Table Of Contents

1. Introduction to the Study Guide ... 4
2. Qualification Goals .. 5
3. Field of study structure .. 6
 3.1. Master's Thesis .. 6
 3.2. Atmospheric and Climate Processes ... 6
 3.3. Applied and Experimental Meteorology .. 6
 3.4. Research Work .. 6
 3.5. Required Electives ... 7
 3.6. Interdisciplinary Qualifications ... 7
4. Program .. 8
5. Excerpts from the Regulation for the Study and Examination ... 10
6. Modules .. 18
 6.5. Computer Vision and GIS - M-BGU-102757 .. 23
 6.9. Geocology - M-BGU-103398 ... 29
 6.10. Geological Hazards and Risk - M-PHYS-101833 .. 31
 6.11. Geophysical analysis of natural hazards - M-PHYS-103338 ... 33
 6.12. GIS and Geo Data Infrastructures - M-BGU-102760 ... 35
 6.15. Interdisciplinary Qualifications - M-PHYS-102352 ... 40
 6.17. Modern Theoretical Physics for Teacher Students - M-PHYS-101664 ... 42
 6.18. Modern Theoretical Physics I, Quantum Mechanics I - M-PHYS-101707 .. 43
 6.20. Numerical Methods - M-MATH-105831 ... 45
7. Courses .. 50
 7.1. Advanced Fluid Mechanics - T-BGU-106612 .. 50
 7.2. Advanced Numerical Weather Prediction - T-PHYS-109139 ... 51
 7.3. Advanced Practical Courses - T-PHYS-109135 .. 52
 7.4. Applied Meteorology (Module Exam) - T-PHYS-109143 ... 53
 7.5. Arctic Climate System - T-PHYS-111273 ... 54
 7.6. Atmospheric Aerosols - T-PHYS-108938 .. 55
 7.7. Atmospheric Processes (Module Exam) - T-PHYS-108939 ... 56
 7.8. Atmospheric Radiation - T-PHYS-107696 .. 57
 7.9. Atmospheric Remote Sensing Infrastructures, Prerequisite - T-BGU-111185 ... 58
 7.11. Basics of Estimation Theory, Prerequisite - T-BGU-106821 .. 60
 7.13. Climate Modeling & Dynamics with ICON - T-PHYS-108928 .. 62
 7.15. Components of the Climate System (Module Exam) - T-PHYS-108933 ... 64
 7.16. Data Analysis in Geoscience Remote Sensing Projects, Prerequisite - T-BGU-106633 ... 65
 7.17. Data Science I - T-INFO-111622 ... 66
 7.18. Database Systems - T-INFO-101497 ... 67
 7.19. Distributed Computing - T-INFO-101298 .. 68
 7.20. Energetics - T-PHYS-107695 .. 69
 7.21. Energy Meteorology - T-PHYS-109141 .. 70
 7.22. Exam on Physics of Planetary Atmospheres - T-PHYS-109180 .. 71

Master of Science Meteorology (M.Sc.)
Module Handbook as of 05/09/2022
8. Guidelines
1 Introduction to the Study Guide

This module handbook is the relevant document describing the structure and the contents of the Master’s degree program in Meteorology, and thus provides helpful information and guidance for the studies. The degree program and its subjects and modules are described in detail, thus providing the necessary information for planning an interdisciplinary course of studies tailored to each student’s personal interests and needs.

The first section Study Guide specifies the organization of the degree program and further formalities in addition to the general regulations for the Study and Examination.

A key function of the module handbook is the collection of module descriptions (Section 2) and course descriptions (Section 3), which provide information on the requirements and recommendations.

In addition to this module handbook, the university calendar and possibly announcements of the institutes inform about further details, for example, on times and places of lectures and classes.

Please note, that only the German version of the Regulation for the Study and Examination (“Studien- und Prüfungsordnung”, SPO) is legally binding. The translated version is for the purpose of information only.

For more information please visit https://www.kit.edu/kit/english/corona-faq.php?tab=%5B30607%5D#tabpanel-30607
2 Qualification Goals

The graduates of the Master’s program in Meteorology know and understand the scientific fundamentals of meteorology and climatology, and have deepened them in the areas of the climate system, atmospheric processes as well as applied and experimental meteorology. This also includes aspects of atmospheric composition and thus of trace gases and aerosols. They have well-founded knowledge of programming techniques, numerical methods, computer simulations and data analysis, and have the ability to explain and at least partly apply complex atmospheric measurements in the laboratory, field and from satellite. They are familiar with mechanisms of the climate system and climate change. They know the relevance of meteorological phenomena such as extreme weather events, air pollution and climate change for society, nature and economy as well as for geoscientific neighboring disciplines, and can discuss and debate them. They also have detailed knowledge in a scientific elective.

