Modulhandbuch
Physik Bachelor 2015 (Bachelor of Science)
SPO 2015
Wintersemester 2019/20
Stand 31.07.2019
Inhaltsverzeichnis

1. Bachelorstudiengang Physik ... 5
 1.1. Qualifikationsziele .. 5
 1.2. Qualifikationsziele der einzelnen Fächer 5
 1.2.1. Klassische Physik ... 6
 1.2.2. Mathematik ... 6
 1.2.3. Moderne Physik ... 6
 1.2.4. Anfänger- und Fortgeschrittenenpraktikum 6
 1.2.5. Programmieren und Rechnernutzung 6
 1.2.6. Nichtphysikalisches Wahlpflichtfach 6
 1.2.7. Überfachliche Qualifikationen .. 6
 1.2.8. Bachelorarbeit ... 6
 1.2.9. Leistungspunkte-System .. 6

2. Studienplan für den Bachelorstudiengang Physik 7
 2.1. Einleitung .. 7
 2.2. Lehrveranstaltungen .. 7
 2.2.1. Experimentelle und theoretische Physik 7
 2.2.2. Mathematik ... 7
 2.2.3. Nichtphysikalisches Wahlpflichtfach 8
 2.2.4. Computerausbildung .. 8
 2.2.5. Überfachliche Qualifikationen .. 8
 2.2.6. Bachelorarbeit ... 8
 2.2.7. Zusatzeleistungen und Mastervorzug 9
 2.2.8. Anmeldung zu Leistungüberprüfungen und Fachprüfungen 9
 2.3. Graphische Darstellung des Studienplans 10
 2.3.1. Wahlpflichtfach Anorganische und Organische Chemie 10
 2.3.2. Wahlpflichtfach Physikalische Chemie 11
 2.3.3. Wahlpflichtfach Werkstoffkunde 12
 2.3.4. Wahlpflichtfach Informatik .. 13
 2.3.5. Wahlpflichtfach Wirtschaftswissenschaften 14
 2.3.6. Wahlpflichtfach Geophysik ... 15
 2.3.7. Wahlpflichtfach Meteorologie .. 16
 2.3.8. Erweiterte Mathematik ... 17

3. Aufbau des Studiengangs .. 18
 3.1. Bachelorarbeit .. 18
 3.2. Klassische Experimentalphysik .. 18
 3.3. Klassische Theoretische Physik .. 18
 3.4. Moderne Experimentalphysik .. 18
 3.5. Moderne Theoretische Physik .. 19
 3.6. Mathematik ... 19
 3.6.1. Mathematik ... 19
 3.6.2. Erweiterte Mathematik ... 19
 3.7. Nichtphysikalisches Wahlpflichtfach 20
 3.7.1. Anorganische und Organische Chemie 20
 3.7.2. Physikalische Chemie .. 20
 3.7.3. Werkstoffkunde ... 20
 3.7.4. Informatik ... 20
 3.7.5. Wirtschaftswissenschaften ... 20
 3.7.6. Geophysik .. 21
 3.7.7. Meteorologie ... 21
 3.8. Praktikum Klassische Physik .. 21
 3.9. Praktikum Moderne Physik .. 21
 3.10. Programmieren und Rechnernutzung 21
 3.11. Überfachliche Qualifikationen .. 21
 3.12. Zusatzeleistungen ... 22

4. Module ... 23
 4.1. Algorithmen I - M-INFO-100030 ... 23
 4.2. Analysis 1 - M-MATH-101333 ... 25
Inhaltsverzeichnis

4.3. Analysis 2 - M-MATH-101334 .. 26
4.4. Analysis 3 - M-MATH-101318 .. 27
4.5. Analysis 4 - M-MATH-103164 .. 28
4.7. Bachelorarbeit - M-PHYS-101534 ... 30
4.8. Digitale Technik und Entwurfsverfahren - M/INFO-102978 32
4.9. Einführung in die Geophysik - M-PHYS-101366 34
4.10. Einführung in die Meteorologie - M-PHYS-101879 35
4.11. Funktionalanalyse - M-MATH-101320 ... 36
4.12. Funktionaltheorie - M-MATH-101332 ... 37
4.15. Grundlagen BWL 1 - M-WIWI-101494 ... 41
4.16. Grundlagen BWL 2 - M-WIWI-101578 ... 42
4.17. Höhere Mathematik I - M-MATH-101327 .. 43
4.18. Höhere Mathematik II - M-MATH-101328 44
4.19. Höhere Mathematik III - M-MATH-101329 45
4.20. Klassische Experimentalphysik I, Mechanik - M-PHYS-101347 46
4.22. Klassische Experimentalphysik III, Optik und Thermodynamik - M-PHYS-101349 48
4.23. Klassische Theoretische Physik I, Einführung - M-PHYS-101350 49
4.24. Klassische Theoretische Physik II, Mechanik - M-PHYS-101351 50
4.25. Klassische Theoretische Physik III, Elektrodynamik - M-PHYS-101352 51
4.26. Lineare Algebra 1 - M-MATH-101330 ... 52
4.27. Lineare Algebra 2 - M-MATH-101331 ... 53
4.28. Moderne Experimentalphysik - M-PHYS-101532 54
4.29. Moderne Theoretische Physik - M-PHYS-101533 57
4.30. Physikalische Chemie für Physiker - M-CHEMBIO-101744 60
4.31. Praktikum Klassische Physik I - M-PHYS-101352 61
4.32. Praktikum Klassische Physik II - M-PHYS-101354 62
4.33. Praktikum Moderne Physik - M-PHYS-101355 63
4.34. Praktikum über Anwendungen der Mikrorechner - M-PHYS-101686 65
4.35. Programmieren und Rechnernutzung - M-PHYS-101531 66
4.36. Softwaretechnik I - M/INFO-103453 .. 67
4.37. Überfachliche Qualifikationen - M-PHYS-101356 68
4.38. Werkstoffkunde - M-MACH-102562 ... 70
5. Teileistungen .. 72

5.1. Algorithmen I - T/INFO-100001 ... 72
5.2. Allgemeine Chemie: Grundlagen der Allgemeinen Chemie (für Bachelor-Studierende der Naturwissenschaften) - T-CHEMBIO-103373 73
5.3. Allgemeine Meteorologie - T-PHYS-101091 ... 74
5.4. Analysis 1 - Klausur - T-MATH-102237 ... 75
5.5. Analysis 2 - Klausur - T-MATH-103347 ... 76
5.6. Analysis 3 - Klausur - T-MATH-102245 ... 77
5.7. Analysis 4 - Prüfung - T-MATH-106286 ... 78
5.8. Anorganisch-Chemisches Praktikum für Physiker - T-CHEMBIO-103375 79
5.9. Bachelorarbeit - T-PHYS-102933 ... 80
5.10. Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen - T-WIWI-102819 81
5.11. Betriebswirtschaftslehre: Produktionswirtschaft und Marketing - T-WIWI-102818 82
5.13. Computergestützte Datenauswertung - T-PHYS-103242 ... 84
5.15. Einführung in die Geophysik - T-PHYS-103310 86
5.16. Einführung in die Rechnergestützten Arbeiten: T-PHYS-103684 87
5.17. Einführung in die Geophysik I - T-PHYS-102306 88
5.18. Einführung in die Geophysik II - T-PHYS-102307 89
5.19. Einführung in die Synoptik - T-PHYS-101093 90
5.20. Funktionalanalyse - T-MATH-102255 ... 91
5.21. Funktionentheorie - Prüfung - T-MATH-102228 92
5.22. Geophysikalische Geländeübungen - T-PHYS-102310 93
<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 31.07.2019</th>
</tr>
</thead>
</table>

5.23. Grundbegriffe der Informatik - T-INFO-101964	..	94
5.24. Höhere Mathematik I - T-MATH-102224	..	95
5.25. Höhere Mathematik II - T-MATH-102225	..	96
5.26. Höhere Mathematik III - T-MATH-102226	..	97
5.27. Klassische Experimentalphysik I, Mechanik - T-PHYS-102283	..	98
5.28. Klassische Experimentalphysik I, Mechanik - Vorleistung - T-PHYS-102295	..	99
5.29. Klassische Experimentalphysik II, Elektrodynamik - T-PHYS-102284	..	100
5.31. Klassische Experimentalphysik III, Optik und Thermodynamik - T-PHYS-102285	..	102
5.32. Klassische Experimentalphysik III, Optik und Thermodynamik - Vorleistung - T-PHYS-102297	..	103
5.33. Klassische Theoretische Physik I, Einführung - T-PHYS-102286	..	104
5.34. Klassische Theoretische Physik I, Einführung - Vorleistung - T-PHYS-102298	..	105
5.35. Klassische Theoretische Physik II, Mechanik - T-PHYS-102287	..	106
5.36. Klassische Theoretische Physik II, Mechanik - Vorleistung - T-PHYS-102299	..	107
5.37. Klassische Theoretische Physik III, Elektrodynamik - T-PHYS-102288	..	108
5.38. Klassische Theoretische Physik III, Elektrodynamik - Vorleistung - T-PHYS-102300	..	109
5.39. Klimatologie - T-PHYS-101092	..	110
5.40. Lineare Algebra 1 - Klausur - T-MATH-103337	..	111
5.41. Lineare Algebra 2 - Klausur - T-MATH-103218	..	112
5.42. Moderne Experimentalphysik I, Atome und Kerne, Vorleistung - T-PHYS-102313	..	113
5.43. Moderne Experimentalphysik II, Moleküle und Festkörper, Vorleistung - T-PHYS-102314	..	114
5.44. Moderne Experimentalphysik III, Teilchen und Hadronen, Vorleistung - T-PHYS-102315	..	115
5.45. Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1 - T-PHYS-102317	..	116
5.46. Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 2 - T-PHYS-102320	..	117
5.47. Moderne Theoretische Physik II, Quantenmechanik 2, Vorleistung 1 - T-PHYS-102321	..	118
5.48. Moderne Theoretische Physik II, Quantenmechanik 2, Vorleistung 2 - T-PHYS-102322	..	119
5.49. Moderne Theoretische Physik IIIa, Statistische Physik 1, Vorleistung 1 - T-PHYS-102318	..	120
5.50. Moderne Theoretische Physik IIIa, Statistische Physik 1, Vorleistung 2 - T-PHYS-102319	..	121
5.51. Moderne Theoretische Physik IIIb, Statistische Physik 2, Vorleistung 1 - T-PHYS-103211	..	122
5.52. Moderne Theoretische Physik IIIb, Statistische Physik 2, Vorleistung 2 - T-PHYS-103212	..	123
5.53. Mündliche Prüfung "Moderne Experimentalphysik I - III" - T-PHYS-102312	..	124
5.54. Mündliche Prüfung "Moderne Theoretische Physik I - III" - T-PHYS-102316	..	125
5.55. Organische Chemie - T-CHEMBIO-100209	..	126
5.56. Physikalisch-chemisches Praktikum für Physiker - T-CHEMBIO-103376	..	127
5.57. Physikalische Chemie I - T-CHEMBIO-103385	..	128
5.58. Platzhalter Überfachliche Qualifikation 2 LP - benotet - T-PHYS-104645	..	129
5.59. Platzhalter Überfachliche Qualifikation 2 LP - unbenotet - T-PHYS-104647	..	130
5.60. Praktikum Klassische Physik I - T-PHYS-102289	..	131
5.61. Praktikum Klassische Physik II - T-PHYS-102290	..	132
5.62. Praktikum Moderne Physik - T-PHYS-102291	..	133
5.63. Praktikum über Anwendungen der Mikrorechner - T-PHYS-103243	..	134
5.64. Programmieren - T-PHYS-102292	..	135
5.65. Rechnernutzung - T-PHYS-102293	..	136
5.66. Rechnungswesen - T-WIWI-102816	..	137
5.67. Softwaretechnik I - T-INFO-101968	..	138
5.68. Theoretische Meteorologie I - T-PHYS-101482	..	139
5.69. Werkstoffkunde I & II - T-MACH-105145	..	140
5.70. Werkstoffkunde Praktikum - T-MACH-105146	..	141
1 Bachelorstudiengang Physik

Das Karlsruher Institut für Technologie (KIT) hat sich im Rahmen der Umsetzung des Bolognaprozesses zum Aufbau eines Europäischen Hochschulraumes zum Ziel gesetzt, dass am Abschluss der Studiendenausbildung am KIT in der Regel der Mastergrad steht. Das KIT sieht daher die am KIT angebotenen Bachelor- und Masterstudiengänge als Gesamtkonzept mit konsekutivem Curriculum.

1.1 Qualifikationsziele

Die Kombination des Bachelor- und Masterstudiengangs ist äquivalent zum früheren Diplomstudiengang. Die Definition der allgemeinen Qualifikationsziele auf Studiengangsebene des Bachelors und Masters in Physik wird in der „Konferenz der Fachbereiche Physik“ deutschlandweit und mit Rücksicht auf die internationale Lehr- und Forschungslandschaft koordiniert, um einen Wechsel während des Studiums innerhalb Deutschlands zu ermöglichen und ein international definiertes Berufsfeld zu sichern.

Am KIT wird besonderer Wert auf eine forschungsnahe Lehre gelegt. Schon im Bachelor werden dazu alle grundlegenden Kenntnisse vermittelt, so dass im Master eine weitestgehend freie Spezialisierung auf Unterthemen der Physik möglich ist. Dies erlaubt weiterhin, dass nach Abschluss eines Bachelors in Physik am KIT Studierende die Zulassungsbedingungen für faktisch alle Masterstudiengänge Physik anderer deutscher Hochschulen erfüllen.

1.2 Qualifikationsziele der einzelnen Fächer

Das Studium ist in drei Phasen gegliedert. In der ersten Phase werden die Grundlagen der klassischen Physik sowie Kompetenzen in höherer Mathematik und einem nichtphysikalischen Wahlpflichtfach erworben. Diese Phase stellt die Basis für den Zugang zu komplexen Theorien und experimentellen Feldern dar, die in der zweiten Phase des Studiums angenommen werden (Moderne Experimentelle und Moderne Theoretische Physik). Zum Teil werden in dieser zweiten Phase sehr aufwändige Konzepte verwendet (Quantenmechanik, Statistische Physik), die nicht nur geeignetes mathematisches Werkzeug voraussetzen, sondern auch ein Grundverständnis der Mechanik, Elektrodynamik und Optik. In der dritten Phase

Physik Bachelor 2015 (Bachelor of Science)
Modulhandbuch mit Stand vom 31.07.2019
verbreitern die Studierenden ihr Wissen und sammeln darüber hinaus Erfahrungen in der aktuellen Forschung durch die Bachelorarbeit. Parallel zu den genannten Veranstaltungen finden in den ersten beiden Phasen Praktika statt.

1.2.1 Klassische Physik
In den Fächern Klassische Experimentalphysik und Klassische Theoretische Physik erlernen die Studierenden die Grundlagen der Physik und die grundlegenden Techniken. Dies umfasst die Mechanik, Optik, Thermodynamik und den Elektromagnetismus. Die Vorlesungen werden durch Übungen begleitet, in denen der Stoff vertieft wird und das Wissen auf konkrete Fragestellungen angewendet wird.

1.2.2 Mathematik
In der Mathematik eignen sich die Studierenden das mathematische Handwerkszeug an, das für die experimentelle sowie theoretische Physik benötigt wird. Sie erlernen die Grundlagen der Analysis und der linearen Algebra und beherrschen die Anwendung auf physikalische Fragestellungen. Die Vorlesungen werden durch Übungen ergänzt, in denen das Gelernte angewendet wird.

1.2.3 Moderne Physik
In der Modernen Experimentalphysik und Modernen Theoretischen Physik erlernen die Studierenden die Grundlagen der modernen Physik, d.h. der Quantenphysik und der Relativistik. Diese Themen sind von zentraler Bedeutung für die modernen Anwendungen der Physik in den aktuellen Forschungsthemen. Die Studierenden erwerben Kenntnisse in Kern-, Atom- und Molekülpophil, Quantenmechanik und statistischer Mechanik sowie Teilchen- und Festkörperphysik. Die Vorlesungen werden auch durch Übungen ergänzt, in dem das Gelernte vertieft wird.

1.2.4 Anfänger- und Fortgeschrittenenpraktikum

1.2.5 Programmieren und Rechnernutzung
Die Studierenden erwerben praktische Kompetenzen für die Datenerfassung, Regelung und Steuerung sowie der statistischen Auswertung von Messdaten. Sie ergänzen die Praktika und vermitteln moderne Techniken, die sowohl in der Forschung als auch in der Industrie von essentieller Wichtigkeit sind.

1.2.6 Nichtphysikalisches Wahlpflichtfach
Hier erwerben die Studierenden das Grundwissen in einem nichtphysikalischen Fach wie beispielsweise Chemie, Werkstoffkunde oder Wirtschaftswissenschaften. Sie erweitern ihren Horizont und setzen persönliche Schwerpunkte, die im späteren Berufsleben hilfreich sein können.

1.2.7 Überfachliche Qualifikationen
Die Studierenden erwerben Kompetenzen jenseits der fachlichen Expertise. Module aus den Bereichen Wissenschaftliches Englisch, Patentrecht, Projektmanagement, Tutorenprogramme, Wissenschaftliches Schreiben oder Wissenschaft in der Öffentlichkeit werden durch das House of Competence (HoC) und das Sprachenzentrum regelmäßig angeboten.

1.2.8 Bachelorarbeit
Während der Bachelorarbeit trainieren die Studierenden die Techniken des selbstständigen wissenschaftlichen Arbeiten. In einem eng definierten Aufgabenfeld lernen sie, sich Wissen anzuzeigen und auf wissenschaftliche Art und Weise in Schrift und Wort darzustellen. Sie wenden ihre im Bachelorstudium erworbenen Fähigkeiten und ihr Wissen auf forschungsrelevante Fragestellungen an, indem sie relevante Informationen sammeln, bewerten und interpretieren, um daraus wissenschaftlich fundierte Urteile abzuleiten. Weiterhin erlernen die Studierenden, fachbezogene Positionen und Problemlösungen eigenständig zu erarbeiten und weiterzuentwickeln und sie dann kompakt zu formulieren und argumentativ zu verteidigen.

1.2.9 Leistungspunkte-System
Die Leistungspunkte werden auf Modulebene einzeln definiert. Dabei entspricht einem ECTS (European Credit Transfer System) - oder Leistungspunkt ca. 30 Stunden Zeitaufwand. Der Zeitaufwand ist im Einzelnen aufgeschlüsselt nach reiner Präsenzzeit, Vor- und Nachbereitungszeit für Vorlesungen, Übungen und Tutorien sowie Vorbereitung auf die Prüfungen.
2 Studienplan für den Bachelorstudiengang Physik

2.1 Einleitung

Mit bestandener Bachelorprüfung wird der akademische Grad „Bachelor of Science (B. Sc.)“ durch das KIT verliehen.

2.2 Lehrveranstaltungen
Beispielhafte Studienpläne für das Bachelorstudium sind am Ende des Kapitels abgebildet.

2.2.1 Experimentelle und theoretische Physik
Im Zentrum des Bachelorstudiums stehen die Fächer Klassische Experimentalphysik, Klassische Theoretische Physik, Moderne Experimentalphysik und Moderne Theoretische Physik.

In den Fächern Klassische Experimentalphysik und Klassische Theoretische Physik, die jeweils aus drei Modulen bestehen, werden die Fachnoten folgendermaßen ermittelt:

Die Zulassung zur schriftlichen Prüfung eines Moduls behält ihre Gültigkeit für die Nachholtermine und für die Prüfungsklausuren der nachfolgenden Kurse des gleichen Moduls.

Die Fachnote wird als gewichtetes Mittel der drei Modulnoten gebildet.

Die Anmeldung zu einer mündlichen Prüfung erfolgt in zwei Schritten:

2. Dann erfolgt die elektronische Anmeldung über das Studierendenportal.

Als Nachweis der Anmeldung muss am Prüfungstag der Ausdruck der Online-Anmeldung vorgelegt werden.

2.2.2 Mathematik
Im Regelfall besteht das Fach Mathematik aus den Modulen Höhere Mathematik I-III mit insgesamt 24 ECTS-Punkten.

Mathematisch interessierte Studierende können ein erweitertes Fach Mathematik als freiwillige Option belegen. Dieser liegen die Module Analysis I-III, Lineare Algebra I und Funktionentheorie zu Grunde. Die Gesamtnote des erweiterten Faches

Physik Bachelor 2015 (Bachelor of Science)
Modulhandbuch mit Stand vom 30.07.2019
wird aus den gewichteten Noten der Module Lineare Algebra I, Analysis II und III bestimmt. Analysis I und Funktionentheorie sollten als Zusatzmodul belegt werden. Das Modul Funktionentheorie entspricht der ersten Hälfte des Moduls Analysis IV.

2.2.3 Nichtphysikalisches Wahlpflichtfach

Beim nichtphysikalischem Wahlpflichtfach (14 ECTS-Punkte) kann zwischen den Fächern Anorganische und Organische Chemie, Physikalische Chemie, Werkstoffkunde, Informatik, Wirtschaftswissenschaften, Geophysik sowie Meteorologie gewählt werden. Weitere Wahlpflichtfächer können vom Prüfungsausschuss genehmigt werden. Es gelten folgende Regeln:

Werkstoffkunde: Die Prüfung zum Wahlpflichtfach Werkstoffkunde erfolgt als mündliche Prüfung über das gesamte Fach aus den Vorlesungen Werkstoffkunde I und II sowie dem Werkstoffkunde-Praktikum. Der erfolgreiche Teilnahme am Praktikum ist Voraussetzung für die mündliche Prüfung.

Wirtschaftswissenschaften: Die Gesamtnote wird gebildet als gewichteter Mittelwert der Noten aus den Veranstaltungen Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft (BWL U1, 2 ECTS-Punkte), Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen (BWL FR, 4 ECTS-Punkte), Betriebswirtschaftslehre: Produktionswirtschaft und Marketing (BWL PM, 4 ECTS-Punkte) und Rechnungswesen (4 ECTS-Punkte).

Meteorologie: Das Wahlpflichtfach Meteorologie besteht entweder aus den Modulen Allgemeine Meteorologie (6 ECTS-Punkte), Klimatologie (4 ECTS-Punkte) und Einführung in die Synoptik (2 ECTS-Punkte) oder aus den Modulen Theoretische Meteorologie I (6 ECTS-Punkte), Klimatologie (4 ECTS-Punkte) und Einführung in die Synoptik (2 ECTS-Punkte). In beiden Fällen wird die Note aus einer mündlichen Prüfung (2 ECTS-Punkte) über den gesamten Stoff ermittelt.

2.2.4 Computerausbildung

2.2.5 Überfachliche Qualifikationen

2.2.6 Bachelorarbeit

Die Bachelorarbeit (Umfang: 12 ECTS-Punkte) ist zentraler Bestandteil der Profilbildungs- und Spezialisierungsphase.

