-PHYS-104596]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102317 - Symmetrien und Gruppen

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4025031</td>
<td>Symmetries, Groups and Extended Gauge Theories</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Nierste</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4025032</td>
<td>Exercises to Symmetries, Groups and Extended Gauge Theories</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Nierste, Nisandzic</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.286 Teilleistung: Symmetrien und Gruppen (NF) [T-PHYS-104597]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102318 - Symmetrien und Gruppen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>4025031 Symmetries, Groups and Extended Gauge Theories 4 SWS Vorlesung (V) Nierste</td>
</tr>
<tr>
<td>4025032 Exercises to Symmetries, Groups and Extended Gauge Theories 2 SWS Übung (Ü) Nierste, Nisandzic</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.287 Teilleistung: Symmetrien, Gruppen und erweiterte Eichtheorien [T-PHYS-102393]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102315 - Symmetrien, Gruppen und erweiterte Eichtheorien

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>12</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester 19/20</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungsform (V/U)</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4025031</td>
<td>Symmetries, Groups and Extended Gauge Theories</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Nierste</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4025032</td>
<td>Exercises to Symmetries, Groups and Extended Gauge Theories</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Nierste, Nisandzic</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.288 Teilleistung: Symmetrien, Gruppen und erweiterte Eichtheorien (NF) [T-PHYS-102444]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102316 - Symmetrien, Gruppen und erweiterte Eichtheorien (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4025031</td>
<td>Symmetries, Groups and Extended Gauge Theories</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Nierste</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4025032</td>
<td>Exercises to Symmetries, Groups and Extended Gauge Theories</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Nierste, Nisandzic</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.289 Teilleistung: Teilchenphysik I [T-PHYS-102369]

Verantwortung: Prof. Dr. Ulrich Husemann
Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102114 - Teilchenphysik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsart</th>
<th>SWS</th>
<th>Lehrveranstaltungsform</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022031</td>
<td>Teilchenphysik I</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Rabbertz, Quast</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022032</td>
<td>Praktische Übungen zur Teilchenphysik I</td>
<td>2</td>
<td>Praktische Übung (PÜ)</td>
<td>Rabbertz, Dierlamm</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.290 Teilleistung: Teilchenphysik I (NF) [T-PHYS-102488]

Verantwortung: Prof. Dr. Ulrich Husemann
 Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102115 - Teilchenphysik I (NF)

Teilleistungsart
Studienleistung

Leistungspunkte
8

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungsnamen</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022031</td>
<td>Teilchenphysik I</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Rabbertz, Quast</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022032</td>
<td>Praktische Übungen zur Teilchenphysik I</td>
<td>2</td>
<td>Praktische Übung (PU)</td>
<td>Rabbertz, Dierlamm</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.291 Teilleistung: Teilchenphysik II - Flavour-Physik, mit erw. Übungen [T-PHYS-104783]

Verantwortung: Prof. Dr. Florian Bernlochner
Dr. Pablo Goldenzweig

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102422 - Teilchenphysik II - Flavour-Physik, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022081</td>
<td>Teilchenphysik II: Flavour-Physik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Goldenzweig, Müller</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022082</td>
<td>Übungen zu Flavour-Physik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Goldenzweig, Müller</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.292 Teilleistung: Teilchenphysik II - Flavour-Physik, mit erw. Übungen (NF) [T-PHYS-106316]

Verantwortung: Prof. Dr. Florian Bernlochner
Dr. Pablo Goldenzweig

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103183 - Teilchenphysik II - Flavour-Physik, mit erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022081</td>
<td>Teilchenphysik II: Flavour-Physik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Goldenzweig, Müller</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022082</td>
<td>Übungen zu Flavour-Physik</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Goldenzweig, Müller</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.293 Teilleistung: Teilchenphysik II - Flavour-Physik, ohne erw. Übungen [T-PHYS-102371]

Verantwortung: Prof. Dr. Florian Bernlochner
Dr. Pablo Goldenzweig

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102154 - Teilchenphysik II - Flavour-Physik, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozierend</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4022081</td>
<td>Teilchenphysik II: Flavour-Physik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Goldenzweig, Müller</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4022082</td>
<td>Übungen zu Flavour-Physik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Goldenzweig, Müller</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
Teilleistung: Teilchenphysik II - Flavour-Physik, ohne erw. Übungen (NF) [T-PHYS-102424]