Based on the acquired knowledge, the graduates correctly classify facts and thematic areas, and have the ability to solve – or develop approaches to solve – complex problems of the atmospheric and environmental sciences in an analytical-theoretical, computer-based or experimental way. They have the ability to deduce relationships from measured or modeled data, to formulate models, to derive predictions and to concretely test them, and thus to verify or falsify them. In addition, they can apply meteorological knowledge to research-related questions and are able to solve technical problems using the methods of the subject, also employing computer programs.

The graduates furthermore have sound methodological skills with regard to clear presentation and structuring of scientific findings and research results in written and spoken texts, and are proficient in didactically appealing presentation techniques. They can work independently and have extensive communication and organizational skills, including sound knowledge of scientific English. They are able to acquire new knowledge and insights as needed and thus to achieve a broadening or deepening of their knowledge. They have learned to reflect on their actions, and to recognize and evaluate the social and ethical aspects of meteorological research and application.

An important part of the education are the principles of good scientific practice, i.e. the maxims of unrestricted conscientiousness and honesty towards oneself and others in the investigation and presentation of scientific facts, unconditional honesty in the attribution of ideas and results to their authors in the past and present, and comprehensive documentation and presentation for the purpose of an open scientific discourse, which includes reexaminations and any kind of objectively justified criticism of ideas, procedures, and results, as well as the right to make bona fide mistakes and to be mistaken.

The distinctiveness of the Master’s program in Meteorology compared to other universities lies in the broad range of aspects of Meteorology covered as well as the strong research relevance. A successful completion of the Master’s program in Meteorology is an excellent foundation for a PhD in Meteorology or in related disciplines, and enables an applied or researching professional activity, i.a. in the field of weather forecasting, earth observation, satellite-based remote sensing and the compilation of environmental reports as well as in atmospheric research institutions and in the insurance and energy industries.
3 Field of study structure

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>Master's Thesis</td>
<td>30 CR</td>
</tr>
<tr>
<td>Atmospheric and Climate Processes</td>
<td>24 CR</td>
</tr>
<tr>
<td>Applied and Experimental Meteorology</td>
<td>24 CR</td>
</tr>
<tr>
<td>Research Work</td>
<td>30 CR</td>
</tr>
<tr>
<td>Required Electives</td>
<td>8 CR</td>
</tr>
<tr>
<td>Interdisciplinary Qualifications</td>
<td>4 CR</td>
</tr>
</tbody>
</table>

3.1 Master's Thesis

This module is intended to provide students with in-depth aspects of scholarly writing and presentation. Building on the results from the Specialization Phase, students further advance their own research project to finally write a Master’s Thesis. The written scientific work includes a summary of the state of the literature, presentation of the goals, methods used and the results obtained as well as a discussion of the knowledge gained and the remaining open questions. The students are trained to apply principles of good scientific practice, in particular to document the results, as well as to consistently self-doubt all results, and to present previous work appropriately and honestly.

More information about the modules Specialization Phase and Master’s Thesis is provided in the Guidelines to Master’s Thesis in section 7.

3.2 Atmospheric and Climate Processes

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-100956 Master's Thesis</td>
<td>30 CR</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-100951 Components of the Climate System</td>
<td>12 CR</td>
</tr>
<tr>
<td>M-PHYS-100952 Atmospheric Processes</td>
<td>12 CR</td>
</tr>
</tbody>
</table>

3.3 Applied and Experimental Meteorology

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-100953 Experimental Meteorology</td>
<td>14 CR</td>
</tr>
<tr>
<td>M-PHYS-100954 Applied Meteorology</td>
<td>10 CR</td>
</tr>
</tbody>
</table>

3.4 Research Work

Students carry out an interdisciplinary Study Project, for which 30 ECTS are credited. The project prepares students for independent scientific working and writing, and introduces skills in project management. The Study Project focuses on the topic of the subsequent Master's Thesis and serves as a preparation for the scientific work. In addition to the competence in reading and understanding scientific literature, the students acquire abilities for independent work and critical evaluation of results in the context of the literature, and consolidate their knowledge of the rules of good scientific practice.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-100955 Specialisation Phase</td>
<td>30 CR</td>
</tr>
</tbody>
</table>
3.5 Required Electives

The study can be complemented by electives to individualize the degree program. These could thus be modules from related disciplines such as Physics, Geocology, Geophysics, Mechanical Engineering, or Applied Geo sciences. Examples of possible Compulsory Elective Modules from other disciplines are listed below.