Verfahren zur Anmeldung der Bachelorarbeit

Die Themen möglicher Bachelorarbeiten werden durch Aushang an den schwarzen Brettern der Institute bekannt gegeben bzw. sind durch persönliche Absprache mit den Leiter/inne/n der einzelnen Arbeitsgruppen festzulegen.
Ferner besteht die Möglichkeit, eine externe Bachelorarbeit außerhalb der Fakultät anzufertigen. Dazu muss ein/e Hochschullehrer/in der Fakultät als interne/r Betreuer/in gefunden werden, der/die bereit ist, die externe Arbeit zu unterstützen, und die Zustimmung des Prüfungsausschuss muss eingeholt werden.

Alle Details über den Ablauf und die Anforderungen an die Bachelorarbeit liegen in den Händen der Betreuer/innen. In der Prüfungsordnung ist allerdings festgelegt, dass der Leistungsumfang einer Bachelorarbeit auf 12 ECTS-Punkte begrenzt ist und demnach einer Arbeitsbelastung von etwa 7 Wochen bei Vollzeit entspricht.

Im Studienplan des Bachelorstudiengangs ist die Bachelorarbeit im 6. Fachsemester vorgesehen. Es ist jedoch durchaus möglich, die Bachelorarbeit schon während oder nach dem 5. Fachsemester anzufertigen.

Nach Eingang der Gutachten meldet das Prüfungssekretariat die erfolgreiche Bearbeitung einschließlich der Benotung an das Studienbüro.

2.2.7 Zusatzleistungen und Mastervorzug

2.2.8 Anmeldung zu Leistungsüberprüfungen und Fachprüfungen

Die Anmeldung erfolgt online über die zentrale Prüfungsverwaltung des KIT.
2.3 Graphische Darstellung des Studienplans

2.3.1 Wahlpflichtfach Anorganische und Organische Chemie

<table>
<thead>
<tr>
<th>Sem</th>
<th>Experimentalphysik</th>
<th>Theoretische Physik</th>
<th>Mathematik</th>
<th>Physikalische Praktika</th>
<th>Wahlpf.fach und Bachelorarbeit</th>
<th>überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KlassExPhys I Mechanik V4 U2</td>
<td>KlassThPhys I Einführung V2 U2</td>
<td>Mathematik Höhere Math. IV6 U2</td>
<td>10</td>
<td>Chemie Grundl. der allg. Chemie I V4</td>
<td>ÜQ’</td>
<td>30</td>
</tr>
<tr>
<td>3</td>
<td>KlassExPhys III Optik & Thermodynamik V5 U2</td>
<td>KlassThPhys III Elektrodynamik V4 U2</td>
<td>Mathematik Höhere Math. III V2 U1</td>
<td>4</td>
<td>Praktikum Klass. Physik I P6</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ModExPhys I Karne & Atome V4 U2</td>
<td>ModThPhys I Quantenmech. 1 V4 U2</td>
<td>Prag+Rechntzg Programmieren V2 U2</td>
<td>6</td>
<td>Praktikum Klass. Physik II P6</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ModExPhys II Moleküle & Festkörper V4 U2</td>
<td>ModThPhys II Quantenmech. 2 V4 Ü1</td>
<td>Prag+Rechntzg Rechnenutzung V2 U1</td>
<td>4</td>
<td>Praktikum Mod. Physik* P6</td>
<td>28.5</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ModExPhys III Teilchen & Hadronen V3 U1.5</td>
<td>ModThPhys IIIa Statistik Phys. 1 V2 U1</td>
<td>Statistik Phys. 2 V2 U1</td>
<td>2.5’’</td>
<td>(wird wählweise auch im SS angeboten)</td>
<td>2</td>
<td></td>
</tr>
<tr>
<td></td>
<td>ModExPhys Mündl. Prüf.</td>
<td>ModThPhys Statistik Phys. 1 V2 U1</td>
<td>Mündl. Prüf.</td>
<td>5.5’’</td>
<td>Bachelorarbeit</td>
<td>31.5</td>
<td></td>
</tr>
</tbody>
</table>

Summe: 180

* Das Praktikum Moderne Physik sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.

** Das Chemische Praktikum für Physiker und das dazugehörende Seminar finden in der vorlesungsfreien Zeit zwischen Sommer- und Wintersemester statt.

† In Moderner Theoretischer Physik II, IIIa und IIIb sind insgesamt fünf von sechs Studienleistungen als Voraussetzung für die mündliche Prüfung in Moderner Theoretischer Physik erforderlich. Dargestellt ist ein Beispielfall.
2.3.2 Wahlpflichtfach Physikalische Chemie

<table>
<thead>
<tr>
<th>Sem</th>
<th>Experimentalphysik</th>
<th>Theoretische Physik</th>
<th>Mathematik</th>
<th>Physikalische Praktika</th>
<th>Wahlpf.fach und Bachelorarbeit</th>
<th>überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KlassExPhys I</td>
<td>KlassThPhys I</td>
<td>Mathematik</td>
<td>Phys. Chemie V4 U2</td>
<td>8</td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Mechanik V4 U2</td>
<td>Einführung V2 U2</td>
<td>Höhere Math. I V6 U2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KlassExPhys II</td>
<td>KlassThPhys II</td>
<td>Mathematik</td>
<td>Phys. Chemie V4 U2</td>
<td>7</td>
<td>Phys. Chemie PC Praktikum*</td>
<td>31**</td>
</tr>
<tr>
<td></td>
<td>Elektrodynamik V3 U2</td>
<td>Mechanik V2 U2</td>
<td>Höhere Math. II V6 U2</td>
<td></td>
<td></td>
<td>ÜQ Computergest. Datenauswertung V1 U1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KlassExPhys III</td>
<td>KlassThPhys III</td>
<td>Mathematik</td>
<td>Praktikum Klass. Physik I P6</td>
<td>9</td>
<td>ÜQ**</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Optik & Thermodynamik V5 U2</td>
<td>Elektrodynamik V4 U2</td>
<td>Höhere Math. III V2 U1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ModExPhys I</td>
<td>ModThPhys I</td>
<td>Progr.+Rechntzg</td>
<td>Praktikum Klass. Physik II P6</td>
<td>8</td>
<td>ÜQ*</td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Kern & Atome V4 U2</td>
<td>Quantenmech. 1 V4 U2</td>
<td>Programmieren V2 U2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ModExPhys II</td>
<td>ModThPhys II</td>
<td>Progr.+Rechntzg</td>
<td>Praktikum Mod. Physik* P4</td>
<td>8</td>
<td>ÜQ**</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>Moleküle & Festkörper V4 U2</td>
<td>Quantenmech. 2 V4 U1</td>
<td>Rechnenutzung V2 U1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ModThPhys Illa Statistik Phys. 1 V2 U1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ModThPhys Illb Statistik Phys. 2 V2 U1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ModExPhys III</td>
<td>ModThPhys IIIb</td>
<td>Statistik Phys. 2 V2 U1</td>
<td>Bachelorarbeit (kann im 5. oder 6. Semester angefertigt werden)</td>
<td>6</td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>Teilchen & Hadronen V3 U1.5</td>
<td>Mündl. Prüf.</td>
<td>Statistik Phys. 1 V2 U1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ModThPhys Mündl. Prüf.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Das Praktikum Moderne Physik sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.

** Das Physikalisch-Chemische Praktikum für Physiker wird im Regelfall in der vorlesungsfreien Zeit zwischen Winter- und Sommersemester absolviert.

† In Moderner Theoretischer Physik II, Illa und Ilb sind insgesamt fünf von sechs Studienleistungen als Voraussetzung für die mündliche Prüfung in Moderner Theoretischer Physik erforderlich. Dargestellt ist ein Beispielfall.

Summe: 180
2.3.3 Wahlpflichtfach Werkstoffkunde

<table>
<thead>
<tr>
<th>Sem</th>
<th>Experimentalphysik</th>
<th>Theoretische Physik</th>
<th>Mathematik</th>
<th>Physikalische Praktika</th>
<th>Wahlpf.fach und Bachelorarbeit</th>
<th>überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KlassExPhys I Mechanik V4 Ü2</td>
<td>KlassThPhys I Einführung V2 Ü2</td>
<td>Mathematik Höhere Math. I V6 Ü2</td>
<td></td>
<td>Werkstoffkunde WK I V4 Ü1</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td>2</td>
<td>KlassExPhys II Elektrodynamik V3 Ü2</td>
<td>KlassThPhys II Mechanik V2 Ü2</td>
<td>Mathematik Höhere Math. II V6 Ü2</td>
<td></td>
<td>Werkstoffkunde WK II V3 Ü1</td>
<td></td>
<td>33**</td>
</tr>
<tr>
<td>3</td>
<td>KlassExPhys III Optik & Thermodynamik V5 Ü2</td>
<td>KlassThPhys III Elektrodynamik V4 Ü2</td>
<td>Mathematik Höhere Math. III V2 Ü1</td>
<td>Praktikum Klass. Physik I P6</td>
<td></td>
<td>ÜQ*</td>
<td>29</td>
</tr>
<tr>
<td>4</td>
<td>ModExPhys I Karne & Atome V4 Ü2</td>
<td>ModThPhys I Quantenmech. 1 V4 Ü2</td>
<td>Progr+Rechnztg Programmieren V2 Ü2</td>
<td>Praktikum Klass. Physik II P6</td>
<td></td>
<td></td>
<td>28</td>
</tr>
<tr>
<td>5</td>
<td>ModExPhys II Moleküle & Festkörper V4 Ü2</td>
<td>ModThPhys II Quantenmech. 2 V4 Ü1</td>
<td>Progr+Rechnztg Rechnernutzung V2 Ü1</td>
<td>Praktikum Mod. Physik* P4</td>
<td></td>
<td>ÜQ*</td>
<td>28.5</td>
</tr>
</tbody>
</table>

* Das Praktikum Moderne Physik sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.

** Das Werkstoffkunde-Praktikum findet in der vorlesungsfreien Zeit zwischen Sommer- und Wintersemester statt.

† In Moderner Theoretischer Physik II, IIIa und IIB sind insgesamt fünf von sechs Studienleistungen als Voraussetzung für die mündliche Prüfung in Moderner Theoretischer Physik erforderlich. Dargestellt ist ein Beispielfall.
2.3.4 Wahlpflichtfach Informatik

<table>
<thead>
<tr>
<th>Sem</th>
<th>Experimentalphysik</th>
<th>Theoretische Physik</th>
<th>Mathematik</th>
<th>Physikalische Praktika</th>
<th>Wahlpf.fach und Bachelorarbeit</th>
<th>überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KlassExPhys I</td>
<td>KlassThPhys I</td>
<td>Mathematik</td>
<td>Informatik</td>
<td></td>
<td></td>
<td>32</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KlassExPhys II</td>
<td>KlassThPhys II</td>
<td>Mathematik</td>
<td>Informatik</td>
<td>ÜQ Computergest. Datenauswertung V1 Ü1</td>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Elektrodynamik V3 Ü2</td>
<td>Mechanik V2 Ü2</td>
<td>Höhere Math. II V6 Ü2</td>
<td>Algorithmik I oder Softwaretechnik oder Digitaltechnik V3 Ü1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KlassExPhys III</td>
<td>KlassThPhys III</td>
<td>Mathematik</td>
<td>Praktikum</td>
<td>ÜQ*</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Optik & Thermody-</td>
<td>Einführung V4 Ü2</td>
<td>Höhere Math. III V2 Ü1</td>
<td>Klass. Physik II P6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nakt V5 Ü2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ModExPhys I</td>
<td>ModThPhys I</td>
<td>Progr+Rechntzg</td>
<td>Praktikum</td>
<td>ÜQ*</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Kerne & Atome V4 Ü2</td>
<td>Quantenmech. 1 V4 Ü2</td>
<td>Programmieren V2 Ü2</td>
<td>Klass. Physik II P6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ModExPhys II</td>
<td>ModThPhys II</td>
<td>Progr+Rechntzg</td>
<td>Praktikum</td>
<td>ÜQ*</td>
<td></td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>Moleküle & Festkör-</td>
<td>Quantenmech. 2</td>
<td>Rechnernutzung V2 Ü1</td>
<td>Mod. Physik P4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>per V4 Ü2</td>
<td>V4 Ü1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>ModThPhys III a</td>
<td>Statist. Phys. 1 V2 Ü1</td>
<td>(wird wahlweise auch im SS angeboten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statist. Phys. 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ModExPhys III</td>
<td>ModThPhys III</td>
<td>Bachelarbeit</td>
<td></td>
<td></td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>Teilchen & Hadronen V3 Ü1.5</td>
<td>Teilchen & Hadronen V2 Ü1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mündliche Prüfung</td>
<td>Mündliche Prüfung</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Das Praktikum Moderne Physik sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.

** Das Praktikum über Anwendungen der Mikrorechner wird jeweils im Winter- und im Sommersemester angeboten.

† In Moderner Theoretischer Physik II, IIIa und IIIb sind insgesamt fünf von sechs Studienleistungen als Voraussetzung für die mündliche Prüfung in Moderner Theoretischer Physik erforderlich. Dargestellt ist ein Beispielfall.
2.3.5 Wahlpflichtfach Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Sem</th>
<th>Experimentalphysik</th>
<th>Theoretische Physik</th>
<th>Mathematik</th>
<th>Physikalische Praktika</th>
<th>Wahlpf.fach und Bachelorarbeit</th>
<th>überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KlassExPhys I</td>
<td>KlassThPhys I</td>
<td>Mathematik</td>
<td>Wirtschaftswiss. BWL FR</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Mechanik V4 U2</td>
<td>Einführung V2 U2</td>
<td>V6 U2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KlassExPhys II</td>
<td>KlassThPhys II</td>
<td>Mathematik</td>
<td>Wirtschaftswiss. BWL UF</td>
<td></td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Elektrodynamik V3 U2</td>
<td>Mechanik V2 U2</td>
<td>Höhere Math. II V6 U2</td>
<td>2</td>
<td></td>
<td>ÜQ Computergest. Datenanalyse</td>
<td>2</td>
</tr>
<tr>
<td>3</td>
<td>KlassExPhys III</td>
<td>KlassThPhys III</td>
<td>Mathematik</td>
<td>Wirtschaftswiss. BWL PM</td>
<td></td>
<td></td>
<td>31</td>
</tr>
<tr>
<td></td>
<td>Optik & Thermodynamik V5 U2</td>
<td>Höhere Math. III V2 U1</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ModExPhys I</td>
<td>ModThPhys I</td>
<td>Progr+Rechntzg</td>
<td>Praktikum Klass. Physik</td>
<td></td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Kerne & Atome V4 U2</td>
<td>Quantenmech. 1 V4 U2</td>
<td>Programmieren V2 U2</td>
<td>P6</td>
<td></td>
<td>ÜQ</td>
<td>2</td>
</tr>
<tr>
<td>5</td>
<td>ModExPhys II</td>
<td>ModThPhys II</td>
<td>Progr+Rechntzg</td>
<td>Praktikum Klass. Physik</td>
<td></td>
<td></td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>Moleküle & Festkörper V4 U2</td>
<td>Quantenmech. 2 V4 U1</td>
<td>Programmieren V2 U1</td>
<td>P6</td>
<td></td>
<td>ÜQ</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>ModThPhys Illa</td>
<td>Statist. Phys. 1 V2 U1</td>
<td>2.5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Statist. Phys. 2 V2 U1</td>
<td>Rechnenweit</td>
<td>(wird wahlweise auch im SS angeboten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ModExPhys III</td>
<td>ModThPhys IIIb</td>
<td>ModThPhys</td>
<td>Bachelorarbeit</td>
<td></td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>Teilchen & Hadronen V3 U1.5</td>
<td>Mündliche Prüf.</td>
<td>Mündliche Prüf.</td>
<td>12</td>
<td></td>
<td>(kann im 5. oder 6. Semester angefer-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>tigt werden)</td>
<td></td>
</tr>
</tbody>
</table>

* Das Praktikum Moderne Physik sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.

** BWL FR: Finanzwirtschaft und Rechnungswesen

BWL UF: Unternehmensführung und Informationswirtschaft

BWL PM: Produktionswirtschaft und Marketing

† In Moderner Theoretischer Physik II, IIIa und IIIb sind insgesamt fünf von sechs Studienleistungen als Voraussetzung für die mündliche Prüfung in Moderner Theoretischer Physik erforderlich. Dargestellt ist ein Beispielfall.
2.3.6 Wahlpflichtfach Geophysik

<table>
<thead>
<tr>
<th>Sem</th>
<th>Experimentalphysik</th>
<th>Theoretische Physik</th>
<th>Mathematik</th>
<th>Physikalische Praktika</th>
<th>Wahlpf.fach und Bachelorarbeit</th>
<th>überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KlassExPhys I</td>
<td>KlassThPhys I</td>
<td>Mathematik</td>
<td>Praktikum</td>
<td>Geophysik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>V6 Ü2</td>
<td></td>
<td></td>
<td>V1 Ü1</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KlassExPhys II</td>
<td>KlassThPhys II</td>
<td>Mathematik</td>
<td>Praktikum</td>
<td>Geophysik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ü2</td>
<td></td>
<td>V2 Ü1</td>
<td></td>
<td></td>
<td>V1 Ü1</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KlassExPhys III</td>
<td>KlassThPhys III</td>
<td>Mathematik</td>
<td>Praktikum</td>
<td>Geophysik</td>
<td>ÜQ*</td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Optik & Thermodynamik V5 Ü2</td>
<td>Höhere Math. III V2 Ü1</td>
<td></td>
<td>Klass. Physik I P6</td>
<td>Geophysik Geophysik II V2 Ü1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ModExPhys I</td>
<td>ModThPhys I</td>
<td>Progr+Rechntzg</td>
<td>Praktikum</td>
<td>Geophysik</td>
<td>ÜQ*</td>
<td>32</td>
</tr>
<tr>
<td></td>
<td>Kern & Atome</td>
<td>Quantenmech. 1</td>
<td>Programmieren V2 Ü2</td>
<td>Klass. Physik II P6</td>
<td>Geophysik Geophysik II V2 Ü1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V4 Ü2</td>
<td>V4 Ü2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ModExPhys II</td>
<td>ModThPhys II</td>
<td>Progr+Rechntzg</td>
<td>Praktikum</td>
<td>Geophysik</td>
<td>ÜQ*</td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>Moleküle & Festkörper V4 Ü2</td>
<td>Quantenmech. 2 V4 Ü1</td>
<td>Rechnemutzung V2 Ü1</td>
<td>Klass. Physik II P6</td>
<td>Geophysik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ModExPhys III</td>
<td>ModThPhys IIIb</td>
<td>Progr+Rechntzg</td>
<td>Praktikum</td>
<td>Bachelorarbeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Teilchen & Hadronen V3 Ü1.5</td>
<td>Statist. Phys. 2 V2 Ü1</td>
<td>Rechnemutzung V2 Ü1</td>
<td>Klass. Physik II P6</td>
<td>(kann im 5. oder 6. Semester angefer-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Mündliche Prüfung</td>
<td></td>
<td></td>
<td>tigt werden)</td>
<td></td>
<td>31.5</td>
</tr>
</tbody>
</table>

* Das Praktikum Moderne Physik sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.

† In Moderner Theoretischer Physik II, IIIa und IIIb sind insgesamt fünf von sechs Studienleistungen als Voraussetzung für die mündliche Prüfung in Moderner Theoretischer Physik erforderlich. Dargestellt ist ein Beispielfall.
2.3.7 Wahlpflichtfach Meteorologie

<table>
<thead>
<tr>
<th>Sem</th>
<th>Experimentalphysik</th>
<th>Theoretische Physik</th>
<th>Mathematik</th>
<th>Physikalische Praktika</th>
<th>Wahlpf.fach und Bachelorarbeit</th>
<th>überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KlassExPhys I</td>
<td>KlassThPhys I</td>
<td>Mathematik</td>
<td>Prag+Rechntgz</td>
<td>Meteorologie</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>V4 U2</td>
<td>V2 U2</td>
<td>I V6 U2</td>
<td></td>
<td>V3 U2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KlassExPhys II</td>
<td>KlassThPhys II</td>
<td>Mathematik</td>
<td>Prag+Rechntgz</td>
<td>Meteorologie</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>V3 U2</td>
<td>V2 U2</td>
<td>II V6 U2</td>
<td></td>
<td>V3 U1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meteorologie Klimatologie</td>
<td>V3 U1</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Einf. Synoptik</td>
<td>V2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Meteorologie Mdl. Prf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KlassExPhys III</td>
<td>KlassThPhys III</td>
<td>Mathematik</td>
<td>Prag+Rechntgz</td>
<td>Praktikum</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Optik & Thermodyna-</td>
<td>Elektrodynamik</td>
<td>Höhere Math.</td>
<td>V2 U1</td>
<td>Klass. Physik I</td>
<td>P6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>mik V5 U2</td>
<td>V4 U2</td>
<td>III V2 U1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ModExPhys I</td>
<td>ModThPhys I</td>
<td>Progr+Rechntgz</td>
<td>V2 U2</td>
<td>Praktikum</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Kernle & Atome</td>
<td>Quantenmech.</td>
<td>Programmieren</td>
<td>V2 U2</td>
<td>Klass. Physik II</td>
<td>P6</td>
<td></td>
</tr>
<tr>
<td></td>
<td>V4 U2</td>
<td>1 V4 U2</td>
<td>V2 U2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P6</td>
<td></td>
<td>Dualisiert auch im SS angebo-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ModExPhys II</td>
<td>ModThPhys II</td>
<td>Progr+Rechntgz</td>
<td>V2 U1</td>
<td>Praktikum</td>
<td></td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>Moleküle & Festkör-</td>
<td>Quantenmech.</td>
<td>Programmieren</td>
<td>V2 U1</td>
<td>Klass. Physik*</td>
<td>P4</td>
<td></td>
</tr>
<tr>
<td></td>
<td>per V4 U2</td>
<td>2 V4 U1</td>
<td>V2 U2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>P6</td>
<td></td>
<td>(wird wahlweise auch im SS angebo-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ten)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ModExPhys III</td>
<td>ModThPhys II</td>
<td>Praktikum</td>
<td>Prag+Rechntgz</td>
<td>Bachelorarbeit</td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>Teilchen & Hadronen</td>
<td>Statistik. Phys.</td>
<td>Klass. Physik I</td>
<td>P6</td>
<td>(kann im 5. oder 6. Semester angefer-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3 U1.5</td>
<td>1 V2 U1</td>
<td>IIb V2 U1</td>
<td></td>
<td>tigt werden)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ModExPhys</td>
<td>ModThPhys</td>
<td>Mündliche Prüf.</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mündliche Prüf.</td>
<td>Mündliche Prüf.</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Das Praktikum Moderne Physik sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.

† In Moderner Theoretischer Physik II, IIIa und IIIb sind insgesamt fünf von sechs Studienleistungen als Voraussetzung für die mündliche Prüfung in Moderner Theoretischer Physik erforderlich. Dargestellt ist ein Beispielfall.
2.3.8 Erweiterte Mathematik

Im Folgenden ist eine graphische Darstellung des Studienplans mit der Belegung von erweiterter Mathematik abgebildet. Als Nebenfach ist dabei exemplarisch das Wahlpflichtfach Physikalische Chemie belegt, andere Nebenfächer sind möglich.