Verantwortung: Prof. Dr. Florian Bernlochner
Dr. Pablo Goldenzweig

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102155 - Teilchenphysik II - Flavour-Physik, ohne erw. Übungen (NF)

Teilleistungsart Studienleistung Leistungspunkte 6 Turnus Jedes Wintersemester Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltps.</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Teilchenphysik II: Flavour-Physik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Goldenzweig, Müller</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zu Flavour-Physik</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Goldenzweig, Müller</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.295 Teilleistung: Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen [T-PHYS-108474]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Dr. Klaus Rabbertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104088 - Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2019</th>
<th>4022171</th>
<th>Teilchenphysik II - Top-Quarks und Jets am LHC</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Rabbertz, Meyer</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>SS 2019</td>
<td>4022172</td>
<td>Übungen zu Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.296 Teilleistung: Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF) [T-PHYS-108475]

Verantwortung: Dr. Klaus Rabbertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104089 - Teilchenphysik II - Top Quarks und Jets am LHC, mit erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>ECTS</th>
<th>Typ</th>
<th>Dozent/In</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Rabbertz, Meyer</td>
</tr>
<tr>
<td>SS 2019</td>
<td>Übungen zu Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.297 Teilleistung: Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen [T-PHYS-108472]

Verantwortung: Dr. Klaus Rabbertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104086 - Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>Krediten</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022171</td>
<td>Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Rabbertz, Meyer</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022172</td>
<td>Übungen zu Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.298 Teilleistung: Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF) [T-PHYS-108473]

Verantwortung: Dr. Klaus Rabbertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104087 - Teilchenphysik II - Top Quarks und Jets am LHC, ohne erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4022171</th>
<th>Teilchenphysik II - Top-Quarks und Jets am LHC</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Rabbertz, Meyer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022172</td>
<td>Übungen zu Teilchenphysik II - Top-Quarks und Jets am LHC</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Rabbertz</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Verantwortung: Dr. Matthias Mozer
Dr. Matthias Schröder

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104084 - Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4022161 | Teilchenphysik II - W, Z, Higgs an Collidern | 2 SWS | Vorlesung (V) | Schröder, Wolf |
| SS 2019 | 4022162 | Übungen zu Teilchenphysik II - W, Z, Higgs an Collidern | 2 SWS | Übung (Ü) | Schröder, Wolf |

Voraussetzungen
keine
Teilleistung: Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen (NF) [T-PHYS-108471]

Verantwortung: Dr. Matthias Mozer
Dr. Matthias Schröder

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104085 - Teilchenphysik II - W, Z, Higgs am Collider, mit erw. Übungen (NF)

Teilleistungsart Studienleistung
Leistungspunkte 8
Turnus Jedes Sommersemester
Version 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstyp</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022161</td>
<td>Vorlesung</td>
<td>2</td>
<td>Schröder, Wolf</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022162</td>
<td>Übung</td>
<td>2</td>
<td>Schröder, Wolf</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.301 Teilleistung: Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen [T-PHYS-108468]

Verantwortung: Dr. Matthias Mozer
Dr. Matthias Schröder

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104081 - Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022161 Teilchenphysik II - W, Z, Higgs an Collidern</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Schröder, Wolf</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022162 Übungen zu Teilchenphysik II - W, Z, Higgs an Collidern</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Schröder, Wolf</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
Teilleistung: Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen (NF) [T-PHYS-108469]

Verantwortung: Dr. Matthias Mozer
Dr. Matthias Schröder

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-104082 - Teilchenphysik II - W, Z, Higgs am Collider, ohne erw. Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs- / Übungsnummer</th>
<th>Veranstaltungsentitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4022161</td>
<td>Teilchenphysik II - W, Z, Higgs an Collidern</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Schröder, Wolf</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4022162</td>
<td>Übungen zu Teilchenphysik II - W, Z, Higgs an Collidern</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Schröder, Wolf</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.303 Teilleistung: The ABC of DFT [T-PHYS-105960]