<table>
<thead>
<tr>
<th>Compulsory Elective Modules</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-101664 Modern Theoretical Physics for Teacher Students</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-101707 Modern Theoretical Physics I, Quantum Mechanics I</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-BGU-102757 Computer Vision and GIS</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-102758 GIS and Remote Sensing</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-BGU-102759 Computer Vision and Remote Sensing</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-BGU-102760 GIS and Geo Data Infrastructures</td>
<td>10 CR</td>
</tr>
<tr>
<td>M-INFO-102980 Informatics for Meteorology Students</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103336 Geophysical analysis of natural hazards</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-103403 Module Wildcard Electives</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-BGU-103398 Geocology</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-PHYS-104488 Physics of Planetary Atmospheres</td>
<td>8 CR</td>
</tr>
<tr>
<td>M-BGU-105504 Fluid Mechanics and Turbulence</td>
<td>9 CR</td>
</tr>
<tr>
<td>M-MATH-105831 Numerical Methods</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

3.6 Interdisciplinary Qualifications

Apart from scientific qualifications, KIT attaches high importance to transferable skills. These skills of 4 credits shall be part of the Master’s Program in Meteorology. Transferable skills may be achieved additively or integratively.

A wide range of interdisciplinary qualifications is offered by

- the House of Competence (HOC)
- the Sprachenzentrum (language center)
- the Center for Cultural and General Studies (ZAK)

With regard to scientific qualification, we recommend courses that train scientific work.

Examples:

- During the specialization phase, the course "The Master's Thesis in Physics, Meteorology and Geophysics (Online)" from the HOC is suitable.
- To get a feeling for the implementation of the guidelines for good scientific practice, the ILIAS course "Good Scientific Practice" of the KIT Library and the Writing Lab at the HOC is suitable.

<table>
<thead>
<tr>
<th>Mandatory</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-PHYS-102352 Interdisciplinary Qualifications</td>
<td>4 CR</td>
</tr>
</tbody>
</table>
4 Program

The master’s degree program in Meteorology deepens and extends the essential scientific qualifications obtained in the Bachelor’s program in a research-oriented way. Consolidation occurs in the areas of Theoretical Meteorology and Numerical Weather Prediction, Climatology, Remote Sensing and Data Analysis as well as in Atmospheric Chemistry and Aerosols, while extensions take place in the area of Applied Meteorology. A comprehensive practical course familiarizes the graduates with methods of modern atmospheric measurements in the laboratory and field. With the completion of the Master’s thesis, the graduates have demonstrated that they are capable of applying scientific knowledge and methods to independently solve complex research problems. In addition, they acquired detailed skills in an elective from a wide range of other natural sciences.

Graphic Course Program M.Sc. Meteorology (SPO 2015)

<table>
<thead>
<tr>
<th>Semester</th>
<th>Credit-points</th>
<th>Atmosphere and Climate Processes</th>
<th>Applied and Experimental Meteorology</th>
<th>Electives</th>
<th>Scientific Work</th>
<th>Master’s Thesis</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 (WS)</td>
<td>30</td>
<td>Components of the Climate System 12 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Examinations</td>
<td>Atmospsheric Processes 12 ECTS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 (SS)</td>
<td>31</td>
<td>Experimental Meteorology 10 ECTS</td>
<td></td>
<td></td>
<td>Elective 1 &</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3 Examinations</td>
<td>Applied Meteorology 14 ECTS</td>
<td></td>
<td></td>
<td>Elective 2</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>at least 8 ECTS</td>
<td></td>
</tr>
<tr>
<td>3 (WS)</td>
<td>29</td>
<td></td>
<td></td>
<td></td>
<td>Specialization Phase: Scientific Concept Development 30 ECTS</td>
<td></td>
</tr>
<tr>
<td>4 (SS)</td>
<td>32</td>
<td></td>
<td></td>
<td></td>
<td>Master’s Thesis 30 ECTS</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>120*</td>
<td>24</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>30</td>
<td>30</td>
</tr>
</tbody>
</table>

* In addition to the compulsory modules mentioned here, interdisciplinary qualifications amounting to 4 credit points must be completed. In this example, the Soft Skills are scheduled for semesters 1 and 2. Depending on your choice, additional examinations may be required in the respective semesters.

Course Program of the Masters Course Meteorology and Climate Physics. Credits corresponding to the European Credit Transfer System (ECTS).
Exemplary choice of subject in the compulsory elective area:

Module „Fluid Mechanics and Turbulence“ (graded)

WS (1st semester): Choice between:
- Flow Measurement Techniques (3 CP, oral exam, approx. 30 min.) and
- Environmental Aerodynamics (3 CP, oral exam, approx. 30 min.)

SS (2nd semester): Choice between:
- Advanced Fluid Mechanics (6 CP, written exam, 90 min.) and
- Fluid Mechanics of Turbulent Flows (6 CP, oral exam, approx. 45 min.)

In the event of a clash of dates with selected compulsory courses, students always have the option of postponing attendance of the elective compulsory modules until the third or fourth semester. It is recommended that the planning be done together with the study advisor for the MSc Meteorology during a consultation.
5 Excerpts from the Regulation for the Study and Examination (SPO 2015)

5.1 Regular Period of Study, Organization of Study, Credits (§3, SPO)

(1) The regular period of study shall be four semesters.

(2) The curriculum of the program is divided into subjects, the subjects into modules, and the modules are divided into courses. The subjects and their scopes are defined in Article 19. Details are outlined in the module manual.