<table>
<thead>
<tr>
<th>Sem</th>
<th>Experimentalphysik</th>
<th>Theoretische Physik</th>
<th>Mathematik</th>
<th>Physikalische Praktika</th>
<th>Wahlpf.fach und Bachelorarbeit</th>
<th>überfachliche Qualifikationen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>KlassExPhys I</td>
<td>KlassThPhys I</td>
<td>Mathematik</td>
<td>Phys. Chemie</td>
<td>Zusatzleistung Mathematik</td>
<td></td>
<td>30</td>
</tr>
<tr>
<td></td>
<td>Mechanik</td>
<td>Einführung</td>
<td>Lineare Alg.</td>
<td>Phys. Chemie I</td>
<td>Analysis I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V4 U2</td>
<td>V2 U2</td>
<td>V4 U2</td>
<td>V4 U2</td>
<td>V4 U2</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>KlassExPhys II</td>
<td>KlassThPhys II</td>
<td>Mathematik</td>
<td>Phys. Chemie PC</td>
<td>ÜQ Computergest. Datenauswertung</td>
<td></td>
<td>29</td>
</tr>
<tr>
<td></td>
<td>Elektrodynamik</td>
<td>Mechanik</td>
<td>Analysis II</td>
<td>Praktikum</td>
<td>V1 U1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3 U2</td>
<td>V2 U2</td>
<td>V4 U2</td>
<td>P6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>KlassExPhys III</td>
<td>KlassThPhys III</td>
<td>Mathematik</td>
<td>Praktikum</td>
<td>ÜQ*</td>
<td></td>
<td>33</td>
</tr>
<tr>
<td></td>
<td>Optik & Thermody-</td>
<td>Mechanik</td>
<td>Analysis III</td>
<td>Klass. Physik I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>nik</td>
<td>V4 U2</td>
<td>V4 U2</td>
<td>P6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>ModExPhys I</td>
<td>ModThPhys I</td>
<td>Progr+Rechntzg</td>
<td>Praktikum</td>
<td>ÜQ*</td>
<td></td>
<td>28</td>
</tr>
<tr>
<td></td>
<td>Kerne & Atome</td>
<td>Quantenmech.</td>
<td>Programmieren</td>
<td>Klass. Physik II</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V4 U2</td>
<td>1</td>
<td>V2 U2</td>
<td>P6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>ModExPhys II</td>
<td>ModThPhys II</td>
<td>Progr+Rechntzg</td>
<td>Praktikum</td>
<td>ÜQ*</td>
<td></td>
<td>28.5</td>
</tr>
<tr>
<td></td>
<td>Moleküle & Festkör</td>
<td>Quantenmech.</td>
<td>Rechnenutzung</td>
<td>Klass. Physik P4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>per</td>
<td>2</td>
<td>V2 U1</td>
<td>P4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V4 U2</td>
<td></td>
<td></td>
<td>(wird wahlweise auch</td>
<td>ÜQ*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>im SS angeboten)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>2.5†</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>ModExPhys III</td>
<td>ModThPhys III</td>
<td>Praktikum</td>
<td>Bachelorarbeit</td>
<td></td>
<td></td>
<td>31.5</td>
</tr>
<tr>
<td></td>
<td>Teilchen & Hadronen</td>
<td>Illb</td>
<td>Mod. Physik</td>
<td>(kann im 5. oder 6.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V3 U1.5</td>
<td>Statist. Phys. 1</td>
<td>P4</td>
<td>Semester angefertigt</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>V2 U1</td>
<td></td>
<td>werden)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Das Praktikum Moderne Physik sowie die überfachlichen Qualifikationen werden sowohl im Sommer- als auch im Wintersemester angeboten und können je nach Vorliebe belegt werden. Überlast in einem Semester ist zu vermeiden.

† In Moderner Theoretischer Physik II, IIIa und IIIb sind insgesamt fünf von sechs Studienleistungen als Voraussetzung für die mündliche Prüfung in Moderner Theoretischer Physik erforderlich. Dargestellt ist ein Beispielfall.
3.1 Bachelorarbeit

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101534</td>
<td>Bachelorarbeit</td>
<td>12</td>
</tr>
</tbody>
</table>

3.2 Klassische Experimentalphysik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101347</td>
<td>Klassische Experimentalphysik I, Mechanik</td>
<td>8</td>
</tr>
<tr>
<td>M-PHYS-101348</td>
<td>Klassische Experimentalphysik II, Elektrodynamik</td>
<td>7</td>
</tr>
<tr>
<td>M-PHYS-101349</td>
<td>Klassische Experimentalphysik III, Optik und Thermodynamik</td>
<td>9</td>
</tr>
</tbody>
</table>

3.3 Klassische Theoretische Physik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101350</td>
<td>Klassische Theoretische Physik I, Einführung</td>
<td>6</td>
</tr>
<tr>
<td>M-PHYS-101351</td>
<td>Klassische Theoretische Physik II, Mechanik</td>
<td>6</td>
</tr>
<tr>
<td>M-PHYS-101352</td>
<td>Klassische Theoretische Physik III, Elektrodynamik</td>
<td>8</td>
</tr>
</tbody>
</table>

3.4 Moderne Experimentalphysik

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101532</td>
<td>Moderne Experimentalphysik</td>
<td>26</td>
</tr>
</tbody>
</table>
3.5 Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101533</td>
<td>Moderne Theoretische Physik</td>
</tr>
</tbody>
</table>

3.6 Mathematik

Wahlpflichtblock: Mathematik (1 Bestandteil sowie zwischen 24 und 27 LP)

<table>
<thead>
<tr>
<th>Bestandteil</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mathematik</td>
<td>24 LP</td>
</tr>
<tr>
<td>Erweiterte Mathematik</td>
<td>27 LP</td>
</tr>
</tbody>
</table>

3.6.1 Mathematik

Bestandteil von: Mathematik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101327</td>
<td>Höhere Mathematik I</td>
</tr>
<tr>
<td>M-MATH-101328</td>
<td>Höhere Mathematik II</td>
</tr>
<tr>
<td>M-MATH-101329</td>
<td>Höhere Mathematik III</td>
</tr>
</tbody>
</table>

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Der Bereich Mathematik / Erweiterte Mathematik darf nicht begonnen worden sein.

3.6.2 Erweiterte Mathematik

Bestandteil von: Mathematik

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101330</td>
<td>Lineare Algebra 1</td>
</tr>
<tr>
<td>M-MATH-101334</td>
<td>Analysis 2</td>
</tr>
<tr>
<td>M-MATH-101318</td>
<td>Analysis 3</td>
</tr>
</tbody>
</table>

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Der Bereich Mathematik / Mathematik darf nicht begonnen worden sein.
3.7 Nichtphysikalisches Wahlpflichtfach

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Nichtphysikalisches Wahlpflichtfach (1 Bestandteil)</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anorganische und Organische Chemie</td>
<td>14 LP</td>
</tr>
<tr>
<td>Physikalische Chemie</td>
<td>14 LP</td>
</tr>
<tr>
<td>Werkstoffkunde</td>
<td>14 LP</td>
</tr>
<tr>
<td>Informatik</td>
<td>14 LP</td>
</tr>
<tr>
<td>Wirtschaftswissenschaften</td>
<td>14 LP</td>
</tr>
<tr>
<td>Geophysik</td>
<td>14 LP</td>
</tr>
<tr>
<td>Meteorologie</td>
<td>14 LP</td>
</tr>
</tbody>
</table>

3.7.1 Anorganische und Organische Chemie

<table>
<thead>
<tr>
<th>Bestandteil von: Nichtphysikalisches Wahlpflichtfach</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td>14</td>
</tr>
<tr>
<td>M-CHEMBIO-101742 Anorganische und Organische Chemie für Studierende der Physik</td>
<td>14 LP</td>
</tr>
</tbody>
</table>

3.7.2 Physikalische Chemie

<table>
<thead>
<tr>
<th>Bestandteil von: Nichtphysikalisches Wahlpflichtfach</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td>14</td>
</tr>
<tr>
<td>M-CHEMBIO-101744 Physikalische Chemie für Physiker</td>
<td>14 LP</td>
</tr>
</tbody>
</table>

3.7.3 Werkstoffkunde

<table>
<thead>
<tr>
<th>Bestandteil von: Nichtphysikalisches Wahlpflichtfach</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td>14</td>
</tr>
<tr>
<td>M-MACH-102562 Werkstoffkunde</td>
<td>14 LP</td>
</tr>
</tbody>
</table>

3.7.4 Informatik

<table>
<thead>
<tr>
<th>Bestandteil von: Nichtphysikalisches Wahlpflichtfach</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td>14</td>
</tr>
<tr>
<td>M-INFO-103456 Grundbegriffe der Informatik</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-PHYS-101686 Praktikum über Anwendungen der Mikrorechner</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtmodule Informatik (mindestens 1 Bestandteil sowie max. 6 LP)

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Wahlpflichtmodule Informatik</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-INFO-100030 Algorithmen I</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-103453 Softwaretechnik I</td>
<td>6 LP</td>
</tr>
<tr>
<td>M-INFO-102978 Digitaltechnik und Entwurfverfahren</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

3.7.5 Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Bestandteil von: Nichtphysikalisches Wahlpflichtfach</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtbestandteile</td>
<td>14</td>
</tr>
<tr>
<td>M-WIWI-101494 Grundlagen BWL 1</td>
<td>6 LP</td>
</tr>
</tbody>
</table>
3 Aufbau des Studiengangs

Praktikum Klassische Physik

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 31.07.2019</th>
</tr>
</thead>
</table>

3.7.6 Geophysik

Bestandteil von: Nichtphysikalisches Wahlpflichtfach

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 31.07.2019</th>
</tr>
</thead>
</table>

Hinweise zur Verwendung

Die Erstverwendung ist ab 01.10.2019 möglich.

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101366 Einführung in die Geophysik 8 LP</td>
</tr>
<tr>
<td>M-PHYS-101784 Geophysikalische Geländeübungen 6 LP</td>
</tr>
</tbody>
</table>

Leistungspunkte

14

3.7.7 Meteorologie

Bestandteil von: Nichtphysikalisches Wahlpflichtfach

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 31.07.2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101879 Einführung in die Meteorologie 14 LP</td>
</tr>
</tbody>
</table>

Leistungspunkte

14

3.8 Praktikum Klassische Physik

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 31.07.2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101353 Praktikum Klassische Physik I 6 LP</td>
</tr>
<tr>
<td>M-PHYS-101354 Praktikum Klassische Physik II 6 LP</td>
</tr>
</tbody>
</table>

Leistungspunkte

12

3.9 Praktikum Moderne Physik

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 31.07.2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101355 Praktikum Moderne Physik 6 LP</td>
</tr>
</tbody>
</table>

Leistungspunkte

6

3.10 Programmieren und Rechnernutzung

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 31.07.2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101531 Programmieren und Rechnernutzung 10 LP</td>
</tr>
</tbody>
</table>

Leistungspunkte

10

3.11 Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Modulhandbuch mit Stand vom 31.07.2019</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101356 Überfachliche Qualifikationen 6 LP</td>
</tr>
</tbody>
</table>

Leistungspunkte

6
3.12 Zusatzleistungen

<table>
<thead>
<tr>
<th>Wahlpflichtblock: Zusatzleistungen (max. 30 LP)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>M-MATH-101333 Analysis 1</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-101331 Lineare Algebra 2</td>
<td>9 LP</td>
</tr>
<tr>
<td>M-MATH-101332 Funktionentheorie</td>
<td>4 LP</td>
</tr>
<tr>
<td>M-MATH-103164 Analysis 4</td>
<td>8 LP</td>
</tr>
<tr>
<td>M-MATH-101320 Funktionalanalysis</td>
<td>8 LP</td>
</tr>
</tbody>
</table>
4 Module

4.1 Modul: Algorithmen I [M-INFO-100030]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Informatik (Wahlpflichtmodule Informatik)

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| Teilleistung | TP-INFO-100001 Algorithmen I | 6 LP | Sanders |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende

- kennt und versteht grundlegende, häufig benötigte Algorithmen, ihren Entwurf, Korrektheits- und Effizienzanalyse, Implementierung, Dokumentierung und Anwendung,
- kann mit diesem Verständnis auch neue algorithmische Fragestellungen bearbeiten,
- wendet die im Modul Grundlagen der Informatik (Bachelor Informationswirtschaft / Wirtschaftsinformatik) erworbenen Programierkenntnisse auf nichttriviale Algorithmen an,
- wendet die in Grundbegriffe der Informatik und den Mathematikvorlesungen erworbenen mathematischen Herangehensweise an die Lösung von Problemen an. Schwerpunkte sind hier formale Korrektheitsargumente und eine mathematische Effizienzanalyse.

Voraussetzungen
Siehe Teilleistung

Inhalt
Dieses Modul soll Studierenden grundlegende Algorithmen und Datenstrukturen vermitteln.

Die Vorlesung behandelt unter anderem:

- Grundbegriffe des Algorithm Engineering
- Asymptotische Algorithmenanalyse (worst case, average case, probabilistisch, amortisiert)
- Datenstrukturen z.B. Arrays, Stapel, Warteschlangen und Verkettete Listen
- Hashtabellen
- Sortieren: vergleichsbasierte Algorithmen (z.B. quicksort, insertionsort), untere Schranken, Linearzeitalgorithmen (z.B. radixsort)
- Prioritätslisten
- Sortierte Folgen, Suchbäume und Selektion
- Graphen (Repräsentation, Breiten-/Tiefensuche, Kürzeste Wege, Minimale Spannbäume)
- Generische Optimierungsalgorithmen (Greedy, Dynamische Programmierung, systematische Suche, Lokale Suche)
- Geometrische Algorithmen

Empfehlungen
Siehe Teilleistung
Arbeitsaufwand

Vorlesung mit 3 SWS + 1 SWS Übung.
6 LP entspricht ca. 180 Stunden
ca. 45 Std. Vorlesungsbesuch,
ca. 15 Std. Übungsbesuch,
ca. 90 Std. Nachbearbeitung und Bearbeitung der Übungsblätter
ca. 30 Std. Prüfungsvorbereitung
4.2 Modul: Analysis 1 [M-MATH-101333]

Verantwortung: Prof. Dr. Michael Plum
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Zusatzleistungen

Leistungspunkte 9
Turnus Jedes Wintersemester
Dauer 1 Semester
Level 3
Version 1

Pflichtbestandteile

| T-MATH-102237 | Analysis 1 - Klausur | 9 LP | Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt, Weis |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Inhalt
- Vollständige Induktion, reelle und komplexe Zahlen,
- Konvergenz von Folgen, Zahlenreihen, Potenzreihen
- Elementare Funktionen
- Stetigkeit reeller Funktionen
- Differentiation reeller Funktionen, Satz von Taylor
- Integration reeller Funktionen, uneigentliches Integral
- Konvergenz von Funktionenfolgen- und reihen

Arbeitsaufwand
Gesamter Arbeitsaufwand: 270 Stunden
Präsenzzeit: 120 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Veriefung der Studieninhalte durch häusliche Nachbearbeitung der Vorlesungsinhalte
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
Modul: Analysis 2 [M-MATH-101334]

Verantwortung: Prof. Dr. Michael Plum
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik / Erweiterte Mathematik

Leistungspunkte: 9
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Level: 3
Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-103347</td>
</tr>
<tr>
<td>9 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Inhalt
- Normierte Vektorräume, topologische Grundbegriffe, Fixpunktsatz von Banach
- Mehdimensionale Differentiation, implizit definierte Funktionen, Extrema ohne/mit Nebenbedingungen
- Kurvenintegral, Wegunabhängigkeit
- Lineare gewöhnliche Differentialgleichungen, Trennung der Variablen, Satz von Picard und Lindelöf.

Arbeitsaufwand
Gesamter Arbeitsaufwand: 270 Stunden
Präsenzzeit: 120 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Verifizierung der Studieninhalte durch häusliche Nachbearbeitung der Vorlesungsinhalte
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.4 Modul: Analysis 3 [M-MATH-101318]

Verantwortung: Prof. Dr. Wolfgang Reichel
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik / Erweiterte Mathematik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-102245</th>
<th>Analysis 3 - Klausur</th>
<th>9 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt, Weis</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120min).

Qualifikationsziele
Absolventinnen und Absolventen können
- das Problem des Messens von Inhalten von Mengen beurteilen
- die Konstruktion des Lebesgueschen Masses, des Lebesgueschen Integrals und des Oberflächenintegrals reproduzieren und grundlegende Eigenschaften nennen
- Volumina von Körperm und mehrdimensionale Integrale berechnen
- Integralsätze erläutern und anwenden
- Aussagen zur Konvergenz von Fourierreihen treffen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
- Messbare Mengen, messbare Funktionen
- Lebesguesche Mass, Lebesguesches Integral
- Konvergenzsätze für Lebesgue Integrale
- Prinzip von Cavalieri, Satz von Fubini
- Transformationssatz
- Divergenzsatz (Gausscher Integralsatz)
- Satz von Stokes
- Fourierreihen

Empfehlungen
Folgende Module sollten bereits belegt werden sein:
- Analysis 1 und 2
- Lineare Algebra 1 und 2

Arbeitsaufwand
Gesamter Arbeitsaufwand: 270 Stunden
Präsenzzeit: 120 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.5 Modul: Analysis 4 [M-MATH-103164]

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Roland Schnaubelt
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Zusatzleistungen

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-MATH-106286</td>
<td>Analysis 4 - Prüfung</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MATH-101332 - Funktionentheorie darf nicht begonnen worden sein.

Inhalt
- Modellierung mit Differentialgleichungen
- Existenztheorie
- Phasenebene, Stabilität
- Randwertprobleme, elementare partielle Differentialgleichungen
- Holomorphie
- Integralsatz und -formel von Cauchy
- Hauptsätze der Funktionentheorie
- isolierte Singularitäten, reelle Integrale

Empfehlungen
Empfehlung: Analysis 1-3, Lineare Algebra 1+2.
Arbeitsaufwand

Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.6 Modul: Anorganische und Organische Chemie für Studierende der Physik [M-CHEMBIO-101742]

Verantwortung: Dr. Christopher Anson
Dr. Norbert Foitzik

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
KIT-Fakultät für Physik

Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Anorganische und Organische Chemie

Leistungspunkte

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-100209</td>
<td>Organische Chemie</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3 LP</td>
</tr>
<tr>
<td>T-CHEMBIO-103373</td>
<td>Allgemeine Chemie: Grundlagen der Allgemeinen Chemie (für Bachelor-Studierende der Naturwissenschaften)</td>
<td></td>
<td></td>
<td></td>
<td>4 LP</td>
</tr>
<tr>
<td>T-CHEMBIO-103375</td>
<td>Anorganisch-Chemisches Praktikum für Physiker</td>
<td></td>
<td></td>
<td></td>
<td>7 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Vorlesung "Allgemeine Chemie"

Vorlesung "OC 1"

Praktikum "Allgemeinen Chemie"

Voraussetzungen

keine
Inhalt
Vorlesung "Allgemeine Chemie"

- Aufbau der Materie, Atommodelle, Periodensystem der Elemente
- Einführung in die chemische Bindung
- Metalle, Ionenkristalle, kovalente Verbindungen, Komplexverbindungen
- Chemische Reaktionen, Chemisches Gleichgewicht, Massenwirkungsgesetz, Löslichkeitsprodukt
- Säuren und Basen, Säure-Basen-Gleichgewichte, Redoxreaktionen
- Heterogene Gleichgewichte, Phasengleichgewichte, Fällungsreaktionen
- Elektrochemische Grundbegriffe
- Chemie der Elemente
- Chemisches Rechnen

Vorlesung "OC I"

- Struktur organischer Moleküle und intermolekulare Wechselwirkungen
- Einführung in Reaktionen organischer Moleküle
- Kinetik, Acidität/Basizität, Mechanismen
- Alkane und deren Reaktionen, Nomenklatur und Stereochemie
- Alkene, Halogenalkane
- Aromaten
- Alkohole und Ether und deren Reaktionen
- Aldehyde und Ketone
- Carbonsäuren und deren Derivate
- Amine und Thiole
- Lipide, Zucker, Aminosäuren
- Nucleinsäuren und Biomakromoleküle

Praktikum "Allgemeinen Chemie"

- Gefahren und Arbeitsschutz in Chemischen Laboratorien
- Umgang und Kennzeichnung von Chemikalien
- Einfache chemische Arbeitstechniken
- Reaktionen und Nachweise von Anionen und Kationen
- Trennung und Nachweis von Kationen
- Trennung und Nachweis von Anionen
- Durchführung chemischer Analysen

Literatur
Vorlesung "Allgemeine Chemie"

- E. Riedel (aktuelle Auflage): Anorganische Chemie, de Gruyter Verlag
- Hollemann, Wiberg (aktuelle Auflage): Lehrbuch der Anorganischen Chemie, de Gruyter Verlag
- Binnewies (aktuelle Auflage) Allgemeine und Anorganische Chemie, Spektrum Akademischer Verlag

Vorlesung "OC I"

Praktikum "Allgemeinen Chemie"

- Jander, Blasius (aktuelle Auflage): Einführung in das Anorganisch-Chemische Praktikum
- Gerdes (aktuelle Auflage): Qualitative Anorganische Analyse
4.7 Modul: Bachelorarbeit [M-PHYS-101534]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Bachelorarbeit

Leistungspunkte 12
Turnus Jedes Semester
Dauer 1 Semester
Sprache Deutsch/Englisch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102933</td>
<td>12</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch/Englisch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Studiendekan Physik

Qualifikationsziele
Der/die Studierende führt selbständig Literaturrecherchen zu Forschungsthemen durch, kann unter Anleitung wissenschaftlich arbeiten sowie wissenschaftliche Ergebnisse in Schrift und Wort darstellen.

Voraussetzungen
Mindestens vier der folgenden fünf Fächer müssen abgeschlossen sein:

1. Klassische Experimentalphysik
2. Klassische Theoretische Physik
3. Mathematik
4. Nichtphysikal. Wahlpflichtfach
5. Praktikum Klassische Physik

Modellierte Voraussetzungen
Es müssen 4 von 5 Bedingungen erfüllt werden:

1. Der Bereich Klassische Experimentalphysik muss erfolgreich abgeschlossen worden sein.
2. Der Bereich Klassische Theoretische Physik muss erfolgreich abgeschlossen worden sein.
3. Der Bereich Mathematik muss erfolgreich abgeschlossen worden sein.
4. Der Bereich Nichtphysikal. Wahlpflichtfach muss erfolgreich abgeschlossen worden sein.
5. Der Bereich Praktikum Klassische Physik muss erfolgreich abgeschlossen worden sein.

Inhalt
Ist vom Thema der Bachelorarbeit abhängig.