Verantwortung: Velimir Meded
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102984 - The ABC of DFT

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnr.</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4023151</td>
<td>The ABC of DFT</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wenzel, Fediai</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4023152</td>
<td>Übungen zu The ABC of DFT</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Wenzel, Fediai</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.304 Teilleistung: Theoretical Nanooptics [T-PHYS-104587]

<table>
<thead>
<tr>
<th>Verantwortung:</th>
<th>Prof. Dr. Carsten Rockstuhl</th>
</tr>
</thead>
<tbody>
<tr>
<td>Einrichtung:</td>
<td>KIT-Fakultät für Physik</td>
</tr>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-102295 - Theoretical Nanooptics</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4023131</td>
</tr>
<tr>
<td>WS 19/20 4023132</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.305 Teilleistung: Theoretical Nanooptics (NF) [T-PHYS-106311]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-103177 - Theoretical Nanooptics (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-Nr.</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4023131</td>
<td>Theoretical Nanooptics</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Fernandez Corbaton, Rockstuhl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4023132</td>
<td>Exercises to Theoretical Nanooptics</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Rockstuhl, Fernandez Corbaton</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
Teilleistung: Theoretical Quantum Optics [T-PHYS-110303]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-105094 - Theoretical Quantum Optics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4023011</td>
<td>Theoretical Quantum Optics</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Lee, Rockstuhl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4023012</td>
<td>Exercises to Theoretical Quantum Optics</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Rockstuhl, Lee</td>
</tr>
</tbody>
</table>
4.307 Teilleistung: Theoretische molekulare Biophysik, mit Seminar [T-PHYS-102365]

Verantwortung: Dr. Alexander Schug
 Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102169 - Theoretische molekulare Biophysik, mit Seminar

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Veranstaltungscode</th>
<th>Veranstaltungsbezeichnung</th>
<th>Stunden</th>
<th>Prüfung</th>
<th>Lehrende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4023031</td>
<td>Theoretische molekulare Biophysik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Wenzel, Schug</td>
</tr>
<tr>
<td>WS 19/20 4023032</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Wenzel, Schug</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.308 Teilleistung: Theoretische molekulare Biophysik, mit Seminar (NF) [T-PHYS-102420]

Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102170 - Theoretische molekulare Biophysik, mit Seminar (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Kurs</th>
<th>SWS</th>
<th>Veranstaltungstyp (V)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4023031</td>
<td>Theoretische molekulare Biophysik</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Wenzel, Schug</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4023032</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Wenzel, Schug</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.309 Teilleistung: Theoretische molekulare Biophysik, ohne Seminar [T-PHYS-104473]

Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102171 - Theoretische molekulare Biophysik, ohne Seminar

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Modul</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4023031</td>
<td>Theoretische molekulare Biophysik</td>
<td>2</td>
<td>V</td>
<td>Wenzel, Schug</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4023032</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>1</td>
<td>Ü</td>
<td>Wenzel, Schug</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.310 Teilleistung: Theoretische molekulare Biophysik, ohne Seminar (NF) [T-PHYS-104474]

Verantwortung: Dr. Alexander Schug
Prof. Dr. Wolfgang Wenzel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102172 - Theoretische molekulare Biophysik, ohne Seminar (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>Vorlesungsübersicht</th>
<th>SWS</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>4023031</td>
<td>Theoretische molekulare Biophysik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Wenzel, Schug</td>
</tr>
<tr>
<td>4023032</td>
<td>Übungen zu Theoretische molekulare Biophysik</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Wenzel, Schug</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.311 Teilleistung: Theoretische Optik [T-PHYS-104578]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102277 - Theoretical Optics

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4023111 | Theoretical Optics | 2 SWS | Vorlesung (V) | Rockstuhl, Fernandez, Corbaton |
| SS 2019 | 4023112 | Exercises to Theoretical Optics | 1 SWS | Übung (Ü) | Rockstuhl, Lee |

Voraussetzungen
keine
4.312 Teilleistung: Theoretische Optik - Vorleistung [T-PHYS-102305]