(3) The workload envisaged for passing courses and modules is expressed in credits. The criteria for assigning credits correspond to the European Credit Transfer System (ECTS). One credit corresponds to a workload of about 30 hours. Usually, the credits shall be distributed equally over the semesters.

(4) The coursework and examinations required for the successful completion of the study are measured in credits and amount to a total of 120 credits.

(5) Upon prior announcement, the courses may also be offered in English.

5.2 Module Examinations, Coursework and Assessments (§4, SPO)

(1) The master’s examination shall consist of module examinations. Module examinations shall consist of one or several controls of success (“Erfolgskontrollen”). Controls of success shall consist of coursework (“Studienleistungen”) and assessments (“Prüfungsleistungen”).

(2) Assessments are:
 - Written examinations,
 - oral examinations, or
 - examinations of another type.

(3) Coursework shall be written, oral, or practical work that is usually accomplished by students simultaneously to the taught courses. The master’s examination must not be completed by a coursework.

(4) At least 70% of the module examinations shall be graded.

(5) In case of complementary contents, module examinations of several modules may be combined (par. 2, nos. 1-3).

5.3 Registration for and Admission to Module Examinations and Courses (§5, SPO)

(1) To participate in module examinations, students shall register online on the Students Portal for the corresponding controls of success. In exceptional cases, registration can be made in writing to the Students Office or another institution authorized by the latter. For controls of success, registration deadlines may be specified by the examiners. Registration of the master’s thesis is outlined in the module manual.

To get help with the Campus System visit https://www.sle.kit.edu/imstudium/videotutorials-campus.php (currently available only in German language) or ask the student counseling via Mail.

(2) For admission to an examination in an elective module, students shall submit – together with their registration for the examination – a binding declaration relating to their choice of the module and its assignment to a subject prior to the first examination in this module. At the request of the student to the examination committee, the choice or assignment can be changed later. If an examination procedure in a module has already started, the choice of elective or assignment to a subject can only be changed after its completion.

(3) Admission to a control of success shall be granted to students, who
 - are enrolled in the Master’s Program in Meteorology at KIT; with the admission of students on leave being limited to examinations, and to students, who
 - can prove that they meet the requirements for admission to a control of success outlined in the module manual and
• can prove that their entitlement to an examination in the Master’s Program in Meteorology has not been lost.

(4) According to Article 30, par. 5, LHG (Landeshochschulgesetz), admission to individual mandatory courses may be restricted. The examiner shall decide on the selection of students, who have registered in due time before the deadline given by the examiner, taking into account the study progress made by these students and taking into consideration Article 13, par. 1, clauses 1 and 2, if the surplus of registrations cannot be reduced by other or additional courses. In the case of identical study progress, further criteria shall be specified by the KIT departments. The result shall be announced to the students in due time.

(5) Admission shall be refused, if the conditions outlined in pars. 3 and 4 are not fulfilled. Admission may be refused, if a control of success that was required for admission to this Master’s Program was already passed in a KIT bachelor’s program. This shall not apply to premature master’s examinations (“Mastervorzug”). Admission to these shall be approved explicitly according to clause 1.

5.4 Execution of Controls of Success (§6, SPO)

(1) Controls of success shall be performed simultaneously to the taught courses, usually while conveying the contents of the individual modules or shortly afterwards.

(2) The type of control of success (Article 4, par. 2, nos. 1 – 3, par. 3) shall be specified by the examiner of the respective course depending on the contents of the course and teaching objectives of the module. The type of controls of success, their frequency, sequence, weighting, and the determination of the module grade, if applicable, shall be announced in the module manual six weeks prior to the start of the lecturing period at the latest. The examiner and student may change the type of examination and the examination language later on. In the former case, Article 4, par. 4 has to be observed. When organizing examinations, the needs of students with a disability or chronic disease shall be considered according to Article 13, par. 1. Article 13, par. 1, clauses 3 and 4 shall apply accordingly.

(3) In case of an unreasonably high examination workload, a written examination may also be passed orally or an oral examination may also be passed in writing. This modification shall be announced six weeks prior to the examination at the latest.

(4) In case of courses in the English language (Article 3, par. 5), the corresponding controls of success can be executed in this language. Article 6, par. 2 shall apply accordingly.

(5) Written examinations (Article 4, par. 2, no. 1) shall usually be evaluated by an examiner according to Article 17, pars. 2-4. If an evaluation is made by several examiners, the grade shall be the arithmetic mean of the individual evaluations. If the arithmetic mean does not correspond to any of the grade levels defined in Article 7, par. 2, cl. 2, the grade shall be rounded to the next higher or lower grade level. In case of equal distance to the next higher and lower levels, the grade shall be rounded to the next higher grade level. The evaluation procedure shall not exceed six weeks. Written examinations shall last at least 60 and not more than 300 minutes.