Arbeitsaufwand
360 Stunden bestehend aus Präsenzzeiten und Schreiben der Bachelorarbeit.
4.8 Modul: Digitaltechnik und Entwurfsverfahren [M-INFO-102978]

Verantwortung: Prof. Dr.-Ing. Uwe Hanebeck
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Informatik (Wahlpflichtmodule Informatik)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-INFO-103469 | Digitaltechnik und Entwurfsverfahren | 6 LP Karl |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Die Studierenden sollen in die Lage versetzt werden,

- grundlegendes Verständnis über den Aufbau, die Organisation und das Operationsprinzip von Rechnersystemen zu erwerben,
- den Zusammenhang zwischen Hardware-Konzepten und den Auswirkungen auf die Software zu verstehen, um effiziente Programme erstellen zu können,
- aus dem Verständnis über die Wechselwirkungen von Technologie, Rechnerkonzepten und Anwendungen die grundlegenden Prinzipien des Entwurfs nachvollziehen und anwenden zu können
- einen Rechner aus Grundkomponenten aufbauen zu können.

Voraussetzungen
Siehe Teilleistung

Inhalt
Der Inhalt der Lehrveranstaltung umfasst die Grundlagen des Aufbaus und der Organisation von Rechnern; die Befehlssatzarchitektur verbunden mit der Diskussion RISC – CISC; Pipelining des Maschinenbefehlszyklus, Pipeline-Hemmisse und Methoden zur Auflösung von Pipeline-Konflikten; Speicherkomponenten, Speicherorganisation, Cache-Speicher; Ein-/Ausgabe-System und Schnittstellenbausteine; Interrupt-Verarbeitung; Bus-Systeme; Unterstützung von Betriebssystemfunktionen: virtuelle Speicherverwaltung, Schutzfunktionen.

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieser Lehrveranstaltung beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen und Übungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.9 Modul: Einführung in die Geophysik [M-PHYS-101366]

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbezeichnung</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102306</td>
<td>Einführung in die Geophysik I</td>
<td>4 LP</td>
</tr>
<tr>
<td>T-PHYS-102307</td>
<td>Einführung in die Geophysik II</td>
<td>4 LP</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Qualifikationsziele

- Einführung in die Geophysik I: Überblick über die Methoden der Angewandten Geophysik, Verständnis der mathematischen und physikalischen Grundlagen, selbständige Bearbeitung einfacher geophysikalischer Probleme
- Einführung in die Geophysik II: Kenntnis der Methoden der Allgemeinen Geophysik, Verständnis der mathematischen und physikalischen Grundlagen, selbständige Bearbeitung einfache geophysikalischer Probleme

Voraussetzungen

keine

Inhalt

- Einführung in die Geophysik I: Einführung, Grundlagen der Seismik, Refraktionssismische Verfahren, Reflektionssismische Verfahren, Elektromagnetische Messverfahren, Gleichstrom-Geoelektrik, Gravimetrie, Magnetik

Anmerkungen

Zum Bestehen des Moduls müssen alle benoteten Prüfungen sowie unbenoteten Erfolgskontrollen anderer Art bestanden sein.

Arbeitsaufwand

insgesamt 240 Stunden, davon entfallen diese wie folgt auf die einzelnen Fächer und Semester.

- Einführung in die Geophysik I: 120 Stunden, davon 45 Stunden Vorlesung, Übung und Klausur (2h) und 75 Stunden Selbststudium; 1. Fachsemester
- Einführung in die Geophysik II: 120 Stunden, davon 45 Stunden Vorlesung, Übung und Klausur (2h) und 75 Stunden Selbststudium; 2. Fachsemester

Lehr- und Lernformen

- Einführung in die Geophysik: 2 SWS; 2 LP; Pflicht
- Übungen zu Einführung in die Geophysik I: 1 SWS; 2 LP; Pflicht
- Einführung in die Geophysik II: 2 SWS; 2 LP; Pflicht
- Übungen zu Einführung in die Geophysik II: 1 SWS; 2 LP; Pflicht
Verantwortung: Prof. Dr. Christoph Kottmeier
Prof. Dr. Michael Kunz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Meteorologie

Renheit: 14

Turnus: Jedes Wintersemester

Dauer: 2 Semester

Sprache: Deutsch

Level: 3

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101092</td>
<td>Klimatologie</td>
<td>4</td>
</tr>
<tr>
<td>T-PHYS-101093</td>
<td>Einführung in die Synoptik</td>
<td>2</td>
</tr>
<tr>
<td>T-PHYS-103710</td>
<td>Einführung in die Meteorologie</td>
<td>2</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Meteorologie (1 Bestandteil sowie 6 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-101091</td>
<td>Allgemeine Meteorologie</td>
<td>6</td>
</tr>
<tr>
<td>T-PHYS-101482</td>
<td>Theoretische Meteorologie I</td>
<td>6</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt im Rahmen einer mündlichen Gesamtprüfung (ca. 45 Minuten) nach §4 Abs. 2 Nr. 2 SPO Bachelor Meteorologie über die in diesem Modul vom Studierenden gewählten Lehrveranstaltungen.

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung der Teilleistung Einführung in die Meteorologie.

Voraussetzungen
keine

Inhalt

Arbeitsaufwand
1. Präsenzzeit in Vorlesungen, Übungen: 124 Stunden
2. Vor-/Nachbereitung derselbigen: 236 Stunden
3. Prüfungsvorbereitung: 60 Stunden
4.11 Modul: Funktionalanalysis [M-MATH-101320]

Verantwortung: Prof. Dr. Roland Schnaubelt
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Zusatzeleistungen

Leistungspunkte 8
Turnus Jedes Wintersemester
Dauer 1 Semester
Level 3
Version 1

Pflichtbestandteile
T-MATH-102255 Funktionalanalysis 8 LP Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt, Weis

Erfolgskontrolle(n)
Die Modulprüfung erfolgt in Form einer schriftlichen Gesamtprüfung (120 min).

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der Prüfung.

Voraussetzungen
Keine

Inhalt
- Metrische Räume (topologische Grundbegriffe, Kompaktheit)
- Hilberträume, Orthonormalbasen, Sobolevräume
- Stetige lineare Operatoren auf Banachräumen (Prinzip der gleichmäßigen Beschränktheit, Homomorphisatz)
- Dualräume mit Darstellungssätzen, Sätze von Hahn-Banach und Banach-Alaoglu, schwache Konvergenz, Reflexivität
- Spektralsatz für kompakte selbstadjungierte Operatoren

Arbeitsaufwand
Gesamter Arbeitsaufwand: 240 Stunden
Präsenzzeit: 90 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 150 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Literatur
D. Werner, Funktionalanalysis
4.12 Modul: Funktionentheorie [M-MATH-101332]

Verantwortung: Prof. Dr. Lutz Weis
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Zusatzleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-102228 | Funktionentheorie - Prüfung | 4 LP | Herzog, Hundertmark, Lamm, Plum, Reichel, Schmoeger, Schnaubelt, Weis |

Erfolgskontrolle(n)
Das Modul umfaßt die ersten sieben Wochen der Lehrveranstaltung Analysis 4. Die Modulprüfung erfolgt in Form einer mündlichen Gesamtprüfung (ca. 20 min.)

Qualifikationsziele

Zusammensetzung der Modulnote
Die Modulnote ist die Note der mündlichen Prüfung.

Voraussetzungen
Keine

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-MATH-103164 - Analysis 4 darf nicht begonnen worden sein.

Inhalt
• Holomorphie
• Integralsatz und -formel von Cauchy
• Satz von Liouville
• Maximumsprinzip, Satz von der Gebietstreue
• Pole, Laurentreihen
• Residuensatz, reelle Integrale

Empfehlungen
Folgende Module sollten bereits belegt worden sein:
Analysis 1-3

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
• Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
• Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
• Bearbeitung von Übungsaufgaben
• Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
• Vorbereitung auf die studienbegleitende Modulprüfung
4.13 Modul: Geophysikalische Geländeübungen [M-PHYS-101784]

Verantwortung: Dr. Thomas Forbriger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Geophysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-PHYS-102310 Geophysikalische Geländeübungen 6 LP Forbriger

Erfolgskontrolle(n)

Sofern eine Note von 4,0 nicht erreicht wurde, besteht bis 2 Wochen nach Bekanntgabe der Ergebnisse die Gelegenheit zur unaufgeforderten, wiederholten Vorlage der verbesserten Berichte. Der Wiedervorlage ist der bewertete Bericht der ersten Vorlage beizulegen. Das Ergebnis der Bewertung der Wiederholungsprüfung kann nicht besser als 4,0 sein (bestanden oder nicht bestanden). Ist die Note der Wiederholungsprüfung auch schlechter als 4,0, besteht die Gelegenheit, die Veranstaltung im darauf folgenden Jahr erneut zu besuchen. Werden die Übungen insgesamt mit nicht ausreichend bewertet (z. B. wegen Abwesenheit bei der Versuchsdurchführung), können sie innerhalb des darauf folgenden Jahres wiederholt werden.

Qualifikationsziele
Die Studenten sind in der Lage geophysikalische Messverfahren problemangepasst für die Untersuchung einer praktischen Fragestellung auszuwählen. Sie sind im Stande die Messungen und Profile so anzulegen, dass sie zu aussagekräftigen Messergebnissen gelangen. Die gewonnen Messwerte können sie hinsichtlich ihrer Aussagekraft beurteilen und überprüfen, ob die Voraussetzungen für eine Auswertung erfüllt sind. Sie können die jeweiligen Auswert- und Inversionverfahren auf die Messdaten anwenden, Mehrdeutigkeiten erkennen und die Signifikanz der indirekt erschlossenen Materialparameter quantifizieren. Die Studenten sind in der Lage die Ergebnisse unterschiedlicher Methoden zusammenzuführen und daraus eine geowissenschaftliche Interpretation in direktem Bezug zur eingangs formulierten Fragestellung abzuleiten. Sie verfassen einen aussagekräftigen Bericht über die Untersuchungen und deren Ergebnisse und können ihre Interpretation gegenüber dritten begründen und verteidigen.

Zusammensetzung der Modulnote

Voraussetzungen
Studierende müssen T-PHYS-102306 - Einführung in die Geophysik I bestanden haben.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-102306 - Einführung in die Geophysik I muss erfolgreich abgeschlossen worden sein.
Inhalt

Die Übungen umfassen folgende Versuche:

1. Magnetik: Vermessung zeitlicher und räumlicher Variationen des Erdmagnetfeldes, Untersuchung von magnetisierbaren und remanent magnetisierten Körpern im Untergrund
2. Geoelektrik: Messungen mit Verfahren der Gleichstrom-Geoelektrik, Bestimmung des spezifischen Widerstandes von Strukturen im Untergrund
3. Seismik: Refraktionsseismische Messungen mit Hammerschlagquelle
4. Gravimetrie: Vermessung des Erdschwerefeldes

Die Versuche werden in ausgewählten Messgebieten im Hegau durchgeführt.

Empfehlungen
Es werden Grundkenntnisse im Bereich Geophysik empfohlen, wie sie z.B. in der Einführung in die Geophysik und den geophysikalischen Laborübungen vermittelt werden.

Arbeitsaufwand
60 Stunden Präsenzzeit und 120 Stunden Vorbereitung und Protokollstellung

Lehr- und Lernformen
Geophysikalische Geländeübungen: 4 SWS, 6 LP
4.14 Modul: Grundbegriffe der Informatik [M-INFO-103456]

Verantwortung: Dr. Sebastian Stüker
Thomas Worsch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Informatik (Pflichtbestandteil) (EV ab 01.04.2018)

Leistungspunkte 4
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

| T-INFO-101964 | Grundbegriffe der Informatik | 4 LP | Stüker, Worsch |

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele

- Die Studierenden kennen grundlegende Definitionsmethoden und sind in der Lage, entsprechende Definitionen zu lesen und zu verstehen.
- Sie kennen den Unterschied zwischen Syntax und Semantik.
- Die Studierenden kennen die grundlegenden Begriffe aus diskreter Mathematik und Informatik und sind in der Lage sie richtig zu benutzen, sowohl bei der Beschreibung von Problemen als auch bei Beweisen.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der Klausur.

Voraussetzungen
Siehe Teilleistung

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-INFO-101170 - Grundbegriffe der Informatik darf nicht begonnen worden sein.

Inhalt

- Algorithmen informell, Grundlagen des Nachweises ihrer Korrektheit
 Berechnungskomplexität, „schwere“ Probleme O-Notation, Mastertheorem
- Alphabete, Wörter, formale Sprachen endliche Akzeptoren, kontextfreie Grammatiken
- induktive/rekursive Definitionen, vollständige und strukturelle Induktion
- Hüllenbildung
- Relationen und Funktionen
- Graphen
- Syntax für Aussagenlogik und Prädikatenlogik, Grundlagen ihrer Semantik

Anmerkungen
Siehe Teilleistung.

Arbeitsaufwand
120 h

Lehr- und Lernformen
2 SWS Vorlesung, 1 SWS Übung, 2 SWS Tutotium
4.15 Modul: Grundlagen BWL 1 [M-WIWI-101494]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg
Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-WIWI-102817</th>
<th>Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft</th>
<th>2 LP</th>
<th>Nieken, Ruckes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102819</td>
<td>Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>4 LP</td>
<td>Ruckes, Uhrig-Homburg, Wouters</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele
Der/die Studierende hat fundierte Kenntnisse in den zentralen Fragestellungen der Betriebswirtschaftslehre insbesondere mit Blick auf entscheidungsorientiertes Handeln und die modellhafte Betrachtung der Unternehmung, beherrscht die Grundlagen der Unternehmensführung und Informationswirtschaft sowie die Grundlagen der Finanzwirtschaft und der Prinzipien des betriebswirtschaftlichen Rechnungswesens, ist in der Lage, zentrale Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlichen Unternehmung zu analysieren und zu bewerten.

Mit dem in den beiden Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Voraussetzungen
Keine

Inhalt
Es werden die Grundlagen der Allgemeinen Betriebswirtschaftslehre als die Lehre vom Wirtschaften im Betrieb vermittelt. Darauf aufbauend werden schwerpunktmässig die Bereiche Unternehmensführung und Organisation, Informationswirtschaft, Investition und Finanzierung sowie erste Prinzipien des internen und externen Rechnungswesens erörtert.

Empfehlungen
Es wird dringend empfohlen, die Lehrveranstaltungen des Moduls bereits im ersten Semester zu belegen.

Arbeitsaufwand
Gesamtaufwand bei 6 Leistungspunkten: ca. 180 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
M 4.16 Modul: Grundlagen BWL 2 [M-WIWI-101578]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Wirtschaftswissenschaften

Leistungspunkte 8
Turnus Jedes Semester
Dauer 2 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Lehre</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-WIWI-102818</td>
<td>Betriebswirtschaftslehre: Produktionswirtschaft und Marketing</td>
<td>Fichtner, Klarmann, Lützkendorf, Ruckes, Schultmann</td>
<td></td>
</tr>
<tr>
<td>T-WIWI-102816</td>
<td>Rechnungswesen</td>
<td>Strych</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Gesamtnote des Moduls wird aus den mit LP gewichteten Noten der Teilprüfungen gebildet und nach der ersten Nachkommastelle abgeschnitten.

Qualifikationsziele

Der/die Studierende

- hat fundierte Kenntnisse in den zentralen Fragestellungen der Betriebswirtschaftslehre insbesondere mit Blick auf entscheidungsorientiertes Handeln und die modellhafte Betrachtung der Unternehmung,
- beherrscht die Grundlagen der Produktionswirtschaft und des Marketing sowie erste weiterführende Grundlagen des betriebswirtschaftlichen Rechnungswesens und des Controlling,
- ist in der Lage, zentrale Tätigkeitsbereiche, Funktionen und Entscheidungen in einer marktwirtschaftlichen Unternehmung zu analysieren und zu bewerten.

Mit dem in den beiden Grundlagenmodulen BWL erworbenen Wissen sind im Bereich BWL die Voraussetzungen geschaffen, dieses Wissen im Vertiefungsprogramm zu erweitern.

Voraussetzungen

Keine

Inhalt

Es werden die Grundlagen des internen und externen Rechnungswesens und der Allgemeinen Betriebswirtschaftslehre als die Lehre vom Wirtschaften im Betrieb vermittelt. Darauf aufbauend werden schwerpunktmäßig die Bereiche Marketing und Produktionswirtschaft erörtert.

Empfehlungen

Es wird dringend empfohlen, die Lehrveranstaltungen des Moduls im 2. Semester (Betriebswirtschaftslehre: Produktionswirtschaft und Marketing) und 3. Semester (Rechnungswesen) zu belegen.

Arbeitsaufwand

Gesamtaufwand bei 8 Leistungspunkten: ca. 240 Stunden
Die genaue Aufteilung erfolgt nach den Leistungspunkten der Lehrveranstaltungen des Moduls.
4.17 Modul: Höhere Mathematik I [M-MATH-101327]

Verantwortung: Prof. Dr. Dirk Hundertmark

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematik / Mathematik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>T-MATH-102224</th>
<th>Höhere Mathematik I</th>
<th>10 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Anapolitanos, Hundertmark, Kunstmann, Lamm, Schmoeger</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Qualifikationsziele

Die Studierenden können:

- mit reellen und komplexen Zahlen rechnen, sowie grundlegende Funktionen und ihre Eigenschaften reproduzieren und erläutern,
- mit den üblichen Methoden Folgen und Reihen auf Konvergenz untersuchen und Grenzwerte berechnen,
- grundlegende Techniken der Differential- und Integralrechnung einer Veränderlichen benennen, erläutern und anwenden,
- Funktionenfolgen auf verschiedene Konvergenzarten untersuchen,
- die Grundzüge der linearen Algebra erläutern, auf einfache Aufgaben anwenden und lineare Gleichungssysteme lösen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen

Keine

Inhalt

Arbeitsaufwand

Gesamter Arbeitsaufwand: 300 Stunden

Präsenzzeit: 120 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 180 Stunden

- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.18 Modul: Höhere Mathematik II [M-MATH-101328]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik / Mathematik

Leistungspunkte: 10
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile
T-MATH-102225 Höhere Mathematik II 10 LP Anapolitanos, Hundertmark, Kunstmann, Lamm, Schmoeger

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Qualifikationsziele
Die Studierenden können:
- Eigenwerte und Eigenvektoren berechnen, sowie Matrizen diagonalisieren,
- die wichtigen Sätze der mehrdimensionalen Differentialrechnung benennen, erläutern und anwenden,
- Volumen- und Oberflächenintegrale berechnen,
- Integralsätze benennen und anwenden,
- Rechenregeln der Fouriertransformation benennen, erläutern und anwenden.

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt
Skalarprodukt und Orthogonalität, Determinanten, Kreuzprodukt, Eigenwerte, Diagonalisierung von Matrizen, Jordan-Normalform;

Arbeitsaufwand
Gesamter Arbeitsaufwand: 300 Stunden
Präsenzzeit: 120 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung
Selbststudium: 180 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung

Physik Bachelor 2015 (Bachelor of Science)
Modulhandbuch mit Stand vom 31.07.2019
4.19 Modul: Höhere Mathematik III [M-MATH-101329]

Verantwortung: Prof. Dr. Dirk Hundertmark
Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: Mathematik / Mathematik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-102226 | Höhere Mathematik III | 4 LP | Anapolitanos, Hundertmark, Kunstmann, Lamm |

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Gesamtprüfung von 120 Minuten Dauer.

Qualifikationsziele
Die Studierenden können:

- elementare gewöhnliche Differentialgleichungen explizit lösen,
- Sätze zur Existenz und Eindeutigkeit bei Differentialgleichungssystemen benennen und an Beispielen erläutern,
- Lösungen für homogene und inhomogene lineare Systeme berechnen,
- einfache partielle Differentialgleichungen explizit lösen,

Zusammensetzung der Modulnote
Die Modulnote ist die Note der schriftlichen Prüfung.

Voraussetzungen
Keine

Inhalt

Arbeitsaufwand
Gesamter Arbeitsaufwand: 120 Stunden
Präsenzzeit: 45 Stunden
- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 75 Stunden
- Vertiefung der Studieninhalte durch häusliche Nachbearbeitung des Vorlesungsinhaltes
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.20 Modul: Klassische Experimentalphysik I, Mechanik [M-PHYS-101347]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

Leistungspunkte: 8
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modul Code</th>
<th>Modul Name</th>
<th>LP</th>
<th>Leiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102295</td>
<td>Klassische Experimentalphysik I, Mechanik - Vorleistung</td>
<td>0 LP</td>
<td>Müller</td>
</tr>
<tr>
<td>T-PHYS-102283</td>
<td>Klassische Experimentalphysik I, Mechanik</td>
<td>8 LP</td>
<td>Müller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Der/die Studierende erlangt Verständnис der experimentellen Grundlagen und deren mathematischer Beschreibung auf den Gebieten der klassischen Mechanik, Hydromechanik und speziellen Relativitätstheorie und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt

Klassische Mechanik: Basisgrößen, Messfehler, Mechanik von Massenpunkten (Kinematik und Dynamik), Newtonsche Axiome, Beispiele für Kräfte (Gravitationsgesetz, auch für beliebige Masseverteilungen, Hookesches Gesetz, Reibung). Erhaltungssätze (Energie, Impuls, Drehimpuls). Stoßprozesse. Harmonische Schwingungen, gekoppelte Oszillatoren, deterministisches Chaos. Planetenbahnen (Keplersche Gesetze), Rotierende Bezugssysteme (Scheinkräfte), Trägheitstensor, Eulersche Kreiselpendelgleichungen (Präzession, Nutation), Wellenbrechung in der Mechanik, Dopplereffekt.

Hydromechanik: Schwimmende Körper, Barometrische Höhenformel, Kontinuitätsgleichung, laminare und turbulente Strömungen, Bernoulli-Gleichung, Hagen-Poiseuillesches Gesetz (innere Reibung), Oberflächenspannung, Eulersche Bewegungsgleichung, Wasserwellen.

Spezielle Relativitätstheorie: Michelson-Morley-Experiment, Bewegte Bezugssysteme, Lorentztransformation, Relativistische Effekte, longitudinaler und transversaler Dopplereffekt, Relativistische Mechanik, kinetische Energie.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

Lehr- und Lernformen
Klassische Experimentalphysik I, Mechanik: Vorlesung, 4 SWS;
Übungen zu Klassische Experimentalphysik I, Übung: 2 SWS

Literatur
Lehrbücher der klassischen Mechanik
4.21 Modul: Klassische Experimentalphysik II, Elektrodynamik [M-PHYS-101348]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>7</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102296 | Klassische Experimentalphysik II, Elektrodynamik - Vorleistung | 0 LP | Wegener |
| T-PHYS-102284 | Klassische Experimentalphysik II, Elektrodynamik | 7 LP | Wegener |

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematische Beschreibung auf dem Gebiet der klassischen Elektrodynamik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt

Zeitlich veränderliche elektromagnetische Felder: Induktionsgesetze (Selbstinduktion, Transformator, Motor, Generator), Elektrische Schaltkreise (Ein- und Ausschaltvorgänge, komplexe Scheinwiderstände, RLC-Schwingkreise), Verschiebungsstrom. Die Maxwellschen Gleichungen (Integral- und Differentialform), Elektromagnetische Wellen, Hertzscher Dipol, Normaler Skin-Effekt, Hohlleiter.