Verantwortung: Prof. Dr. Carsten Rockstuhl

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102279 - Theoretical Optics (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungs-ID</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4023111</td>
<td>Theoretical Optics</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Rockstuhl, Fernandez Corbaton</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4023112</td>
<td>Exercises to Theoretical Optics</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Rockstuhl, Lee</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.313 Teilleistung: Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen [T-PHYS-102544]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102033 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Zeppenfeld, Liebler</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.314 Teilleistung: Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF) [T-PHYS-102540]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102037 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art (V/U)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Zeppenfeld, Liebler</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.315 Teilleistung: Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen [T-PHYS-102546]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102035 - Theoretische Teilchenphysik I, Grundlagen und Vertiefungen, ohne Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4025111 | Theoretische Teilchenphysik I | 4 SWS | Vorlesung (V) | Zeppenfeld |

Voraussetzungen
keine
4.316 Teilleistung: Theoretische Teilchenphysik I, Grundlagen, mit Übungen [T-PHYS-102545]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102034 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Zeppenfeld, Liebler</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.317 Teilleistung: Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF) [T-PHYS-102541]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102038 - Theoretische Teilchenphysik I, Grundlagen, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Leistung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4025111</td>
<td>Theoretische Teilchenphysik I</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4025112</td>
<td>Übungen zur Theoretischen Teilchenphysik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Zeppenfeld, Liebler</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.318 Teilleistung: Theoretische Teilchenphysik I, Grundlagen, ohne Übungen [T-PHYS-102547]

Verantwortung: Prof. Dr. Kirill Melnikov
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102036 - Theoretische Teilchenphysik I, Grundlagen, ohne Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4025111</th>
<th>Theoretische Teilchenphysik I</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Zeppenfeld</th>
</tr>
</thead>
</table>

Voraussetzungen
keine
4.319 Teilleistung: Theoretische Teilchenphysik II, mit Übungen [T-PHYS-102552]

Verantwortung: Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102046 - Theoretische Teilchenphysik II, mit Übungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.320 Teilleistung: Theoretische Teilchenphysik II, mit Übungen (NF) [T-PHYS-102548]

Verantwortung: Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102044 - Theoretische Teilchenphysik II, mit Übungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Lehrform (V/Ü)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4026011</td>
<td>Theoretische Teilchenphysik II</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Mühlleitner</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4026012</td>
<td>Übungen zu Theoretische Teilchenphysik II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Mühlleitner, Liebler</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.321 Teilleistung: Theoretische Teilchenphysik II, ohne Übungen [T-PHYS-102554]

Verantwortung: Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102048 - Theoretische Teilchenphysik II, ohne Übungen

Teilleistungsart: Prüfungspunkte
Leistungspunkte: 8
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>4026011</th>
<th>Theoretische Teilchenphysik II</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Mühlleitner</th>
</tr>
</thead>
</table>

Voraussetzungen
keine
4.322 Teilleistung: Theorie der Kondensierten Materie I, Grundlagen [T-PHYS-102559]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102054 - Theorie der Kondensierten Materie I, Grundlagen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 8
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung SS-ID</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4024011</td>
<td>Theorie der Kondensierten Materie I</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Garst</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4024012</td>
<td>Übungen zu Theorie der Kondensierten Materie I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Garst, Kravchuk</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.323 Teilleistung: Theorie der Kondensierten Materie I, Grundlagen (NF) [T-PHYS-102557]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102052 - Theorie der Kondensierten Materie I, Grundlagen (NF)

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 4024011 Theorie der Kondensierten Materie I</td>
<td>8</td>
<td>1</td>
</tr>
<tr>
<td>WS 19/20 4024012 Übungen zu Theorie der Kondensierten Materie I</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102053 - Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 12
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung (V)</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4024011 Theorie der Kondensierten Materie I</td>
<td>4 SWS Garst</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4024012 Übungen zu Theorie der Kondensierten Materie I</td>
<td>2 SWS Garst, Kravchuk</td>
</tr>
</tbody>
</table>