(6) Oral examinations (Article 4, par. 2, no. 2) shall be performed and evaluated as group or individual examinations by several examiners (examining board) or by one examiner in the presence of an assessor. Prior to determining the grade, the examiner shall consult the other examiners of the examining board. Oral examinations shall usually last at least 15 minutes and not more than 60 minutes per student.

Major details and results of the oral examination shall be minuted. The result of the examination shall be announced to the student directly after the oral examination.

Students who intend to take the same examination in a later semester shall be admitted to oral examinations as an observer depending on the space available and upon approval of the examinee. They shall not be admitted to the consultation of the examining board and the announcement of the examination results.
(7) For examinations of another type, (Article 4, par. 2, no. 3), appropriate deadlines and submission dates shall be specified. Proper description of the task and adequate documentation shall ensure that the examination passed can be credited to the student. Major details and results of the control of success shall be minuted.

During oral examinations of another type, an assessor shall be present in addition to the examiner, who shall also sign the minutes together with the examiner.

Theses or papers to be written for an examination of another type shall be provided with the following declaration:

“Ich versichere wahrheitsgemäß, die Arbeit selbstständig angefertigt, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde.”

“I herewith declare that the present thesis/paper is original work written by me alone and that I have indicated completely and precisely all aids used as well as all citations, whether changed or unchanged, of other theses and publications.”

If the thesis/paper does not contain this declaration, it shall not be accepted. Major details and results of such a control of success shall be minuted.

5.5 Controls of Success by a Multiple-Choice Test (§6a, SPO)

It is outlined in the module manual whether and to what extent controls of success can be made by a multiple-choice test.

5.6 Repetition of Examinations, Ultimate Failure (§8, SPO)

(1) Students may repeat once a written examination that has not been passed (Article 4, par. 2, no. 1). In case a repeated written examination is given the grade of “nicht ausreichend” (5.0, failed), an oral re-examination shall take place soon after the date of the failed examination. In this case, the grade of this examination may not be better than “ausreichend” (4.0, sufficient).

(2) Students may repeat once an oral examination that has not been passed (Article 4, par. 2, no. 2).

(3) Repeated examinations according to paragraphs 1 and 2 shall correspond to the first examination in terms of contents, scope, and type (oral or written). At request, exceptions may be approved by the responsible examination committee.

(4) Examinations of another type (Article 4, par. 2, no. 3) can be repeated once.

(5) Coursework can be repeated several times.

(6) An examination shall ultimately not be passed, if the oral re-examination according to par. 1 was evaluated with the grade of “nicht ausreichend” (5.0, failed). The examination also shall ultimately not be passed, if the oral examination according to par. 2 or the examination of another type according to par. 4 was evaluated twice with the grade of “nicht bestanden” (failed).

(7) The module shall ultimately not be passed, if an examination required for passing the module is ultimately not passed.

(8) A second repetition of the same examination according to Article 4, par. 2 shall be possible in exceptional cases at the request of the student only (“Antrag auf Zweitwiederholung” – application for a second repetition). As a rule, the application shall be submitted in writing to the examination committee within two months after announcement of the grade.

The examination committee shall decide on the first application of a student for a second repetition. If the examination committee dismisses the application, a member of the Presidential Committee shall decide. Upon comment of the examination committee, a member of the Presidential Committee shall decide on further applications for a second repetition. If the

Master of Science Meteorology (M.Sc.)
Module Handbook as of 05/09/2022
application is accepted, the second repetition shall take place on the next but one examination date at the latest. Paragraph 1, clauses 2 and 3 shall apply accordingly.

(9) Repetition of a passed examination shall not be permitted.

(10) In case a Master’s thesis has been granted the grade “nicht ausreichend” (5.0, failed), it can be repeated once. A second repetition of the Master’s thesis shall be excluded.

5.7 Loss of the Entitlement to an Examination (§9, SPO)

In case coursework or an examination required according to the present Regulations for Study and Examination is ultimately not passed or the master’s examination, including potential repetitions, is not passed completely by the end of the examination period of the seventh semester, the entitlement to examination in the Master’s Program in Meteorology shall expire, unless the student is not responsible for having exceeded the deadline. The decision on extending the deadline and on exceptions from the deadline regulations shall be made by the examination committee taking into account the activities listed in Article 32, par. 6, LHG at the request of the student. This request shall be made in writing usually six weeks prior to the expiry of the deadline.

5.8 Deregistration, Absence, Withdrawal (§10, SPO)

(1) Students can revoke their registration for written examinations until the issue of the examination tasks without having to indicate any reasons (deregistration). Deregistration can be made online on the Students Portal by 12 pm on the day before the examination or in justified exceptional cases with the Students Office during office hours. If the deregistration is addressed to the examiner, the latter shall ensure that the deregistration is documented in the Campus Management System.