Elektrodynamik der Kontinua: Polarisation und Magnetisierung (Para-, Ferro-, Dia-Elektrete und -Magnete), Depolarisations- und Entmagnetisierungsfaktoren, Elektrische und magnetische Suszeptibilitäten, Dielektrische Funktion, magnetische Permeabilität.

Arbeitsaufwand
210 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (135)

Lehr- und Lernformen
Klassische Experimentalphysik II, Elektrodynamik: Vorlesung, 3 SWS;
Übungen zu Klassische Experimentalphysik II: Übung, 2 SWS

Literatur
Lehrbücher der klassischen Elektrodynamik
4.22 Modul: Klassische Experimentalphysik III, Optik und Thermodynamik [M-PHYS-101349]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Experimentalphysik

Leistungspunkte 9
Turnus Jedes Wintersemester
Dauer 1 Semester
Sprache Deutsch
Level 3
Version 1

Pflichtbestandteile

T-PHYS-102297 Klassische Experimentalphysik III, Optik und Thermodynamik - Vorleistung 0 LP Wegener
T-PHYS-102285 Klassische Experimentalphysik III, Optik und Thermodynamik 9 LP Wegener

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf dem Gebiet der Optik und klassischen Thermodynamik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt
Optik:

- Einführung: Beschreibung von Lichtfeldern, Überlagerung ebener Wellen, Kohärenz, Lichtausbreitung in Materie (optische Konstanten, Dispersion und Absorption, Polarisation, Gruppengeschwindigkeit)
- Wellenoptik: Huygens-Fresnelsches Prinzip, Beugung, Interferenz (Zweifach-/ Vielfachinterferenzen, Spalt, Lochblende, Doppelspalt, Gitter, Interferometer, Auflösungsvermögen, Holographie), Polarisation (Fresnelsche Formeln), Doppelbrechung, Optische Aktivität, Streuung (Rayleigh, Thomson, Mie)
- Photonen: Eigenschaften des Photons, Strahlungsgesetze, Nichtlineare Optik.

Thermodynamik:

- Kinetische Gastheorie: Druck, Wärmekapazität, Maxwellsche Geschwindigkeitsverteilung, Transportphänomene (freie Weglänge, Wärmeleitung, innere Reibung, Diffusion).

Arbeitsaufwand
270 Stunden bestehend aus Präsenzzeiten (105), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (165)

Lehr- und Lernformen
Klassische Experimentalphysik III, Optik und Thermodynamik: Vorlesung 5 SWS;
Übungen zu Klassische Experimentalphysik III, Optik und Thermodynamik: Übung 2 SWS

Literatur
Lehrbücher der Optik und Thermodynamik
4.23 Modul: Klassische Theoretische Physik I, Einführung [M-PHYS-101350]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Theoretische Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Kursbeschreibung</th>
<th>Leistungspunkte</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102298</td>
<td>Klassische Theoretische Physik I, Einführung - Vorleistung</td>
<td>0 LP</td>
<td>Shnirman</td>
</tr>
<tr>
<td>T-PHYS-102286</td>
<td>Klassische Theoretische Physik I, Einführung</td>
<td>6 LP</td>
<td>Shnirman</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Die Studentinnen und Studenten können einfache mechanische Probleme analysieren und haben die Fähigkeit, diese mit grundlegenden mathematischen Konzepten zu lösen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt
Mathematische Hilfsmittel: Differential- und Integralrechnung, Einfache Differentialgleichungen, Potenzreihen, Komplexe Zahlen, Vektoren, Gradient, Linienintegral, Delta-Distribution

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (120)

Lehr- und Lernformen
Klassische Theoretische Physik I, Einführung: Vorlesung, 2 SWS;
Übungen zu Klassische Theoretische Physik I, Einführung: Übung, 2 SWS

Literatur
Lehrbücher der klassischen theoretischen Mechanik
Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Theoretische Physik

Leistungspunkte: 6
Turnus: Jedes Sommersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102299 Klassische Theoretische Physik II, Mechanik - Vorleistung</td>
<td>0 LP Melnikov</td>
</tr>
<tr>
<td>T-PHYS-102287 Klassische Theoretische Physik II, Mechanik</td>
<td>6 LP Melnikov</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Die Studentinnen und Studenten können die Konzepte der analytischen Mechanik auf mechanische Systeme anwenden. Sie sind in der Lage, die Lagrange-Gleichungen eines mechanischen Systems herzuleiten und können daraus die Bewegungsgleichungen ableiten. Die Studierenden haben außerdem die Fähigkeit, die Hamiltonschen Bewegungsgleichungen aufzustellen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (120)

Lehr- und Lernformen
Klassische Theoretische Physik II, Mechanik: Vorlesung, 2 SWS;
Übungen zu Klassische Theoretischen Physik II, Mechanik: Übung, 2 SWS

Literatur
Lehrbücher der klassischen theoretischen Mechanik
4.25 Modul: Klassische Theoretische Physik III, Elektrodynamik [M-PHYS-101352]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Klassische Theoretische Physik

Leistungspunkte Turnus Dauer Sprache Level Version
8 jedes Wintersemester 1 Semester Deutsch 3 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Modul: Klassische Theoretische Physik III, Elektrodynamik - Vorleistung</th>
<th>0 LP Rockstuhl</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102300</td>
<td>Klassische Theoretische Physik III, Elektrodynamik</td>
<td>8 LP Rockstuhl</td>
</tr>
<tr>
<td>T-PHYS-102288</td>
<td>Klassische Theoretische Physik III, Elektrodynamik</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele
Die Studentinnen und Studenten erlernen den Umgang mit elektrischen und magnetischen Feldern und können die elektrischen und magnetischen Eigenschaften der Materie analysieren. Sie sind in der Lage, die Maxwell-Gleichungen für einfache Fälle zu lösen. Außerdem können Sie die Maxwell-Gleichungen Lorentz-kovariant darstellen. Die Studentinnen und Studenten können aus den Maxwell-Gleichungen die Wellengleichung für die Potentiale herleiten und diese lösen.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der bestandenen Klausur bestimmt.

Voraussetzungen
keine

Inhalt

Einführung und Überblick: Grundbegriffe, Maxwellgleichungen, Kontinuitätsgleichung.
Elektrostatik: Grundgleichungen, skalares Potential, Beispiele, Elektrostatische Energie, Randwertprobleme, Multipolentwicklungen, Ladungsverteilung im äußeren Feld.
Magnetostatik: Grundgleichungen, Vektorpotential, Beispiele, Lokalisierte Stromverteilung, magnetisches Moment, Stromverteilung im äußeren Feld.

Arbeitsaufwand
240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung inkl. Prüfungsvorbereitung und Vorbereitung der Übungen (150)

Lehr- und Lernformen
Klassische Theoretische Physik III, Elektrodynamik: Vorlesung, 4 SWS; Übungen zu Klassische Theoretische Physik III, Elektrodynamik: Übung, 2 SWS

Literatur
Lehrbücher der Elektrodynamik
4.26 Modul: Lineare Algebra 1 [M-MATH-101330]

Verantwortung: Prof. Dr. Enrico Leuzinger

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Mathematik / Erweiterte Mathematik

Leistungspunkte: 9

Turnus: Jedes Wintersemester

Dauer: 1 Semester

Level: 3

Version: 1

Pflichtbestandteile

| T-MATH-103337 | Lineare Algebra 1 - Klausur | 9 LP | Herrlich, Leuzinger, Sauer, Tuschmann |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

Qualifikationsziele

Die Studierenden

- kennen grundlegende mathematische Beweisverfahren und sind in der Lage, eine mathematische Argumentation formal korrekt auszuführen,
- kennen die algebraischen Strukturen Gruppe, Ring, Körper, Vektorraum und deren Beziehungen untereinander,
- beherrschen Lösungstechniken für lineare Gleichungssysteme, insbesondere das Gauß'sche Eliminationsverfahren,
- sind in der Lage, lineare Abbildungen durch Matrizen darzustellen und zugeordnete Größen wie Determinanten oder Eigenwerte mithilfe des Matrizenkalküls zu berechnen

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Inhalt

- Grundbegriffe (Mengen, Abbildungen, Relationen, Gruppen, Ringe, Körper, Matrizen, Polynome)
- Lineare Gleichungssysteme (Gauß'sches Eliminationsverfahren, Lösungstheorie)
- Vektorräume (Beispiele, Unterräume, Quotientenräume, Basis und Dimension)
- Lineare Abbildungen (Kern, Bild, Rang, Homomorphiesatz, Vektorräume von Abbildungen, Dualraum, Darstellungsmatrizen, Basiswechsel, Endomorphismenalgebra, Automorphismengruppe)
- Determinanten
- Eigenwerttheorie (Eigenwerte, Eigenvektoren, charakteristisches Polynom, Normalformen)

Arbeitsaufwand

Gesamter Arbeitsaufwand: 270 Stunden

Präsenzzeit: 120 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Verifizierung der Studieninhalte durch häusliche Nachbearbeitung der Vorlesungsinhalte
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.27 Modul: Lineare Algebra 2 [M-MATH-101331]

Verantwortung: Prof. Dr. Enrico Leuzinger

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: Zusatzeleistungen

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-MATH-103218 | Lineare Algebra 2 - Klausur | 9 LP | Herrlich, Leuzinger, Sauer, Tuschmann |

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung von 120 Minuten Dauer.

Qualifikationsziele

Die Studierenden

- verstehen die Jordansche Normalform,
- können geometrische Eigenschaften wie Orthogonalität, Abstände, Isometrien durch Konzepte der linearen Algebra (Skalarprodukte, Normen) beschreiben und bestimmen.

Zusammensetzung der Modulnote

Die Modulnote ist die Note der Prüfung.

Voraussetzungen

Keine

Inhalt

- Vektorräume mit Skalarprodukt (bilineare Abbildungen, Skalarprodukt, Norm, Orthogonalität, adjungierte Abbildung, normale und selbstadjungierte Endomorphismen, Spektralsatz, Isometrien und Normalformen)
- Grundlagen der multilinearen Algebra
- Euklidische Räume (Unterräume, Bewegungen, Klassifikation, Ähnlichkeitsabbildungen)
- Optional: Affine Geometrie, Quadriken

Arbeitsaufwand

Gesamter Arbeitsaufwand: 270 Stunden
Präsenzzeit: 120 Stunden

- Lehrveranstaltung einschließlich studienbegleitender Modulprüfung

Selbststudium: 150 Stunden

- Verifizierung der Studieninhalte durch häusliche Nachbearbeitung der Vorlesungsinhalte
- Bearbeitung von Übungsaufgaben
- Vertiefung der Studieninhalte anhand geeigneter Literatur und Internetrecherche
- Vorbereitung auf die studienbegleitende Modulprüfung
4.28 Modul: Moderne Experimentalphysik [M-PHYS-101532]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Moderne Experimentalphysik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>26</td>
<td>Jedes Sommersemester</td>
<td>3 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

T-PHYS-102313	Moderne Experimentalphysik I, Atome und Kerne, Vorleistung	8 LP	Drexlin, Valerius
T-PHYS-102314	Moderne Experimentalphysik II, Moleküle und Festkörper, Vorleistung	8 LP	Wernsdorfer
T-PHYS-102315	Moderne Experimentalphysik III, Teilchen und Hadronen, Vorleistung	6 LP	Husemann
T-PHYS-102312	Mündliche Prüfung "Moderne Experimentalphysik I - III"	4 LP	Bernlochner, Drexlin, Hunger, Husemann, Kalt, Müller, Müller, Nienhaus, Quast, Schimmel, Ustinov, Wegener, Weiß, Wernsdorfer, Wulfhekel

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele

Moderne Experimentalphysik I, Atome und Kerne
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf den Gebieten der Atomphysik und der Kernphysik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Moderne Experimentalphysik II, Moleküle und Festkörper
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf den Gebieten der Molekülphysik und der Festkörperphysik und kann einfache physikalische Probleme aus diesen Gebieten selbständig bearbeiten.

Moderne Experimentalphysik III, Teilchen und Hadronen
Der/die Studierende erlangt Verständnis der experimentellen Grundlagen und deren mathematischer Beschreibung auf dem Gebiet der Teilchenphysik und kann einfache physikalische Probleme aus diesem Gebiet selbständig bearbeiten.

Mündliche Prüfung Moderne Experimentalphysik
Der/die Studierende wiederholt und verinnerlicht den Stoff der Vorlesungen und Übungen zur Modernen Experimentalphysik und erkennt übergreifende physikalische Konzepte.

Zusammensetzung der Modulnote
Die Modulnote wird durch die Note der mündlichen Prüfung bestimmt.

Voraussetzungen
keine
Inhalt

Moderne Experimentalphysik I, Atome und Kerne

• Elemente der Quantenmechanik: Materiewellen und Wellenpakete. Heisenbergsche Unschärferelation. Schrödingergleichung

• Fundamentale Eigenschaften stabiler Kerne und Kernmodelle: Tröpfchenmodell, Kernspins und Kernmomente, Parität, Angeregte Kernzustände, Schalenmodell (nur in Grundzügen)

Moderne Experimentalphysik II, Moleküle und Festkörper

• Einführung in die Physik der Moleküle: Molekülbinding, Molekülspektroskopie (Rotations-, Schwingungs- und Bandenspektren, Franck-Condor-Prinzip).

• Bindungstypen: Kovalente Bindung, Ionenbindung, Metallische Bindung, van der Waals-Binding, Wasserstoff-Bückenbindung.

• Magnetische Eigenschaften: Magnetismus der Leitungselektronen. Atomerar Magnetismus (Dia-, Paramagnetismus), Magnetische Wechselwirkungen (Austauschwechselwirkung), Ferro- und Antiferromagnetismus, Ferrimagnetismus, Magnonen.

Moderne Experimentalphysik III, Teilchen und Hadronen

• Strahlenbelastung, Strahlenschutz: Definitionen der verschiedenen Einheiten, einige Zahlenwerte (kurz).
• Struktur der Materie: elastische, inelastische und tiefinelastische Lepton-Nukleon-Streuung. Formfaktoren der Nukleonen, Nukleonresonanzen (Delta-Resonanz), Strukturfunktionen, Partonen. Übersicht Standardmodell der Teilchenphysik.
• Symmetrien und Erhaltungssätze: Quantenzahlen der Elementarteilchen, diskrete Symmetrien C, T, P; Paritätsverletzung, CP-Verletzung (zumindest kurz), CPT-Erhaltung. Schlüsselexperimente.
• Elektroschwache Wechselwirkung: Elektroschwache Vereinheitlichung, Kopplungen von W- und Z-Bosonen, Higgs-Mechanismus, Massen der Elementarteilichen, Quarkmischung, Schlüsselexperimente.
• Moderne Teilchenphysik: Experimente in Elektron-Positron-Annihilation und Kollisionen von Hadronen, Neutrinophysik.
• Offene Fragen und Querverbindungen: Grenzen und Erweiterungen des Standardmodells (Grundgedanken), Verbindung von Teilchenphysik, Kosmologie und Astroteilchenphysik

Empfehlungen
Klassische Experimentalphysik und Klassische Theoretische Physik

Arbeitsaufwand
Moderne Experimentalphysik I, Atome und Kerne
240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

Moderne Experimentalphysik II, Moleküle und Festkörper
240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

Moderne Experimentalphysik III, Teilchen und Hadronen
180 Stunden bestehend aus Präsenzzeiten (68), Nachbereitung der Vorlesung und Vorbereitung der Übungen (112)

Mündliche Prüfung Moderne Experimentalphysik
120 Stunden Vorbereitung auf die mündliche Prüfung in Moderner Experimentalphysik I-III

Literatur
Lehrbücher der Atomphysik und Kernphysik
Lehrbücher der Molekülphysik und der Festkörperphysik
Lehrbücher der Teilchenphysik
Modul: Moderne Theoretische Physik [M-PHYS-101533]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Moderne Theoretische Physik

Leistungspunkte: 26
Turnus: Jedes Sommersemester
Dauer: 3 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Vorleistungen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102317</td>
<td>Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1</td>
<td>4</td>
<td>Nierste</td>
</tr>
<tr>
<td>T-PHYS-102320</td>
<td>Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 2</td>
<td>4</td>
<td>Nierste</td>
</tr>
<tr>
<td>T-PHYS-102316</td>
<td>Mündliche Prüfung "Moderne Theoretische Physik I - III"</td>
<td>4</td>
<td>Garst, Klinkhamer, Melnikov, Mirlin, Mühleitner, Nierste, Rockstuhl, Schmalian, Schwetz-Mangold, Shnirman, Steinhauser, Zeppenfeld</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahlpflichtblock Mod. Th. Physik (zwischen 5 und 6 Bestandteilen)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Vorleistungen</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102321</td>
<td>Moderne Theoretische Physik II, Quantenmechanik 2, Vorleistung 1</td>
<td>3</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>T-PHYS-102322</td>
<td>Moderne Theoretische Physik II, Quantenmechanik 2, Vorleistung 2</td>
<td>3</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>T-PHYS-102318</td>
<td>Moderne Theoretische Physik IIIa, Statistische Physik 1, Vorleistung 1</td>
<td>3</td>
<td>Schmalian</td>
</tr>
<tr>
<td>T-PHYS-102319</td>
<td>Moderne Theoretische Physik IIIa, Statistische Physik 1, Vorleistung 2</td>
<td>2,5</td>
<td>Schmalian</td>
</tr>
<tr>
<td>T-PHYS-103211</td>
<td>Moderne Theoretische Physik IIIb, Statistische Physik 2, Vorleistung 1</td>
<td>3</td>
<td>Mirlin</td>
</tr>
<tr>
<td>T-PHYS-103212</td>
<td>Moderne Theoretische Physik IIIb, Statistische Physik 2, Vorleistung 2</td>
<td>2,5</td>
<td>Mirlin</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Siehe Bestandteile dieses Moduls

Qualifikationsziele

Moderne Theoretische Physik I, Quantenmechanik 1
Der/die Studierende erlernt die grundlegenden Konzepte der Einteilchen-Quantenmechanik und wendet diese auf wichtige Fragestellungen an. Er/sie legt damit die Grundlage für ein fundamentales Verständnis der mikroskopischen Welt.

Moderne Theoretische Physik II, Quantenmechanik 2
Der/die Studierende erlernt die grundlegenden Konzepte der Quantenmechanik für Mehrteilchensysteme und der relativistischen Quantenmechanik, sowie die Grundlagen der Quantenfeldtheorie.

Moderne Theoretische Physik III, Statistische Physik
Der/die Studierende erlernt die grundlegenden Konzepte der Quantenstatistik und statistischen Thermodynamik.

Mündliche Prüfung Moderne Theoretische Physik
Der/die Studierende wiederholt und verinnerlicht den Stoff der Vorlesungen und Übungen zur Modernen Theoretischen Physik und erkennt übergreifende physikalische Konzepte.

Zusammensetzung der Modulnote

Die Modulnote wird durch die Note der mündlichen Prüfung bestimmt.

Voraussetzungen

keine
Inhalt

Moderne Theoretische Physik I, Quantenmechanik 1

- Einführung: Historische Bemerkungen, Grenzen der klassischen Physik.
- Dualismus Teilchen und Welle: Wellenmechanik, Materiewellen, Wellenpakete, Unschärferelation, Schrödingergleichung, Qualitatives Verständnis einfacher Fälle.
- Postulate der Quantenmechanik: Messprozess, Zeitentwicklung, Zeitentwicklung von Erwartungswerten, Ehrenfest-Theorem und klassischer Grenzfall.
- Eindimensionale Potentiale: Potentialtöpfe, harmonischer Oszillator.
- Zeitunabhängige Störungstheorie: Nichtentarterter und entarterter Fall, Feinstruktur des Wasserstoffspektrums, Stark-Effekt.
- Grundlagen der Streutheorie: Differentieller Wirkungssquerschnitt, Bornsche Reihe und Bornsche Näherung, Partialwellen und Streuphasen, optisches Theorem.

Moderne Theoretische Physik II, Quantenmechanik 2

- Grundzüge der Streutheorie: Besetzungszahldarstellung und freie Felder, Wechselwirkung und Störungstheorie, Feynman-Diagramme, Diagrammregeln.

Moderne Theoretische Physik III, Statistische Physik

*Teil IIIa, Statistische Physik 1:

- Ideale Systeme: Boltzmann-Gas, Bosonen (Bose-Einstein-Kondensation, Hohlraumstrahlung, Phononen), Fermionen (entartetes Fermigas), Spinsysteme.

*Teil IIIb, Statistische Physik 2:

- Reale Systeme: van der Waals-Gas, Spinmodelle mit Wechselwirkung, Wechselwirkungen in Festkörpern (Born-Oppenheimer, 2. Quantisierung), Näherungsverfahren.

Empfehlungen

Klassische Experimentalphysik und Klassische Theoretische Physik

Arbeitsaufwand

Moderne Theoretische Physik I, Quantenmechanik 1

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

Moderne Theoretische Physik II, Quantenmechanik 2

180 Stunden bestehend aus Präsenzzeiten (75), Nachbereitung der Vorlesung und Vorbereitung der Übungen (105)

Moderne Theoretische Physik III, Statistische Physik

240 Stunden bestehend aus Präsenzzeiten (90), Nachbereitung der Vorlesung und Vorbereitung der Übungen (150)

Mündliche Prüfung Moderne Theoretische Physik

120 Stunden Vorbereitung auf die mündliche Prüfung in Moderner Theoretischer Physik I, II, IIIa und IIIb
Literatur
Lehrbücher der Quantenmechanik und Lehrbücher zur statistischen Physik
4.30 Modul: Physikalische Chemie für Physiker [M-CHEMBIO-101744]

Verantwortung: wechselnde Dozenten, siehe Vorlesungsverzeichnis
PD Dr. Andreas-Neil Unterreiner

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
KIT-Fakultät für Physik

Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Physikalische Chemie

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Jedes Wintersemester</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pflichtbestandteile</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-CHEMBIO-103376</td>
</tr>
<tr>
<td>T-CHEMBIO-103385</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Einführung in die Physikalische Chemie I

Physikalisch-Chemisches Grundpraktikum

Die Studierenden beherrschen

- die Grundlagen physikochemischer Messtechnik,
- die kritische Beurteilung experimenteller Ergebnisse.

Sie vertiefen und intensivieren ihre Kenntnisse auf speziellen Themengebieten, auch unter Berücksichtigung des Vorlesungsstoffs.