Voraussetzungen:
keine
Teilleistung: Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen (NF) [T-PHYS-102556]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102051 - Theorie der Kondensierten Materie I, Grundlagen und Vertiefungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4024011</td>
<td>Theorie der Kondensierten Materie I</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Garst</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4024012</td>
<td>Übungen zu Theorie der Kondensierten Materie I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Garst, Kravchuk</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.326 Teilleistung: Theorie der Kondensierten Materie II: Vielteilchentheorie, ausgewählte Themen [T-PHYS-106676]

Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-103331 - Theorie der Kondensierten Materie II: Vielteilchentheorie, ausgewählte Themen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Leistung</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4024111</td>
<td>Theorie der Kondensierten Materie II: Vielteilchentheorie</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Garst</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4024112</td>
<td>Übungen zur Theorie der Kondensierten Materie II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Garst, Klug</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.327 Teilleistung: Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen [T-PHYS-104591]

Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Mathematik
KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102313 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4024111 Theorie der Kondensierten Materie II: Vielteilchentheorie 4 SWS Vorlesung (V) Garst</td>
</tr>
<tr>
<td>SS 2019 4024112 Übungen zur Theorie der Kondensierten Materie II 2 SWS Übung (Ü) Garst, Klug</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.328 Teilleistung: Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF) [T-PHYS-104592]

Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102314 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen (NF)

Lehrveranstaltungen

| SS 2019 | 4024111 | Theorie der Kondensierten Materie II: Vielteilchentheorie | 4 SWS | Vorlesung (V) | Garst |
| SS 2019 | 4024112 | Übungen zur Theorie der Kondensierten Materie II | 2 SWS | Übung (Ü) | Garst, Klug |

Voraussetzungen

keine

Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102308 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Leistung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4024111</td>
<td>Theorie der Kondensierten Materie II: Vielteilchentheorie</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Garst</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4024112</td>
<td>Übungen zur Theorie der Kondensierten Materie II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Garst, Klug</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
4.330 Teilleistung: Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF) [T-PHYS-102562]

Verantwortung: Prof. Dr. Markus Garst
Dr. Boris Narozhnyy
Prof. Dr. Jörg Schmalian

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-102312 - Theorie der Kondensierten Materie II: Vielteilchentheorie, Grundlagen und Vertiefungen (NF)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>12</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungsbezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4024111</td>
<td>Theorie der Kondensierten Materie II: Vielteilchentheorie</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Garst</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4024112</td>
<td>Übungen zur Theorie der Kondensierten Materie II</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Garst, Klug</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
4.331 Teilleistung: Theorie seismischer Wellen [T-PHYS-104736]

Verantwortung: Prof. Dr. Friedemann Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102367 - Theorie seismischer Wellen

Voraussetzungen
keine
4.332 Teilleistung: Theorie seismischer Wellen (NF) [T-PHYS-105571]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Friedemann Wenzel
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-102657 - Theorie seismischer Wellen (NF)

Voraussetzungen
keine
4.333 Teilleistung: Tropical Meteorology [T-PHYS-107693]

Verantwortung: Prof. Dr. Peter Knippertz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Unregelmäßig</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Fachsemester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4052111</td>
<td>Tropical Meteorology</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Knippertz</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4052112</td>
<td>Exercises to Tropical Meteorology</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Knippertz, Maier-Gerber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Students must achieve 50% of the points in the exercises.

Voraussetzungen
keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-101535 - Tropische Meteorologie darf nicht begonnen worden sein.

Anmerkungen
Diese Teilleistung wird ab dem Wintersemester 2017/2018 in englisch angeboten.
4.334 Teilleistung: Turbulent Diffusion [T-PHYS-108610]

Verantwortung: Prof. Dr. Michael Kunz
Einrichtung: KIT-Fakultät für Physik
Bestandteil von:
- M-PHYS-104577 - Selected Topics in Meteorology (Second Major, graded)
- M-PHYS-104578 - Selected Topics in Meteorology (Minor, ungraded)

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Vorleser</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4052081</td>
<td>Turbulent Diffusion</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Vogel, Vogel</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Vogel, Vogel, Muser</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

After a short introduction, the students independently conduct model simulations with ICON-ART. The results are prepared, evaluated for specific questions and analyzed and presented to the group at the end of the semester.

Voraussetzungen

keine