(2) In case of oral examinations, deregistration shall be declared to the examiner at least three working days before the date of examination. Withdrawal from an oral examination less than three working days before the date of examination shall be possible under the conditions outlined in par. 5 only. In principle, withdrawal from oral reexaminations in the sense of Article 9, par. 1 shall be possible under the conditions of par. 5 only.

(3) Withdrawal from examinations of another type and from coursework shall be subject to the provisions given in the module manual.

(4) An examination shall be deemed to have been “nicht ausreichend” (5.0, failed), if the student fails to be present at the examination without a good reason or if she/he withdraws from the examination after its start without a good reason. The same shall apply, if the master’s thesis is not submitted within the period envisaged, unless the student is not responsible for having exceeded the deadline.

(5) The reason given for withdrawal after the start of the examination or absence shall be notified immediately, credibly, and in writing to the examination committee. In case of sickness of the student or of a child cared for by the student alone or of a relative in need of care, submission of a medical certificate may be required.

5.9 Maternity Leave, Parental Leave, Assumption of Family Obligations (§12, SPO)

(1) At the student’s request, the maternity protection periods as defined by the Act on the Protection of the Working Mother (Mutterschutzgesetz, MuSchG), as amended, shall be considered. The required evidence shall be enclosed with this request. The maternity protection periods suspend any deadline according to the present examination regulations. The duration of maternity protection shall not be included in the deadline given.

(2) At request, the deadlines of parental leave shall be considered according to the valid legislation (Bundeselterngeld- und Elternzeitgesetz (Parental Benefit and Parental Leave Act – BEEG)). Four weeks prior to the desired start of the parental leave period at the latest, the student shall inform the examination committee in writing about the time when she/he wishes to be on parental leave. The required evidence shall be enclosed. The examination committee shall then check whether the legal prerequisites would justify an employee’s claim for parental leave and inform the student.
immediately of the result and the new times of examination. The period of work on the Master’s thesis may not be interrupted by parental leave. In this case, the thesis shall be deemed to have not been assigned. After expiry of the parental leave period, the student shall receive a new subject that is to be dealt with within the period defined in Article 14.

(3) At request, the examination committee shall decide on the flexible handling of examination deadlines according to the provisions of the Act of Baden-Württemberg on Universities and Colleges (LHG), if students have to assume family obligations. Paragraph 2, clauses 4 to 6 shall apply accordingly.

5.10 Students with a Disability or Chronic Disease (§13, SPO)

(1) When organizing degree programs and examinations, the needs of students with a disability or chronic disease shall be considered. In particular, students with a disability or chronic disease shall be granted preferred access to courses with a limited number of participants and the order for passing certain courses shall be adapted to their needs. According to the Federal Equality Act (Bundesgleichstellungsgesetz, BGG) and Vol. 9 of the Social Code (SGB IX), students are disabled, if their bodily function, mental capacity, or emotional health most probably deviates from the state typical of the age for a period longer than six months and, hence, their participation in social life is impaired. At the request of the student, the examination committee shall decide on the existence of conditions outlined in clauses 2 and 3. The student shall submit the required evidence for this purpose.

(2) If a student provides evidence of a disability or chronic disease, as a result of which she/he is not able to pass examinations completely or partly within the planned time or in the form envisaged, the examination committee may permit examinations within other time periods or in another form. In particular, disabled students shall be permitted to use the required aids.

(3) In case students provide evidence of a disability or chronic disease, as a result of which they are not able to attend courses regularly or to pass the required coursework or examinations as outlined in Article 19, the examination committee may permit at the student’s request passing of certain coursework and examinations after the expiry of the deadlines given in the present Regulations for Study and Examination.

(4) Examples of possible compensations of disadvantages:

- Modified form of exams, for instance oral exams instead of written exams, and vice versa
- Conducting exams in a separate room
- Allowing necessary utilities and assistance, e.g. sign language interpreter
- Additional breaks during time-limited exams
- Extension of the periods between exams

5.11 Master’s Thesis (§14, SPO)

The Master’s Thesis is an independent scientific study and includes the theoretical and/or experimental work on a complex problem. Students deal with the current state of research and apply the expertise and scientific methods acquired during the studies. They can document, discuss and evaluate the obtained results. Furthermore, they can present and defend the essential findings. The topic of the Master’s Thesis depends on the subject area chosen for the thesis.

(1) For admission to the master’s thesis module, module examinations worth 70 credits must have been passed successfully. In particular, module examination in the subject of “Wissenschaftliches Arbeiten” (Scientific Work) must have been passed successfully. At the request of the student, the examination committee shall decide on exceptions.