Voraussetzungen

keine

Inhalt

Einführung in die Physikalische Chemie I

Physikalisch-Chemisches Grundpraktikum

Literatur

P. W. Atkins, Physikalische Chemie, Wiley-VCH, Weinheim, aktuelle Auflage
G. Wedler, Lehrbuch der Physikalischen Chemie, Wiley-VCH, Weinheim aktuelle Auflage
Skrifte zum Praktikum, siehe http://www.ipc.kit.edu/
4.31 Modul: Praktikum Klassische Physik I [M-PHYS-101353]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Praktikum Klassische Physik

Leistungspunkte: 6
Turnus: Jedes Wintersemester
Dauer: 1 Semester
Sprache: Deutsch
Level: 3
Version: 1

Pflichtbestandteile

| T-PHYS-102289 | Praktikum Klassische Physik I | 6 LP | Bernlochner, Simonis |

Erfolgskontrolle(n)
Das Praktikum ist bestanden, wenn alle 10 Versuche durchgeführt und die zugehörigen Protokolle fristgerecht angefertigt und anerkannt sind.

Qualifikationsziele
Die Studierenden lernen grundlegende physikalische Phänomene kennen, indem sie selbstständig Experimente durchführen. Sie beherrschen unterschiedliche Messgeräte und Messmethoden und erlangen die Fähigkeit, experimentelle Daten zu erfassen und darzustellen, sowie die Daten zu analysieren, eine Fehlerrechnung durchzuführen und ein Messprotokoll zu erstellen.

Zusammensetzung der Modulnote
Für das Praktikum wird keine Note vergeben.

Voraussetzungen
keine

Inhalt
Das Praktikum umfasst die Gebiete

- **Grundlagen** (Versuche sind u.a.: Elektrische Messverfahren, Oszilloskop, Transistorgrundschatungen)
- **Mechanik** (Versuche sind u.a.: Pendel, Resonanz, Kreiselphänomene, Elastizität, Aeromechanik)
- **Elektrizitätslehre** (Versuche sind u.a.: Vierpole und Leitungen, Gruppen- und Phasengeschwindigkeit, Schaltlogik)
- **Optik** (Versuche sind u.a.: Geometrische Optik)
- **Klassiker** (Versuche sind u.a.: e/m-Bestimmung, Bestimmung der Lichtgeschwindigkeit, Millikan-Versuch)

Empfehlungen
Klassische Experimentalphysik I und II, Computergestützte Datenauswertung

Anmerkungen
Verpflichtende Teilnahme an der Vorbesprechung

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Vor- und Nachbereitung (120)

Literatur

- Lehrbücher der Experimentalphysik.
- Literaturauszüge zu allen Versuchen sind auf der Webseite des Praktikums hinterlegt.
- Zu einigen Versuchen gibt es komprimierte Hilfetexte, die ebenfalls auf der Webseite des Praktikums veröffentlicht sind.
4.32 Modul: Praktikum Klassische Physik II [M-PHYS-101354]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Praktikum Klassische Physik

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-102290 | Praktikum Klassische Physik II | 6 LP | Quast, Simonis |

Erfolgskontrolle(n)
Das Praktikum ist bestanden, wenn alle 10 Versuche durchgeführt und die zugehörigen Protokolle fristgerecht angefertigt und anerkannt sind.

Qualifikationsziele
Die Studierenden lernen grundlegende physikalische Phänomene kennen, indem sie selbstständig Experimente durchführen. Sie beherrschen unterschiedliche Messgeräte und Messmethoden und erlangen die Fähigkeit, experimentelle Daten zu erfassen und darzustellen, sowie die Daten zu analysieren, eine Fehlerrechnung durchzuführen und ein Messprotokoll zu erstellen.

Zusammensetzung der Modulnote
Für das Praktikum wird keine Note vergeben.

Voraussetzungen
keine

Inhalt
Das Praktikum umfasst die Gebiete

- **Mechanik** (Versuche sind u.a.: Ideales und Reales Gas, Vakuum)
- **Elektrizitätslehre** (Versuche sind u.a.: Elektrische Bauelemente, Schaltungen mit dem Operationsverstärker)
- **Optik** (Versuche sind u.a.: Interferenz, Polarisierung, Beugung am Spalt, Laser)
- **Thermodynamik** (Versuche sind u.a.: Wärmeleitung, Wärmekapazität)
- **Kernphysik** (Versuche sind u.a.: Gammaspektroskopie, Absorption radioaktiver Strahlung)
- **Klassiker** (Versuche sind u.a.: Franck-Hertz-Versuch, Photoeffekt)

Empfehlungen
Klassische Experimentalphysik I – III, Praktikum Klassische Physik I, Computergestützte Datenauswertung

Anmerkungen
Verpflichtende Teilnahme an der Vorbesprechung und an der Strahlenschutzbelehrung.

Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Vor- und Nachbereitung (120)

Literatur

- Lehrbücher der Experimentalphysik.
- Literaturoauszüge zu allen Versuchen sind auf der Webseite des Praktikums hinterlegt.
- Zu einigen Versuchen gibt es komprimierte Hilfetexte, die ebenfalls auf der Webseite des Praktikums veröffentlicht sind.
4.33 Modul: Praktikum Moderne Physik [M-PHYS-101355]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Praktikum Moderne Physik

Leistungspunkte	Turnus	Dauer	Sprache	Level	Version
6 | Jedes Semester | 1 Semester | Deutsch | 3 | 1

Pflichtbestandteile

| T-PHYS-102291 | Praktikum Moderne Physik | 6 LP | Naber |

Erfolgskontrolle(n)

Studienleistung: Vorbereiten und Durchführen einer vorgegebenen Anzahl von Versuchen; Fristgerechtes und erfolgreiches Anfertigen von Versuchsprtocollen.

Qualifikationsziele

Zusammensetzung der Modulnoten

Das Praktikum ist nicht benotet.

Voraussetzungen

Praktikum klassische Physik Teil I und II

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Das Modul M-PHYS-101353 - Praktikum Klassische Physik I muss erfolgreich abgeschlossen worden sein.
2. Das Modul M-PHYS-101354 - Praktikum Klassische Physik II muss erfolgreich abgeschlossen worden sein.

Inhalt

Die Versuche orientieren sich an den Forschungsschwerpunkten des Fachbereichs Physik. Den Studierenden werden Experimente zugewiesen aus den Bereichen:

- **Atom- und Moleküophysik:** Massenspektrometer, Zeeman-Effekt, Hyperfeinstruktur, Einstein-de-Haas-Effekt, Strukturbestimmung, Materialanalyse mit Röntgenstrahlen (MAX), Magnetische Resonanz (NMR, ESR)
- **Kern- und Teilchenphysik:** Beta-Spektroskopie, Gamma-Koinzidenzspektroskopie, Neutronendiffusion, Compton- und Positronium, Landé-Faktor des Myons, Mößbauer-Effekt, Paritätsverletzung beim Beta-Zerfall, Elementarteilchen, Driftgeschwindigkeit, Winkelkorrelation
- **Oberflächen- und Festkörperphysik:** Tiefe Temperaturen, Magnetooptischer Kerr-Effekt, Spezifische Wärme, Quanten-Hall-Effekt, Gitterschwingungen, Leitfähigkeit und Halleffekt, pn-Übergang, Halbleiterspektroskopie, Photowiderstand, Lumineszenz, Magnetisierung, Dünne Schichten, Rastertunnelmikroskopie, Rasterkraftmikroskopie
- **Moderne Optik/Quantenoptik und Biophysik:** Laserresonator, Quantenradierer, Optische Tarnkappe, Photische Pinzette, Fluoreszenz-Korrelationsspektroskopie (FCS), Black Lipid Membrane

Empfehlungen

Klassische Experimentalphysik, Moderne Experimentalphysik I, Computergestützte Datenauswertung

Anmerkungen

verpflichtende Teilnahme an Vorbesprechung mit Sicherheitsunterweisung und Strahlenschutzbelehrung
Arbeitsaufwand
180 Stunden bestehend aus Präsenzzeiten (60), Vorbereitung, Auswertung der Versuche und Anfertigen der Protokolle (120)
4.34 Modul: Praktikum über Anwendungen der Mikrorechner [M-PHYS-101686]

Verantwortung: Prof. Dr. Matthias Steinhauer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Informatik (Pflichtbestandteil)

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Jedes Semester</td>
<td>1 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

| T-PHYS-103243 | Praktikum über Anwendungen der Mikrorechner | 4 LP | Steinhauer |

Erfolgskontrolle(n)
Studienleistung, erfolgreiches Vorbereiten und Durchführen von Versuchen

Qualifikationsziele
Der/die Studierende erlernt das Ansteuern von an den Computer angeschlossenen Experimenten unter Verwendung der Programmiersprachen Assembler, Labview und C++.

Voraussetzungen
keine

Inhalt
Verschiedene Experimente wie Schrittmotor, Pendel oder Steuerung einer Ampelanlage.

Empfehlungen
Um am Praktikum teilnehmen zu können, müssen Programmierkenntnisse vorhanden sein.

Arbeitsaufwand
120 Stunden bestehend aus Präsenzzeiten (60), Vor- und Nachbereitung (60)

Literatur
Wird auf der Webseite zum Praktikum bereitgestellt.
4.35 Modul: Programmieren und Rechnernutzung [M-PHYS-101531]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Programmieren und Rechnernutzung

<table>
<thead>
<tr>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Dauer</th>
<th>Sprache</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Jährlich</td>
<td>2 Semester</td>
<td>Deutsch</td>
<td>3</td>
<td>1</td>
</tr>
</tbody>
</table>

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Pflichtbestandteil</th>
<th>Modul</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102292</td>
<td>Programmieren</td>
<td>6 LP Steinhauser</td>
</tr>
<tr>
<td>T-PHYS-102293</td>
<td>Rechnernutzung</td>
<td>4 LP Husemann, Wolf</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Siehe Bestandteile dieses Moduls

Qualifikationsziele

Programmieren:

Rechnernutzung:

Voraussetzungen
keine

Inhalt

Programmieren:

Rechnernutzung:

Arbeitsaufwand

Programmieren:
180 Stunden bestehend aus Präsenzzeiten (60), Vor- und Nachbereitung (120)

Rechnernutzung:
120 Stunden bestehend aus Präsenzzeiten (45), Vor- und Nachbereitung (75)
4.36 Modul: Softwaretechnik I [M-INFO-103453]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek
Prof. Dr. Ralf Reussner
Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Informatik (Wahlpflichtmodule Informatik) (EV ab 01.04.2018)

Leistungspunkte: 6

Turnus: Jedes Sommersemester

Dauer: 1 Semester

Sprache: Deutsch

Level: 3

Version: 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Leistungspunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101968</td>
<td>Softwaretechnik I</td>
<td>6 LP</td>
</tr>
</tbody>
</table>

Koziolek, Reussner, Tichy

Erfolgskontrolle(n)
Siehe Teilleistung

Qualifikationsziele
Der/die Studierende definiert und vergleicht die in der Vorlesung besprochenen Konzepte und Methoden und wendet diese erfolgreich an.

Voraussetzungen
Siehe Teilleistung

Inhalt

Arbeitsaufwand
Der Gesamtarbeitsaufwand für dieses Modul beträgt ca. 180 Stunden (6 Credits). Die Gesamtstundenzahl ergibt sich dabei aus dem Aufwand für den Besuch der Vorlesungen, sowie den Prüfungszeiten und dem zeitlichen Aufwand, der zur Erreichung der Lernziele des Moduls für einen durchschnittlichen Studenten für eine durchschnittliche Leistung erforderlich ist.
4.37 Modul: Überfachliche Qualifikationen [M-PHYS-101356]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: Überfachliche Qualifikationen

Leistungspunkte	Turnus	Dauer	Level	Version
6 | Einmalig | 3 Semester | 3 | 1

Pflichtbestandteile

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103242</td>
<td>Computergestützte Datenauswertung</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Wahlpflichtblock: Wahl überfachliche Qualifikationen (mind. 4 LP)

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103684</td>
<td>Einführung in das Rechnergestützte Arbeiten</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-104645</td>
<td>Platzhalter Überfachliche Qualifikation 2 LP - benotet</td>
<td>2 LP</td>
</tr>
<tr>
<td>T-PHYS-104647</td>
<td>Platzhalter Überfachliche Qualifikation 2 LP - unbenotet</td>
<td>2 LP</td>
</tr>
</tbody>
</table>

Qualifikationsziele

Computergestützte Datenauswertung

Der/die Studierende erlernt die Grundlagen der Visualisierung von Daten und deren statistischer Analyse, kann die dazu notwendige Softwareumgebung auf einem eigenen Computer bzw. auf dem persönlichen Konto im CIP-Pool der Fakultät einrichten und sie anhand konkreter Beispiele anwenden.

Einführung in das Rechnergestützte Arbeiten

Angebote des House of Competence (HoC) und des Sprachenzentrums

Die Qualifikationsziele unterscheiden sich je nach gewählter Veranstaltung und bestehen unter anderem aus:

- Die Studierenden haben durch Ausbau ihrer Fremdsprachenkenntnisse ihre Handlungsfähigkeit erweitert.
- Sie können grundlegende betriebswirtschaftliche und rechtlich Sachverhalte mit ihrem Erfahrungsfeld verbinden.
- Sie verfügen über effiziente Arbeitstechniken, können Prioritäten setzen, Entscheidungen treffen und Verantwortung übernehmen.
- Sie haben ihre Fähigkeiten erweitert, sich an wissenschaftlichen oder öffentlichen Diskussionen sachgerecht und angemessen zu beteiligen.
- Die Studierenden sind in der Lage, die Sichtweisen und Interessen anderer (über Fach-, Kultur- und Sprachgrenzen hinweg) zu berücksichtigen.

Zusammensetzung der Modulnote

Das Modul ist nicht benotet.

Voraussetzungen

keine
Inhalt

Computergestützte Datenauswertung

Einführung in das Rechnergestützte Arbeiten

Die Veranstaltung richtet sich primär an Studenten der ersten Semester und soll einen Überblick über Methoden und Werkzeuge der Rechnernutzung geben. In weitgehend unabhängigen Themenblöcken werden jeweils in einer Vorlesung und dazu angeschlossenen praktischen Übungen Applikationen und Arbeitsmittel der folgenden Themenbereiche vorgestellt:

- Infrastruktur am KIT, Linux, Systemwerkzeuge
- Grafikwerkzeuge
- Computeralgebra – Maple
- LaTeX
- Unix-Shell
- Datenvisualisierung
- Matlab

Lehr- und Lernformen

Wahlbereiche des HoC:

- „Kultur – Politik – Wissenschaft – Technik“, 2-3 LP
- „Kompetenz- und Kreativitätswerkstatt“, 2-3 LP
- „Fremdsprachen“, 2-3 LP
- „Persönliche Fitness & Emotionale Kompetenz“, 2-3 LP
- „Tutorenprogramme“, 3 LP
- „Mikrobausteine“, 1 LP
4.38 Modul: Werkstoffkunde [M-MACH-102562]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde
Bestandteil von: Nichtphysikalisches Wahlpflichtfach / Werkstoffkunde

Leistungspunkte 14
Turnus Jedes Wintersemester
Dauer 2 Semester
Sprache Deutsch/Englisch
Level 2
Version 2

Pflichtbestandteile

| T-MACH-105145 | Werkstoffkunde I & II | 11 LP | Gibmeier, Heilmaier, Weidenmann |
| T-MACH-105146 | Werkstoffkunde Praktikum | 3 LP | Heilmaier, Möslang, Weidenmann |

Erfolgskontrolle(n)
Unbenotet: Teilnahme an 10 Praktikumsversuchen, erfolgreiche Eingangskolloquien und 1 Kurzvortrag. Das Praktikum muss vor der Anmeldung zur Prüfung erfolgreich abgeschlossen werden;
Benotet: mündliche Prüfung über Inhalte des gesamten Moduls, ca. 25 Minuten.

Qualifikationsziele
Die Studierenden sollen in diesem Modul die folgenden Fähigkeiten erreichen:

- Vertiefte Kenntnisse über Konstruktionswerkstoffe (auch als Struktur- oder Ingenieurswerkstoffe bezeichnet) und weniger ausführlich Funktionswerkstoffe
- Erkennen der Zusammenhänge zwischen atomarem Festkörperaufbau, mikroskopischen Beobachtungen und Werkstoffkennwerten
- Kennenlernen sowie sicheres Anwenden der geeigneten Methoden zur Ermittlung von Kennwerten sowie zur Charakterisierung der Mikrostruktur von Werkstoffen
- Beurteilung von Werkstoffeigenschaften und den daraus resultierenden Verwendungsmöglichkeiten

Voraussetzungen
keine

Inhalt
WK I
Atomaufbau und atomare Bindungen
Kristalline Festkörperstrukturen
Störungen in kristallinen Festkörperstrukturen
Amorphe und teilkristalline Festkörperstrukturen
Legierungslehre
Materietransport und Umwandlung im festen Zustand
 Mikroskopische Methoden
Untersuchung mit Röntgen- und Teilchenstrahlen
Zerstörungsfreie Werkstoffprüfung
Mechanische Werkstoffprüfung
WK II
Eisenbasiswerkstoffe
Nichteisenmetalle
Keramische Werkstoffe
Glaswerkstoffe
Polymere Werkstoffe
Verbundwerkstoffe
Anmerkungen
Im Bachelorstudiengang Maschinenbau wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in deutscher Sprache angeboten.
Im Bachelorstudiengang Mechanical Engineering (International) wird dieses Modul samt allen Teilleistungen, Prüfungen und Lehrveranstaltungen in englischer Sprache angeboten.

Arbeitsaufwand
Der Arbeitsaufwand des Moduls umfasst ca. 420 Stunden.
Der Arbeitsaufwand für das Praktikum Werkstoffkunde beträgt insgesamt 90 h und besteht aus Präsenzpflicht in den 10 Versuchen (eine Woche halbtags, je 4 Zeitstunden pro Tag) und Vor- und Nachbearbeitungszeit zuhause.
Der Arbeitsaufwand für die Vorlesung Werkstoffkunde 1 und 2 beträgt pro Semester 165 h und besteht aus Präsenz in den Vorlesungen (WS: 4 SWS, SS: 2SWS) und Übungen (je 1 SWS im WS und SS) sowie Vor- und Nachbearbeitungszeit zuhause.

Lehr- und Lernformen
Das Modul "Werkstoffkunde" besteht aus den Vorlesungen "Werkstoffkunde I und II" mit zugehörigen Übungen in Kleingruppen und einem einwöchigen Laborpraktikum in Kleingruppen.
5 Teilleistungen

5.1 Teilleistung: Algorithmen I [T-INFO-100001]

Verantwortung: Prof. Dr. Peter Sanders
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-100030 - Algorithmen I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>24500</th>
<th>Algorithmen I</th>
<th>4 SWS</th>
<th>Vorlesung / Übung (VÜ)</th>
<th>Sinz, Iser</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle besteht aus einer schriftlichen Abschlussprüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von 120 Minuten. Der Dozent kann für gute Leistungen in der Übung zur Lehrveranstaltung Algorithmen I einen Notenbonus von max. 0,4 (entspricht einem Notenschritt) vergeben.
Dieser Notenbonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.
5.2 Teilleistung: Allgemeine Chemie: Grundlagen der Allgemeinen Chemie (für Bachelor-Studierende der Naturwissenschaften) [T-CHEMBIO-103373]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101742 - Anorganische und Organische Chemie für Studierende der Physik

Teilleistungsart
- Prüfungsleistung schriftlich

Leistungspunkte
- 4

Version
- 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>5001</th>
<th>Allgemeine Chemie: Grundlagen der Allgemeinen Chemie (für Bachelor-Studierende (Studienvariante A - C), für Studierende des Lehramts Chemie und für Studierende der Naturwissenschaften)</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Roesky</th>
</tr>
</thead>
</table>

Voraussetzungen
- keine
5.3 Teilleistung: Allgemeine Meteorologie [T-PHYS-101091]

Verantwortung: Prof. Dr. Christoph Kottmeier

Prof. Dr. Michael Kunz

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101879 - Einführung in die Meteorologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Sem</th>
<th>Nr</th>
<th>Stunde</th>
<th>Veranstaltungsart</th>
<th>Thema</th>
<th>SWS</th>
<th>Veranstalter</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4051011</td>
<td>Vorlesung(V)</td>
<td>Allgemeine Meteorologie</td>
<td>3</td>
<td>Kunz</td>
<td></td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4051012</td>
<td>Übung(Ü)</td>
<td>Übungen zur Allgemeinen Meteorologie</td>
<td>2</td>
<td>Kunz, Maurer, Hauser</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Vergabe der Leistungspunkte erfolgt nach bestandenem Test und 1x Vorrechnen in den Übungen.