(1a) 30 credits are assigned to the master’s thesis module. It consists of the master’s thesis and a presentation. The presentation shall be given four weeks after submission of the master’s thesis at the latest.
(2) The master’s thesis topic can only be given out by university teachers (“Hochschullehrer(in)”), habilitated scientists, and leading scientists (“leitende(r) Wissenschaftler(in)”) according to Article 14, par. 3, clause 1, KITG. In addition, the examination committee can authorize other examiners to give out the topic according to Article 17, pars. 2-4. The student shall be given the possibility of making proposals for the topic. If the master’s thesis is to be written outside of the KIT Department of Physics, the approval of the examination committee shall be required. The master’s thesis may also be accepted in the form of group work, if the contribution of the individual student to be evaluated in the examination can be distinguished clearly based on objective criteria and if the requirement outlined in par. 4 is fulfilled. In exceptional cases, the chairperson of the examination committee shall take care of the student receiving a topic for the master’s thesis within four weeks after her/his request. In this case, the topic is issued by the chairperson of the examination committee.

(3) The subject, task, and scope of the master’s thesis shall be limited by the supervisor such that it can be handled with the workload outlined in par. 4.

(4) The master’s thesis shall demonstrate that the student is able to deal with a problem of her/his subject area in an independent manner and within a limited period of time using scientific methods. The scope of the master’s thesis shall correspond to 30 credits. The maximum duration of work on the thesis shall amount to six months. The subject and task shall be adapted to the scope envisaged. The examination committee shall specify in which languages the master’s thesis can be written. At the request of the student, the examiner can permit the master’s thesis to be written in a language other than German.

(5) When submitting the master’s thesis, the student shall assure in writing that the thesis is original work by her/him alone and that she/he has used no sources and aids other than indicated, marked all citations in word and content, and observed the Rules of KIT for Safeguarding Good Scientific Practice, as amended. If this declaration is not contained, the thesis will not be accepted. The wording of the declaration may be:

“Ich versichere wahrheitsgemäß, die Arbeit selbständig verfasst, alle benutzten Hilfsmittel vollständig und genau angegeben und alles kenntlich gemacht zu haben, was aus Arbeiten anderer unverändert oder mit Abänderungen entnommen wurde sowie die Satzung des KIT zur Sicherung guter wissenschaftlicher Praxis in der jeweils gültigen Fassung beachtet zu haben.”

“I herewith declare that the present thesis is original work written by me alone and that I have indicated completely and precisely all aids used as well as all citations, whether changed or unchanged, of other theses and publications, and that I have observed the Rules of KIT for Safeguarding Good Scientific Practice, as amended.”

If the declaration is not true, the master’s thesis shall be evaluated “nicht ausreichend” (5.0, failed).

(6) The time of giving out of the topic of the master’s thesis shall be recorded in the files of the examination committee by the supervisor and the student. The time of submission of the master’s thesis shall be recorded in the files of the examination committee by the examiner. The student shall be allowed to return the topic of the master’s thesis once only within the first month of the period of work on the thesis. At the justified request of the student, the examination committee may extend the time of work on the thesis given in par. 4 by three months at the maximum. If the master’s thesis is not submitted in time, it shall be deemed to have been “nicht ausreichend” (failed, 5.0), unless the student is not responsible for this failure.

(7) The master’s thesis shall be evaluated at least by one university teacher (“Hochschullehrer(in)”) or leading scientist (“leitende(r) Wissenschaftler(in)”) according to Article 14, par. 3, clause 1, KITG and another examiner. Usually, one of the examiners is the person who gave out the thesis topic according to par. 2. In case of deviating evaluations of both persons, the examination committee shall fix the grade of the master’s thesis within the limits of the evaluations of both persons. It may also appoint another expert. The evaluation period shall not exceed eight weeks after submission of the master’s thesis.
5.12 Additional Achievements (§15, SPO)

(1) Up to 30 further credits may be acquired in courses offered by KIT (additional achievements, “Zusatzleistungen”), Articles 3 and 4 of the examination regulations shall remain unaffected. These additional achievements shall not be considered when calculating the final and module grades. The credits not considered when determining the module grade shall be listed as additional achievements in the transcript of records. At the student’s request, additional achievements shall be indicated in the master’s certificate and marked as additional achievements. Additional achievements shall be listed with the grades outlined in Article 7.

(2) The student shall declare a module examination an additional achievement when registering for this examination. At the student’s request, allocation of the module can be changed later on.

5.13 Transferable Skills (Soft Skills) (§15a, SPO)

Apart from scientific qualifications, KIT attaches high importance to transferable skills. These skills of 4 credits shall be part of the Master’s Program in Meteorology. Transferable skills may be achieved additively or integratively.

A wide range of interdisciplinary qualifications is offered by

- the House of Competence (HOC)
- the Sprachenzentrum (language center)
- the Center for Cultural and General Studies (ZAK)

5.14 Recognition of Coursework and Examinations as well as of Study Periods (§18, SPO)

(1) Coursework and examinations completed, as well as study periods passed, in study programs at state or state-recognized universities and universities of cooperative education of the Federal Republic of Germany or at foreign state or state-recognized universities shall be recognized at the request of the student, if the competencies acquired do not differ considerably from the achievements or degrees to be replaced. For this, no schematic comparison, but an overall analysis shall be made. As regards the scope of a coursework to be recognized, the principles of the ECTS shall be applied.