Voraussetzungen

keine
5.4 Teilleistung: Analysis 1 - Klausur [T-MATH-102237]

Verantwortung: PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt
Prof. Dr. Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik
KIT-Fakultät für Physik

Bestandteil von: M-MATH-101333 - Analysis 1

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesung</th>
<th>WS</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0100100</td>
<td>Analysis I</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0100200</td>
<td>Übungen zu 0100100</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.5 Teilleistung: Analysis 2 - Klausur [T-MATH-103347]

Verantwortung: PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt
Prof. Dr. Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik
KIT-Fakultät für Physik

Bestandteil von: M-MATH-101334 - Analysis 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltungsbezeichnung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Vorleser / Übungsleiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>0150100</td>
<td>Analysis 2</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Hundertmark</td>
</tr>
<tr>
<td>SS 2019</td>
<td>0150200</td>
<td>Übungen zu 0150100</td>
<td>2</td>
<td>Übung (U)</td>
<td>Hundertmark</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.6 Teilleistung: Analysis 3 - Klausur [T-MATH-102245]

Verantwortung: PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt
Prof. Dr. Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101318 - Analysis 3

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0100400</td>
<td>Analysis III</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Hundertmark</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0100500</td>
<td>Übungen zu 0100400</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Hundertmark</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.7 Teilleistung: Analysis 4 - Prüfung [T-MATH-106286]

Verantwortung: PD Dr. Gerd Herzog
 Prof. Dr. Dirk Hundertmark
 Prof. Dr. Tobias Lamm
 Prof. Dr. Michael Plum
 Prof. Dr. Wolfgang Reichel
 Dr. Christoph Schmoeger
 Prof. Dr. Roland Schnaubelt
 Prof. Dr. Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik
Bestandteil von: M-MATH-103164 - Analysis 4

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 0163900 | Analysis 4 | 4 SWS | Vorlesung (V) | Plum |
| SS 2019 | 0164000 | Übungen zu 0163900 | 2 SWS | Übung (Ü) | Plum |

Voraussetzungen
Keine
5.8 Teilleistung: Anorganisch-Chemisches Praktikum für Physiker [T-CHEMBIO-103375]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
Bestandteil von: M-CHEMBIO-101742 - Anorganische und Organische Chemie für Studierende der Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>7</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurs</th>
<th>Lehrstunden</th>
<th>Prüfung</th>
<th>Dozenten</th>
</tr>
</thead>
</table>

Voraussetzungen

gem. Dozent
5.9 Teilleistung: Bachelorarbeit [T-PHYS-102933]

Verantwortung: Studiendekan Physik
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101534 - Bachelorarbeit

Voraussetzungen
siehe Modul Bachelorarbeit

Abschlussarbeit
Bei dieser Teilleistung handelt es sich um eine Abschlussarbeit. Es sind folgende Fristen zur Bearbeitung hinterlegt:

- **Bearbeitungszeit**: 6 Monate
- **Maximale Verlängerungsfrist**: 1 Monate
- **Korrekturfrist**: 6 Wochen

Die Abschlussarbeit ist genehmigungspflichtig durch den Prüfungsausschuss.
5.10 Teilleistung: Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen
[T-WIWI-102819]

Verantwortung: Prof. Dr. Martin Ruckes
Prof. Dr. Marliese Uhrig-Homburg
Prof. Dr. Marcus Wouters

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101494 - Grundlagen BWL 1

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Turnus
Jedes Wintersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltungsbezeichnung: Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</th>
<th>SWS</th>
<th>Prüfungsform</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2610026</td>
<td>Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Ruckes, Wouters</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2610027</td>
<td>Tutorien zu Betriebswirtschaftslehre: Finanzwirtschaft und Rechnungswesen</td>
<td>2</td>
<td>Tutorium (Tu)</td>
<td>Strych</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO).
Die Prüfungen werden in jedem Semester angeboten und können zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine

Anmerkungen
Die Schlüsselqualifikation umfasst die aktive Beteiligung in den Tutorien durch Präsentation eigener Lösungen und Einbringung von Diskussionsbeiträgen.
Die Teilgebiete werden von den jeweiligen BWL-Fachver tretern präsentiert. Ergänzt wird die Vorlesung durch begleitende Tutorien.
5.11 Teilleistung: Betriebswirtschaftslehre: Produktionswirtschaft und Marketing [T-WIWI-102818]

Verantwortung: Prof. Dr. Wolf Fichtner
Prof. Dr. Martin Klarmann
Prof. Dr.-Ing. Thomas Lützkendorf
Prof. Dr. Martin Ruckes
Prof. Dr. Frank Schultmann

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101578 - Grundlagen BWL 2

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Turnus
Jedes Sommersemester

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsart</th>
<th>Veranstaltungseinheit</th>
<th>Lehrer(n)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2500027 Tutorien zu BWL PM</td>
<td>2 SWS</td>
<td>Tutorium (Tu)</td>
<td>Klarmann, Strych, Assistenten</td>
</tr>
<tr>
<td>SS 2019</td>
<td>2600024 Betriebswirtschaftslehre: Produktionswirtschaft und Marketing</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Klarmann, Schultmann, Fichtner</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90min.) (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine
5.12 Teilleistung: Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft [T-WIWI-102817]

Verantwortung: Prof. Dr. Petra Nieken
Prof. Dr. Martin Ruckes

Einrichtung: KIT-Fakultät für Wirtschaftswissenschaften

Bestandteil von: M-WIWI-101494 - Grundlagen BWL 1

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
2

Turnus
Jedes Wintersemester

Version
1

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2600023</td>
<td>Betriebswirtschaftslehre: Unternehmensführung und Informationswirtschaft</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (90 Min.) (nach §4(2), 1 SPO).
Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen
Keine
5.13 Teilleistung: Computergestützte Datenauswertung [T-PHYS-103242]

Verantwortung: Prof. Dr. Günter Quast
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101356 - Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Bezeichnung</th>
<th>SWS</th>
<th>Veranstaltung</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010231</td>
<td>Computergestützte Datenauswertung</td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
<td>Quast, Poenicke</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4010232</td>
<td>Praktikum zu Computergestützte Datenauswertung</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Quast, Poenicke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
5.14 Teilleistung: Digitaltechnik und Entwurfsverfahren [T-INFO-103469]

Verantwortung: Prof. Dr. Wolfgang Karl
Einrichtung: KIT-Fakultät für Informatik
Bestandteil von: M-INFO-102978 - Digitaltechnik und Entwurfsverfahren

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>SS 2019</th>
<th>24007</th>
<th>Digitaltechnik und Entwurfsverfahren</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Hanebeck, Bromberger</th>
</tr>
</thead>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung (60 Minuten) nach § 4 Abs. 2 Nr. 1 SPO.

Die Modulnote ist die Note der Klausur.
Durch die Bearbeitung von Übungsblättern kann zusätzlich ein Notenbonus von max. 0,4 Punkte (entspricht einem Notenschritt) erreicht werden. Dieser Bonus ist nur gültig für eine Prüfung im gleichen Semester. Danach verfällt der Notenbonus.

Voraussetzungen
Keine.
5.15 Teilleistung: Einführung in die Meteorologie [T-PHYS-103710]

Verantwortung: Prof. Dr. Christoph Kottmeier
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101879 - Einführung in die Meteorologie

Voraussetzungen
Die Teilleistungen Klimatologie, Einführung in die Synoptik und entweder Allgemeine Meteorologie oder Theoretische Meteorologie I müssen bestanden sein.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Es muss eine von 2 Bedingungen erfüllt werden:
 1. Die Teilleistung T-PHYS-101091 - Allgemeine Meteorologie muss erfolgreich abgeschlossen worden sein.
 2. Die Teilleistung T-PHYS-101482 - Theoretische Meteorologie I muss erfolgreich abgeschlossen worden sein.
2. Die Teilleistung T-PHYS-101093 - Einführung in die Synoptik muss erfolgreich abgeschlossen worden sein.
5.16 Teilleistung: Einführung in das Rechnergestützte Arbeiten [T-PHYS-103684]

Verantwortung: Prof. Dr. Markus Garst
Dr. Andreas Poenicke
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101356 - Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Studienleistung</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4023901</td>
<td>Rechnergestütztes Arbeiten (Einführung)</td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>SS 2019 4023902</td>
<td>Übungen zu Rechnergestütztes Arbeiten</td>
<td>3 SWS</td>
<td>Übung (Ü)</td>
</tr>
<tr>
<td>WS 19/20 4011141</td>
<td>Rechnergestütztes Arbeiten (Einführung)</td>
<td>1 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 19/20 4011142</td>
<td>Übungen zu Rechnergestütztes Arbeiten</td>
<td>3 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.17 Teilleistung: Einführung in die Geophysik I [T-PHYS-102306]

Verantwortung: Prof. Dr. Thomas Bohlen
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101366 - Einführung in die Geophysik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 4
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer*innen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4060011</td>
<td>Einführung in die Geophysik I</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4060012</td>
<td>Übungen zur Einführung in die Geophysik I für Geophysiker und Physiker</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4060016</td>
<td>Übungen zur Einführung in die Geophysik für Studierende anderer Fachrichtungen</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Rietbrock, Gaßner</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine

Anmerkungen
Wahl der Übungsveranstaltung entsprechend Fachrichtung
5.18 Teilleistung: Einführung in die Geophysik II [T-PHYS-102307]

Verantwortung: Prof. Dr. Andreas Rietbrock
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101366 - Einführung in die Geophysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung ID</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsform</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4060021</td>
<td>Einführung in die Geophysik II</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4060022</td>
<td>Übungen zur Einführung in die Geophysik II</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Rietbrock, Gottschämmer</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.19 Teilleistung: Einführung in die Synoptik [T-PHYS-101093]

Verantwortung: Prof. Dr. Andreas Fink
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101879 - Einführung in die Meteorologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung mündlich</td>
<td>2</td>
<td>Jedes Sommersemester</td>
<td>2</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 4051141 | Einführung in die Synoptik | 2 SWS | Vorlesung (V) | Fink, Ludwig |

Erfolgskontrolle(n)

Die Studierenden halten in Kleingruppen einen ca. 20 minütigen Vortrag über aktuelle oder vergangene Wetter- oder Klimaphänomene. Analysematerial z.B. in Form von Wetterkarten, Berichten etc. recherchieren Sie eigenständig in einschlägigen Print-, elektronischen Medien sowie im Internet.

Voraussetzungen

keine
5.20 Teilleistung: Funktionalanalysis [T-MATH-102255]

Verantwortung: PD Dr. Gerd Herzog
Prof. Dr. Dirk Hundertmark
Prof. Dr. Tobias Lamm
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel
Dr. Christoph Schmoeger
Prof. Dr. Roland Schnaubelt
Prof. Dr. Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101320 - Funktionalanalysis

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
8

Turnus
Jedes Wintersemester

Version
2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>Vorlesung (V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0104800</td>
<td>Funktionalanalysis</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>Übung (Ü)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0104810</td>
<td>Übungen zu 0104800 (Funktionalanalysis)</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.21 Teilleistung: Funktionentheorie - Prüfung [T-MATH-102228]

Verantwortung: PD Dr. Gerd Herzog
 Prof. Dr. Dirk Hundertmark
 Prof. Dr. Tobias Lamm
 Prof. Dr. Michael Plum
 Prof. Dr. Wolfgang Reichel
 Dr. Christoph Schmoeger
 Prof. Dr. Roland Schnaubelt
 Prof. Dr. Lutz Weis

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101332 - Funktionentheorie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung mündlich</td>
<td>4</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 0163900 | Analysis 4 | 4 SWS | Vorlesung (V) | Plum |

Voraussetzungen

keine
5.22 Teilleistung: Geophysikalische Geländeübungen [T-PHYS-102310]

Verantwortung: Dr. Thomas Forbriger
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101784 - Geophysikalische Geländeübungen

Teilleistungsart
Prüfungsleistung anderer Art
Leistungspunkte 6
Version 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4060312</th>
<th>Geophysikalische Geländeübungen</th>
<th>4 SWS</th>
<th>Übung (Ü)</th>
<th>Forbriger, Gaßner, Schroth, Westerhaus, Bohlen</th>
</tr>
</thead>
</table>

Voraussetzungen
Studierende müssen T-PHYS-102306 - Einführung in die Geophysik I bestanden haben.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-102306 - Einführung in die Geophysik I muss erfolgreich abgeschlossen worden sein.
5.23 Teilleistung: Grundbegriffe der Informatik [T-INFO-101964]

Verantwortung: Dr. Sebastian Stüker
Thomas Worsch

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101170 - Grundbegriffe der Informatik
M-INFO-103456 - Grundbegriffe der Informatik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Name der Veranstaltung</th>
<th>SWS</th>
<th>Typ</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>24001</td>
<td>Grundbegriffe der Informatik</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Worsch</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO im Umfang von i.d.R. zwei Stunden.

Voraussetzungen
keine

Anmerkungen
-
5.24 Teilleistung: Höhere Mathematik I [T-MATH-102224]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
Dr. Peer Kunstmann
Prof. Dr. Tobias Lamm
Dr. Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101327 - Höhere Mathematik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 0130200 Höhere Mathematik I für die Fachrichtung Physik</td>
</tr>
<tr>
<td>WS 19/20 0130300 Übungen zu 0130200</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.25 Teilleistung: Höhere Mathematik II [T-MATH-102225]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
Dr. Peer Kunstmann
Prof. Dr. Tobias Lamm
Dr. Christoph Schmoeger

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101328 - Höhere Mathematik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>10</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Art</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>0180500</td>
<td>Höhere Mathematik II für die Fachrichtung Physik</td>
<td>6</td>
<td>Vorlesung (V)</td>
<td>Schmoeger</td>
</tr>
<tr>
<td>SS 2019</td>
<td>0180600</td>
<td>Übungen zu 0180500</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Schmoeger</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.26 Teilleistung: Höhere Mathematik III [T-MATH-102226]

Verantwortung: PH. D. Ioannis Anapolitanos
Prof. Dr. Dirk Hundertmark
Dr. Peer Kunstmann
Prof. Dr. Tobias Lamm

Einrichtung: KIT-Fakultät für Mathematik

Bestandteil von: M-MATH-101329 - Höhere Mathematik III

Teilleistungsart
Prüfungsleistung schriftlich

Leistungspunkte
4

Version
1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltungsdarstellung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozierender:</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0130600</td>
<td>Höhere Mathematik III für die Fachrichtung Physik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Anapolitanos</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0130700</td>
<td>Übungen zu 0130600</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Anapolitanos</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.27 Teilleistung: Klassische Experimentalphysik I, Mechanik [T-PHYS-102283]

Verantwortung: Prof. Dr. Thomas Müller

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101347 - Klassische Experimentalphysik I, Mechanik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungskürzel</th>
<th>Veranstaltung</th>
<th>Vorlesungsstunden (SWS)</th>
<th>Art</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010011</td>
<td>Klassische Experimentalphysik I (Physik I, Mechanik)</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Müller, Schröder</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4010012</td>
<td>Übungen zu Klassische Experimentalphysik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Müller, Schröder</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen

erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

5.28 Teilleistung: Klassische Experimentalphysik I, Mechanik - Vorleistung [T-PHYS-102295]

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Verantwortung: Prof. Dr. Thomas Müller
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101347 - Klassische Experimentalphysik I, Mechanik

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010011</td>
<td>Klassische Experimentalphysik I (Physik I, Mechanik)</td>
<td>4 SWS</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4010012</td>
<td>Übungen zu Klassische Experimentalphysik I</td>
<td>2 SWS</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.29 Teilleistung: Klassische Experimentalphysik II, Elektrodynamik [T-PHYS-102284]

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101348 - Klassische Experimentalphysik II, Elektrodynamik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 7
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

| SS 2019 | 4010021 | Klassische Experimentalphysik II (Physik II, Elektrodynamik) | 3 SWS | Vorlesung (V) | Wegener |
| SS 2019 | 4010022 | Übungen zu Klassische Experimentalphysik II | 2 SWS | Übung (Ü) | Wegener, Naber |

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

5.30 Teilleistung: Klassische Experimentalphysik II, Elektrodynamik - Vorleistung [T-PHYS-102296]

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101348 - Klassische Experimentalphysik II, Elektrodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Kurscode</th>
<th>Kursbezeichnung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010021</td>
<td>Klassische Experimentalphysik II (Physik II, Elektrodynamik)</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Wegener</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4010022</td>
<td>Übungen zu Klassische Experimentalphysik II</td>
<td>2</td>
<td>Übung (U)</td>
<td>Wegener, Naber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.31 Teilleistung: Klassische Experimentalphysik III, Optik und Thermodynamik [T-PHYS-102285]

Verantwortung: Prof. Dr. Martin Wegener
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101349 - Klassische Experimentalphysik III, Optik und Thermodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung</td>
<td>9</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>Veranstaltungsnummer</th>
<th>Kursname</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Prof.Direktor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010031</td>
<td>Klassische Experimentalphysik III (Physik III, Optik und Thermodynamik)</td>
<td>5</td>
<td>Vorlesung (V)</td>
<td>Wegener</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4010032</td>
<td>Übungen zu Klassische Experimentalphysik III</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Wegener, Naber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

5.32 Teilleistung: Klassische Experimentalphysik III, Optik und Thermodynamik - Vorleistung [T-PHYS-102297]

Teilleistung

Teilleistung: Klassische Experimentalphysik III, Optik und Thermodynamik - Vorleistung [T-PHYS-102297]

Verantwortung: Prof. Dr. Martin Wegener

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101349 - Klassische Experimentalphysik III, Optik und Thermodynamik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Turnus</th>
<th>Leistungspunkte</th>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jedes Wintersemester</td>
<td>0</td>
<td>WS 19/20 4010031 Klassische Experimentalphysik III (Physik III, Optik und Thermodynamik) 5 SWS Vorlesung (V) Wegener</td>
</tr>
<tr>
<td></td>
<td></td>
<td>WS 19/20 4010032 Übungen zu Klassische Experimentalphysik III 2 SWS Übung (Ü) Wegener, Naber</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
5.33 Teilleistung: Klassische Theoretische Physik I, Einführung [T-PHYS-102286]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101350 - Klassische Theoretische Physik I, Einführung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Turnus</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010111</td>
<td>Klassische Theoretische Physik I (Theorie A, Einführung)</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Shnirman</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4010112</td>
<td>Übungen zu Klassische Theoretische Physik I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Shnirman, Narozhnyy</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen

erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen

Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-PHYS-102298 - Klassische Theoretische Physik I, Einführung - Vorleistung muss erfolgreich abgeschlossen worden sein.
5.34 Teilleistung: Klassische Theoretische Physik I, Einführung - Vorleistung [T-PHYS-102298]

Verantwortung: Prof. Dr. Alexander Shnirman
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101350 - Klassische Theoretische Physik I, Einführung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 4010111 | Klassische Theoretische Physik I (Theorie A, Einführung) | 2 SWS | Vorlesung (V) | Shnirman |
| WS 19/20 | 4010112 | Übungen zu Klassische Theoretische Physik I | 2 SWS | Übung (Ü) | Shnirman, Narozhnyy |

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.35 Teilleistung: Klassische Theoretische Physik II, Mechanik [T-PHYS-102287]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101351 - Klassische Theoretische Physik II, Mechanik

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

| SS 2019 | 4010121 | Klassische Theoretische Physik II (Theorie B, Mechanik) | 2 SWS | Vorlesung (V) | Melnikov |
| SS 2019 | 4010122 | Übungen zur Klassischen Theoretischen Physik II | 2 SWS | Übung (Ü) | Melnikov, Rietkerk, Jaquier |

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

5.36 Teilleistung: Klassische Theoretische Physik II, Mechanik - Vorleistung [T-PHYS-102299]

Verantwortung: Prof. Dr. Kirill Melnikov
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101351 - Klassische Theoretische Physik II, Mechanik

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4010121</th>
<th>Klassische Theoretische Physik II (Theorie B, Mechanik)</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Melnikov</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010122</td>
<td>Übungen zur Klassischen Theoretischen Physik II</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Melnikov, Rietkerk, Jaquier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.37 Teilleistung: Klassische Theoretische Physik III, Elektrodynamik [T-PHYS-102288]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101352 - Klassische Theoretische Physik III, Elektrodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Prüfungsleistung schriftlich</th>
<th>Leistungspunkte</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turnus</td>
<td>Jedes Wintersemester</td>
<td>Version</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>WS 19/20</th>
<th>4010131</th>
<th>Klassische Theoretische Physik III (Theorie C, Elektrodynamik)</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Rockstuhl</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010132</td>
<td>Übungen zu Klassische Theoretische Physik III</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Rockstuhl, Poenicke, Müller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Schriftliche Prüfung (in der Regel ca. 120 min)

Voraussetzungen
erfolgreiche Übungsteilnahme

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

5.38 Teilleistung: Klassische Theoretische Physik III, Elektrodynamik - Vorleistung [T-PHYS-102300]

Verantwortung: Prof. Dr. Carsten Rockstuhl
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101352 - Klassische Theoretische Physik III, Elektrodynamik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>0</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010131</td>
<td>Klassische Theoretische Physik III (Theorie C, Elektrodynamik)</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Rockstuhl</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4010132</td>
<td>Übungen zu Klassische Theoretische Physik III</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Rockstuhl, Poenicke, Müller</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
5.39 Teilleistung: Klimatologie [T-PHYS-101092]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Katharina Maurer

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101879 - Einführung in die Meteorologie

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Vorlesungsname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4051111</td>
<td>Klimatologie</td>
<td>3</td>
<td>Vorlesung (V)</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4051112</td>
<td>Übungen zu Klimatologie</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Ginete Werner Pinto, Ludwig, Mömken</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

2x Vorrechnen in der Übung.

Voraussetzungen

keine

Empfehlungen

keine

Anmerkungen

keine
5.40 Teilleistung: Lineare Algebra 1 - Klausur [T-MATH-103337]

Verantwortung: Prof. Dr. Frank Herrlich
Prof. Dr. Enrico Leuzinger
Prof. Dr Roman Sauer
Prof. Dr. Wilderich Tuschmann

Einrichtung: KIT-Fakultät für Mathematik
KIT-Fakultät für Physik

Bestandteil von: M-MATH-101330 - Lineare Algebra 1

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Vorlesungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>0100700</td>
<td>Lineare Algebra 1</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Tuschmann</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>0100800</td>
<td>Übungen zu 0100700 (Lineare Algebra 1)</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Tuschmann</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.41 Teilleistung: Lineare Algebra 2 - Klausur [T-MATH-103218]

Verantwortung:
Prof. Dr. Frank Herrlich
Prof. Dr. Enrico Leuzinger
Prof. Dr Roman Sauer
Prof. Dr. Wilderich Tuschmann

Einrichtung:
KIT-Fakultät für Mathematik

Bestandteil von:
M-MATH-101331 - Lineare Algebra 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>9</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Modulnummer</th>
<th>Modulname</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>0150500</td>
<td>Lineare Algebra 2</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Sauer</td>
</tr>
</tbody>
</table>

Voraussetzungen
Keine
5.42 Teilleistung: Moderne Experimentalphysik I, Atome und Kerne, Vorleistung [T-PHYS-102313]

Verantwortung: Prof. Dr. Guido Drexlin
Dr. Kathrin Valerius

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101532 - Moderne Experimentalphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung Code</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Typ</th>
<th>Vorlesung/Übung</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010041</td>
<td>Moderne Experimentalphysik I (Physik IV, Atome und Kerne)</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Drexlin, Valerius</td>
<td></td>
</tr>
<tr>
<td>SS 2019</td>
<td>4010042</td>
<td>Übungen zu Moderne Experimentalphysik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Drexlin, Schlösser</td>
<td></td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
5.43 Teilleistung: Moderne Experimentalphysik II, Moleküle und Festkörper, Vorleistung [T-PHYS-102314]

Verantwortung: Prof. Dr. Wolfgang Wernsdorfer
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101532 - Moderne Experimentalphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>8</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Wintersemester</th>
<th>Veranstaltung</th>
<th>Leistung</th>
<th>Turnus</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010051</td>
<td>Moderne Experimentalphysik II (Physik V, Moleküle und Festkörper)</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4010052</td>
<td>Übungen zu Moderne Experimentalphysik II</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.44 Teilleistung: Moderne Experimentalphysik III, Teilchen und Hadronen, Vorleistung [T-PHYS-102315]

Verantwortung: Prof. Dr. Ulrich Husemann
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101532 - Moderne Experimentalphysik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4010061</th>
<th>Moderne Experimentalphysik III (Physik VI, Teilchen und Hadronen)</th>
<th>3 SWS</th>
<th>Vorlesung (V)</th>
<th>Husemann</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010062</td>
<td>Übungen zu Moderne Experimentalphysik III</td>
<td>1.5 SWS</td>
<td>Übung (Ü)</td>
<td>Husemann, Faltermann</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.45 Teilleistung: Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Leistung</th>
<th>Turnus</th>
<th>Vorlesende</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010141</td>
<td>Moderne Theoretische Physik I (Theorie D, Quantenmechanik I)</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Jedes Sommersemester</td>
<td>Nierste</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4010142</td>
<td>Übungen zu Moderne Theoretische Physik I</td>
<td>2</td>
<td>Übung (Ü)</td>
<td>Jedes Sommersemester</td>
<td>Nierste, Nisandzic</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen

keine
5.46 Teilleistung: Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 2 [T-PHYS-102320]

Verantwortung: Prof. Dr. Ulrich Nierste
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4010141</th>
<th>Moderne Theoretische Physik I (Theorie D, Quantenmechanik I)</th>
<th>4 SWS</th>
<th>Vorlesung (V)</th>
<th>Nierste</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010142</td>
<td>Übungen zu Moderne Theoretische Physik I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Nierste, Nisandzic</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, Übungsklausur

Voraussetzungen
keine
5.47 Teilleistung: Moderne Theoretische Physik II, Quantenmechanik 2, Vorleistung 1 [T-PHYS-102321]

Verantwortung: Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>Lehrveranstaltungsnummer</th>
<th>SWS</th>
<th>Form</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Moderne Theoretische Physik II (Theorie E, Quantenmechanik II)</td>
<td>4010151</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zu Moderne Theoretische Physik II</td>
<td>4010152</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Zeppenfeld, Gieseke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.48 Teilleistung: Moderne Theoretische Physik II, Quantenmechanik 2, Vorleistung 2 [T-PHYS-102322]

Verantwortung: Prof. Dr. Dieter Zeppenfeld
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010151</td>
<td>Moderne Theoretische Physik II (Theorie E, Quantenmechanik II)</td>
<td>4</td>
<td>Vorlesung (V)</td>
<td>Zeppenfeld</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4010152</td>
<td>Übungen zu Moderne Theoretische Physik II</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Zeppenfeld, Gieseke</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, Übungsklausur

Voraussetzungen
keine
5.49 Teilleistung: Moderne Theoretische Physik IIIa, Statistische Physik 1, Vorleistung 1 [T-PHYS-102318]

Verantwortung: Prof. Dr. Jörg Schmalian
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| WS 19/20 | 4010171 | Moderne Theoretische Physik IIIa (Theorie F, Statistische Physik) | 2 SWS | Vorlesung (V) | Schmalian |
| WS 19/20 | 4010172 | Übungen zu Moderne Theoretische Physik IIIa | 1 SWS | Übung (Ü) | Schmalian, Willa |

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.50 Teilleistung: Moderne Theoretische Physik IIIa, Statistische Physik 1, Vorleistung 2 [T-PHYS-102319]

Verantwortung: Prof. Dr. Jörg Schmalian
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2,5</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungscode</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Lehrperson</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4010171</td>
<td>Moderne Theoretische Physik IIIa (Theorie F, Statistische Physik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Schmalian</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4010172</td>
<td>Übungen zu Moderne Theoretische Physik IIIa</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Schmalian, Willa</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung, Übungsklausur

Voraussetzungen

keine
5.51 Teilleistung: Moderne Theoretische Physik IIIb, Statistische Physik 2, Vorleistung 1 [T-PHYS-103211]

Verantwortung: Prof. Dr. Alexander Mirlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Jahr</th>
<th>Veranstaltungsnummer</th>
<th>Veranstaltungstitel</th>
<th>SWS</th>
<th>Veranstaltungstyp</th>
<th>Dozent(en)</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010161</td>
<td>Moderne Theoretische Physik IIIb (Theorie F, Statistische Physik)</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Mirlin</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4010162</td>
<td>Übungen zu Moderne Theoretische Physik IIIb</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Mirlin, Gornyi</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den Übungen

Voraussetzungen
keine
5.52 Teilleistung: Moderne Theoretische Physik IIIb, Statistische Physik 2, Vorleistung 2 [T-PHYS-103212]

Verantwortung: Prof. Dr. Alexander Mirlin
Einrichtung: KIT-Fakultät für Physik
Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistungsart</td>
<td>2,5</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>SS 2019</th>
<th>4010161</th>
<th>Moderne Theoretische Physik IIIb (Theorie F, Statistische Physik)</th>
<th>2 SWS</th>
<th>Vorlesung (V)</th>
<th>Mirlin</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4010162</td>
<td>Übungen zu Moderne Theoretische Physik IIIb</td>
<td>1 SWS</td>
<td>Übung (Ü)</td>
<td>Mirlin, Gornyi</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, Übungsklausur

Voraussetzungen
keine
5.53 Teilleistung: Mündliche Prüfung "Moderne Experimentalphysik I - III" [T-PHYS-102312]

Verantwortung: Prof. Dr. Florian Bernlochner
 Prof. Dr. Guido Drexlin
 Prof. Dr. David Hunger
 Prof. Dr. Ulrich Husemann
 Prof. Dr. Heinz Kalt
 Prof. Dr. Anke-Susanne Müller
 Prof. Dr. Thomas Müller
 Prof. Dr. Ulrich Nienhaus
 Prof. Dr. Günter Quast
 Prof. Dr. Thomas Schimmel
 Prof. Dr. Alexey Ustinov
 Prof. Dr. Martin Wegener
 Prof. Dr. Georg Weiß
 Prof. Dr. Wolfgang Wernsdorfer
 Prof. Dr. Wulf Wulfhekel

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101532 - Moderne Experimentalphysik

Erfolgskontrolle(n)
Mündliche Prüfung, Dauer 30-60 min

Voraussetzungen
Erfolgreiche Übungsteilnahme an Moderner Experimentalphysik I, II und III.

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

5.54 Teilleistung: Mündliche Prüfung "Moderne Theoretische Physik I - III" [T-PHYS-102316]

Verantwortung:
Prof. Dr. Markus Garst
Prof. Dr. Frans Klinkhamer
Prof. Dr. Kirill Melnikov
Prof. Dr. Alexander Mirin
Prof. Dr. Milada Margarete Mühlleitner
Prof. Dr. Ulrich Nierste
Prof. Dr. Carsten Rockstuhl
Prof. Dr. Jörg Schmalian
Prof. Dr. Thomas Schwetz-Mangold
Prof. Dr. Alexander Shnirman
Prof. Dr. Matthias Steinhauser
Prof. Dr. Dieter Zeppenfeld

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101533 - Moderne Theoretische Physik

Teilleistungsart: Prüfungsleistung mündlich

Leistungspunkte: 4

Turnus: Jedes Semester

Version: 1

Erfolgskontrolle(n):
Mündliche Prüfung, Dauer 30-60 min

Voraussetzungen:

Erfolgreiche Übungsteilnahme an Moderner Theoretischer Physik I, II, IIIa und IIIb.

Es werden zwei Studienleistungen aus Moderner Theoretischer Physik I und mindestens fünf von sechs möglichen Studienleistungen aus den Veranstaltungen Moderner Theoretischer Physik II, IIIa und IIIb benötigt.

Modellierte Voraussetzungen:
Es müssen die folgenden Bedingungen erfüllt werden:

1. Es müssen die folgenden Bedingungen erfüllt werden:
 1. Die Teilleistung T-PHYS-102317 - Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 1 muss erfolgreich abgeschlossen worden sein.
 2. Die Teilleistung T-PHYS-102320 - Moderne Theoretische Physik I, Quantenmechanik 1, Vorleistung 2 muss erfolgreich abgeschlossen worden sein.

2. Es müssen 5 von 6 Bedingungen erfüllt werden:
 1. Die Teilleistung T-PHYS-102319 - Moderne Theoretische Physik IIIa, Statistische Physik 1, Vorleistung 2 muss erfolgreich abgeschlossen worden sein.
 2. Die Teilleistung T-PHYS-102322 - Moderne Theoretische Physik II, Quantenmechanik 2, Vorleistung 2 muss erfolgreich abgeschlossen worden sein.
 5. Die Teilleistung T-PHYS-102318 - Moderne Theoretische Physik IIIa, Statistische Physik 1, Vorleistung 1 muss erfolgreich abgeschlossen worden sein.
 6. Die Teilleistung T-PHYS-102321 - Moderne Theoretische Physik II, Quantenmechanik 2, Vorleistung 1 muss erfolgreich abgeschlossen worden sein.
5.55 Teilleistung: Organische Chemie [T-CHEMBIO-100209]

Verantwortung: Dr. Norbert Foitzik
wechselnde Dozenten, siehe Vorlesungsverzeichnis

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101742 - Anorganische und Organische Chemie für Studierende der Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>3</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

| SS 2019 | 5101 | Organische Chemie I | 3 SWS | Vorlesung (V) | Bräse |

Erfolgskontrolle(n)
Klausur über 120 Minuten

Voraussetzungen
keine
5.56 Teilleistung: Physikalisch-chemisches Praktikum für Physiker [T-CHEMBIO-103376]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften

Bestandteil von: M-CHEMBIO-101744 - Physikalische Chemie für Physiker

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung anderer Art</td>
<td>6</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Code</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Prüfung</th>
<th>Dozenten des Instituts</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>5222</td>
<td>Physikalisch-chemisches Praktikum für Physiker</td>
<td>10</td>
<td>Praktikum (P)</td>
<td>Böttcher, Nattland, Unterreiner, Die Dozenten des Instituts</td>
</tr>
<tr>
<td>SS 2019</td>
<td>5229</td>
<td>Physikalisch-chemisches Praktikum für Angewandte Geowissenschaften</td>
<td>8</td>
<td>Praktikum (P)</td>
<td>Böttcher, Nattland, Unterreiner, Die Dozenten des Instituts</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>5222</td>
<td>Physikalisch-chemisches Praktikum für Physiker</td>
<td>10</td>
<td>Praktikum (P)</td>
<td>Böttcher, Nattland, Unterreiner, Die Dozenten des Instituts</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>5229</td>
<td>Physikalisch-chemisches Praktikum für Angewandte Geowissenschaften</td>
<td>8</td>
<td>Praktikum (P)</td>
<td>Böttcher, Nattland, Unterreiner, Die Dozenten des Instituts</td>
</tr>
</tbody>
</table>

Voraussetzungen

gem. Dozent
5.57 Teilleistung: Physikalische Chemie I [T-CHEMBIO-103385]

Einrichtung: KIT-Fakultät für Chemie und Biowissenschaften
Bestandteil von: M-CHEMBIO-101744 - Physikalische Chemie für Physiker

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>8</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20 5206</td>
<td>Physikalische Chemie I</td>
<td>4 SWS</td>
<td>Vorlesung (V)</td>
<td>Kappes, Elstner</td>
</tr>
<tr>
<td>WS 19/20 5207</td>
<td>Übungen zur Vorlesung Physikalische Chemie I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Kappes, Elstner, Strelnikov, Assistenten</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.58 Teilleistung: Platzhalter Überfachliche Qualifikation 2 LP - benotet [T-PHYS-104645]

<table>
<thead>
<tr>
<th>Einrichtung:</th>
<th>Universität gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bestandteil von:</td>
<td>M-PHYS-101356 - Überfachliche Qualifikationen</td>
</tr>
</tbody>
</table>

Teilleistungsart: Prüfungsleistung anderer Art
Leistungspunkte: 2
Version: 1

Voraussetzungen
keine
5.59 Teilleistung: Platzhalter Überfachliche Qualifikation 2 LP - unbenotet [T-PHYS-104647]

Einrichtung: Universität gesamt
Bestandteil von: M-PHYS-101356 - Überfachliche Qualifikationen

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>2</td>
<td>1</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.60 Teilleistung: Praktikum Klassische Physik I [T-PHYS-102289]

| Verantwortung: | Prof. Dr. Florian Bernlochner
	Dr. Hans Jürgen Simonis
Einrichtung:	KIT-Fakultät für Physik
Bestandteil von:	M-PHYS-101353 - Praktikum Klassische Physik I

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Modulnummer</th>
<th>Modulname</th>
<th>SWS</th>
<th>Studienleistung</th>
<th>Verantwortung</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>4011113</td>
<td>Praktikum Klassische Physik I (Kurs 1)</td>
<td>6 SWS</td>
<td>Praktikum (P)</td>
<td>Bernlochner, Simonis</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4011123</td>
<td>Praktikum Klassische Physik I (Kurs 2)</td>
<td>6 SWS</td>
<td>Praktikum (P)</td>
<td>Bernlochner, Simonis</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4011133</td>
<td>Praktikum Klassische Physik I (Kurs 3)</td>
<td>6 SWS</td>
<td>Praktikum (P)</td>
<td>Bernlochner, Simonis</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.61 Teilleistung: Praktikum Klassische Physik II [T-PHYS-102290]

Verantwortung: Prof. Dr. Günter Quast
Dr. Hans Jürgen Simonis

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101354 - Praktikum Klassische Physik II

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnummer</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Lehrkräfte</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4011213</td>
<td>Praktikum Klassische Physik II (Kurs 1)</td>
<td>6</td>
<td>Praktikum (P)</td>
<td>Quast, Simonis</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4011223</td>
<td>Praktikum Klassische Physik II (Kurs 2)</td>
<td>6</td>
<td>Praktikum (P)</td>
<td>Quast, Simonis</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.62 Teilleistung: Praktikum Moderne Physik [T-PHYS-102291]

Verantwortung: Dr. Andreas Naber

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101355 - Praktikum Moderne Physik

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungsidentifikation</th>
<th>Studienleistung</th>
<th>SWS</th>
<th>Praktikum (P)</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>4011313</td>
<td>Praktikum Moderne Physik (Kurs 1)</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>SS 2019</td>
<td>4011323</td>
<td>Praktikum Moderne Physik (Kurs 2)</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4011313</td>
<td>Praktikum Moderne Physik (Kurs 1)</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>4011323</td>
<td>Praktikum Moderne Physik (Kurs 2)</td>
<td>4 SWS</td>
<td>Praktikum (P)</td>
<td>Naber, Guigas, Sürgers, Wolf</td>
</tr>
</tbody>
</table>

Voraussetzungen

keine
5.63 Teilleistung: Praktikum über Anwendungen der Mikrorechner [T-PHYS-103243]

Verantwortung: Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101686 - Praktikum über Anwendungen der Mikrorechner

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Semester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
</tr>
<tr>
<td>4035053</td>
</tr>
<tr>
<td>Praktikum über Anwendungen der Mikrorechner</td>
</tr>
<tr>
<td>WS 19/20</td>
</tr>
<tr>
<td>4035053</td>
</tr>
<tr>
<td>Praktikum über Anwendungen der Mikrorechner I</td>
</tr>
</tbody>
</table>

Voraussetzungen
keine
5.64 Teilleistung: Programmieren [T-PHYS-102292]

Verantwortung: Prof. Dr. Matthias Steinhauser

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101531 - Programmieren und Rechnernutzung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>6</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019 4010221 Programmieren für Physiker 2 SWS Vorlesung (V) Steinhauser</td>
</tr>
<tr>
<td>SS 2019 4010222 Übungen zu Programmieren für Physiker 2 SWS Übung (Ü) Steinhauser, Mildenberger</td>
</tr>
<tr>
<td>SS 2019 4010223 Praktikum zum Programmieren für Physiker 5 SWS Praktikum (P) Steinhauser, Mildenberger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Studienleistung. Die erfolgreiche Teilnahme an den praktischen Übungen berechtigt zur Teilnahme an der Übungsklausur.

Voraussetzungen

keine
5.65 Teilleistung: Rechnernutzung [T-PHYS-102293]

Verantwortung: Prof. Dr. Ulrich Husemann
PD Dr. Roger Wolf

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101531 - Programmieren und Rechnernutzung

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>SWS</th>
<th>Veranstaltungsart</th>
<th>Dozierende</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Rechnernutzung in der Physik</td>
<td>2</td>
<td>Vorlesung (V)</td>
<td>Husemann, Wolf</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zur Rechnernutzung für Physiker</td>
<td>1</td>
<td>Übung (Ü)</td>
<td>Husemann, Wolf, Mildenberger</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Studienleistung, erfolgreiche Teilnahme an den praktischen Übungen

Voraussetzungen
keine
5.66 Teilleistung: Rechnungswesen [T-WIWI-102816]

Verantwortung: Dr. Jan-Oliver Strych
Einrichtung: KIT-Fakultät für Informatik
KIT-Fakultät für Wirtschaftswissenschaften
Bestandteil von: M-WIWI-101578 - Grundlagen BWL 2

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prüfungsleistung schriftlich</td>
<td>4</td>
<td>Jedes Wintersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungscode</th>
<th>Lehrveranstaltung</th>
<th>Semesterwochenstunden (SWS)</th>
<th>Veranstaltungsart</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>2600002</td>
<td>Rechnungswesen</td>
<td>2 SWS</td>
<td>Vorlesung (V)</td>
<td>Strych</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2600003</td>
<td>Übung zu Rechnungswesen</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Strych</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Die Erfolgskontrolle erfolgt in Form einer schriftlichen Prüfung über 90 Minuten (nach §4(2), 1 SPO). Die Prüfung wird in jedem Semester angeboten und kann zu jedem ordentlichen Prüfungstermin wiederholt werden.

Voraussetzungen

Keine
5 TEILLEISTUNGEN

5.67 Teilleistung: Softwaretechnik I [T-INFO-101968]

Verantwortung: Prof. Dr.-Ing. Anne Koziolek
 Prof. Dr. Ralf Reussner
 Prof. Dr. Walter Tichy

Einrichtung: KIT-Fakultät für Informatik

Bestandteil von: M-INFO-101175 - Softwaretechnik I
 M-INFO-103453 - Softwaretechnik I

Teilleistungsart: Prüfungsleistung schriftlich
Leistungspunkte: 6
Turnus: Jedes Sommersemester
Version: 1

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltungs-ID</th>
<th>Veranstaltungsname</th>
<th>SWS</th>
<th>Vorlesung / Übung (V/U)</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>24518</td>
<td>Softwaretechnik I</td>
<td>4</td>
<td>Vorlesung / Übung (V/U)</td>
<td>Tichy, Weigelt, Hey</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Die Erfolgskontrolle besteht aus einer schriftlichen Prüfung nach § 4 Abs. 2 Nr. 1 SPO Informatik im Umfang von i.d.R. 60 Minuten.

Voraussetzungen
Keine.

Empfehlungen
Das Modul Programmieren sollte abgeschlossen sein.
5.68 Teilleistung: Theoretische Meteorologie I [T-PHYS-101482]

Verantwortung: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Corinna Hoose

Einrichtung: KIT-Fakultät für Physik

Bestandteil von: M-PHYS-101879 - Einführung in die Meteorologie

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Veranstaltung</th>
<th>3WS</th>
<th>Typ</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>WS 19/20</td>
<td>Theoretische Meteorologie I</td>
<td>3 SWS</td>
<td>Vorlesung (V)</td>
<td>Hoose, Grams</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>Übungen zu Theoretische Meteorologie I</td>
<td>2 SWS</td>
<td>Übung (Ü)</td>
<td>Hoose, Maurer, Pickl</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Teilleistung ist bestanden, wenn mindestens 50% der Punkte aus den Übungen erbracht sind und einmal in der Übung vorgerechnet wurde.

Voraussetzungen

keine
5.69 Teilleistung: Werkstoffkunde I & II [T-MACH-105145]

Verantwortung: Dr.-Ing. Jens Gibmeier
Prof. Dr.-Ing. Martin Heilmayer
Prof. Dr.-Ing. Kay Weidenmann

Einrichtung: KIT-Fakultät für Maschinenbau
KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102562 - Werkstoffkunde

Teilleistungsart: Prüfungsleistung mündlich
Leistungspunkte: 11
Turnus: Jedes Wintersemester
Version: 2

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesung</th>
<th>Übung</th>
<th>Tutorien</th>
<th>Prüfung</th>
<th>Dozent</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2174560</td>
<td></td>
<td></td>
<td>Vorlesung (V)</td>
<td>Heilmayer, Pundt</td>
</tr>
<tr>
<td>SS 2019</td>
<td>3174015</td>
<td></td>
<td></td>
<td>Vorlesung (V)</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>SS 2019</td>
<td>3174026</td>
<td></td>
<td></td>
<td>Übung (Ü)</td>
<td>Gibmeier, Mitarbeiter</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>2173550</td>
<td></td>
<td></td>
<td>Vorlesung (V)</td>
<td>Heilmayer, Pundt</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3173008</td>
<td></td>
<td></td>
<td>Vorlesung (V)</td>
<td>Gibmeier</td>
</tr>
<tr>
<td>WS 19/20</td>
<td>3173009</td>
<td></td>
<td></td>
<td>Übung (Ü)</td>
<td>Gibmeier</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)
Mündliche Prüfung, ca. 25 Minuten

Voraussetzungen
Vorbedingung für mündliche Modulprüfung: Erfolgreiche Teilnahme am "Praktikum in Werkstoffkunde" (unbenoteter Schein).

Modellierte Voraussetzungen
Es müssen die folgenden Bedingungen erfüllt werden:

1. Die Teilleistung T-MACH-105146 - Werkstoffkunde Praktikum muss erfolgreich abgeschlossen worden sein.

Anmerkungen
Der Arbeitsaufwand für die Vorlesung Werkstoffkunde 1 und 2 beträgt pro Semester 165 h und besteht aus Präsenz in den Vorlesungen (WS: 4 SWS, SS: 2SWS) und Übungen (je 1 SWS im WS und SS) sowie Vor- und Nachbearbeitungszeit zuhause.
5.70 Teilleistung: Werkstoffkunde Praktikum [T-MACH-105146]

Verantwortung: Prof. Dr.-Ing. Martin Heilmaier
 Prof. Dr. Anton Möslang
 Prof. Dr.-Ing. Kay Weidenmann

Einrichtung: KIT-Fakultät für Maschinenbau
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Angewandte Werkstoffphysik
 KIT-Fakultät für Maschinenbau/Institut für Angewandte Materialien/Werkstoffkunde

Bestandteil von: M-MACH-102562 - Werkstoffkunde

<table>
<thead>
<tr>
<th>Teilleistungsart</th>
<th>Leistungspunkte</th>
<th>Turnus</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studienleistung praktisch</td>
<td>3</td>
<td>Jedes Sommersemester</td>
<td>1</td>
</tr>
</tbody>
</table>

Lehrveranstaltungen

<table>
<thead>
<tr>
<th>Semester</th>
<th>Vorlesungsnr.</th>
<th>Lehrveranstaltung</th>
<th>SWS</th>
<th>Form</th>
<th>Lehrer</th>
</tr>
</thead>
<tbody>
<tr>
<td>SS 2019</td>
<td>2174597</td>
<td>Experimentelles Praktikum in Werkstoffkunde</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Heilmaier, Pundt, Dietrich, Gibmeier, Lang</td>
</tr>
<tr>
<td>SS 2019</td>
<td>3174016</td>
<td>Materials Science and Engineering Lab Course</td>
<td>3 SWS</td>
<td>Praktikum (P)</td>
<td>Gibmeier, Heilmaier, Pundt, Dietrich, Lang</td>
</tr>
</tbody>
</table>

Erfolgskontrolle(n)

Mündliches Kolloquium zu Beginn jedes Themenblocks; unbenotete Bescheinigung der erfolgreichen Teilnahme.

Voraussetzungen

keine

Anmerkungen

Der Arbeitsaufwand für das Praktikum Werkstoffkunde beträgt insgesamt 90 h und besteht aus Präsenzpflicht in den 10 Versuchen (eine Woche halbtags, je 4 Zeitstunden pro Tag) und Vor- und Nachbearbeitungszeit zuhause.