(2) The student shall submit the documents required for recognition. Students newly enrolled in the Master’s Program in Meteorology shall submit the application together with the documents required for recognition within one semester after enrolment. If documents are not available in the German or English language, an officially certified translation may be required. The examination committee shall bear the burden of proving that the application does not meet the recognition requirements.

(3) If achievements from outside of the KIT are recognized, they are listed as “anerkannt” (recognized) in the certificate. If grades exist, they shall be taken as is in case of comparable grade scales and shall be included in the calculation of module grades and the final grade. In case of incomparable grade systems, the grades can be converted. In the absence of grades, the note “bestanden” (passed) shall be entered.

(4) When recognizing coursework and examinations passed outside of the Federal Republic of Germany, the equivalence agreements adopted by the Conference of Ministers of Education and the German Rectors’ Conference as well as agreements concluded within the framework of university partnerships shall be considered.

(5) Knowledge and skills acquired outside of the university system shall be recognized, if they are equivalent to the coursework and examinations to be replaced in terms of contents and level and if the institution, where the knowledge and skills were acquired, has a standardized quality assurance system. Recognition may be refused in parts when more than 50% of the university’s study program is to be replaced.

(6) The examination committee (§16, SPO) shall be responsible for recognition. To determine whether a considerable difference in the sense of par. 1 exists, the responsible subject representatives shall be
heard. Depending on the type and scope of coursework and examinations to be recognized, the examination committee shall decide on admission to a higher semester.

The process of recognition is as follows:

In case of a change of the degree program

If you want to change from another course of studies to Meteorology, you can in principle have achievements from the old course of studies recognized by the examination board. Students of Meteorology fill in the form after consulting appl. Prof. Dr. Andreas Fink (Advisory Service for Meteorology).

In case of a change of university

Students who continue a bachelor’s or master’s program in Meteorology at KIT that they started at another university may have their study and examination achievements recognized. The procedure is the same as for changing the course of study. The excerpt of the student’s grades and the module handbook of the university from which the student changed to KIT serve as proof.

In case of a stay abroad

When planning your study abroad, you can select courses in the module handbook of your host university that essentially correspond to the curriculum of the KIT Faculty of Physics.

In the ERASMUS program, you fill out a form for an individual study plan, the so-called Learning Agreement, before you start your studies abroad. For this purpose, suggest to the examination board which courses and performance assessments (study or examination achievements) of your host university should replace those of KIT. The scope (in credit points) of the course to be recognized must not be significantly smaller, the central contents (according to the module handbook) and the form of examination (written, oral, ...) must be identical, and the degree of difficulty of the performance review must be comparable to or higher than at KIT.

We offer students who plan to study abroad outside the ERASMUS program the agreement of an individual study plan with the KIT faculty (analogous to the ERASMUS Learning Agreement). You can find the form on our website under “Stay abroad”. Students fill out the ERASMUS Learning Agreement or the individual study plan of the KIT faculty together with the above-mentioned student advisory service. After their return, they will then apply for the recognition of their achievements abroad. For this purpose, the usual form has to be filled in and submitted to the examination board with supporting documents (e.g. the transcript of records). Study achievements that were not previously agreed upon can also be recognized. Additional achievements cannot be acquired abroad (SPO §15 (1)).

5.15 Accomplishments obtained outside of the Higher Education System

Accomplishments made outside of the higher education system, as for example vocational training, can be accredited if the acquired competences contribute to the qualification goals of the Master’s program. Recognition is requested with the respective form of the examination committee. The examination committee verifies to which extent the acquired knowledge and capabilities can be recognized, and which parts of the program they can replace. At maximum, 50 % of the university education can be replaced. The form for recognition must be submitted to the study advisor, who will transfer it to the examination committee and the "Studierendenservice".
6 Modules

6.1 Module: Applied Meteorology (Met-AngM2-1) [M-PHYS-100954]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Organisation: KIT Department of Physics
Part of: Applied and Experimental Meteorology

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109142</td>
<td>Methods of Data Analysis</td>
<td>0 CR</td>
<td>Ginete Werner Pinto, Knippertz</td>
</tr>
<tr>
<td>T-PHYS-109143</td>
<td>Applied Meteorology (Module Exam)</td>
<td>10 CR</td>
<td>Ginete Werner Pinto</td>
</tr>
</tbody>
</table>

Compulsory Electives Applied Meteorology (Elect: between 2 and 3 Items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108610</td>
<td>Turbulent Diffusion</td>
<td>0 CR</td>
<td>Hoose, Hoshyaripour</td>
</tr>
<tr>
<td>T-PHYS-109141</td>
<td>Energy Meteorology</td>
<td>0 CR</td>
<td>Emeis, Ginete Werner Pinto</td>
</tr>
<tr>
<td>T-PHYS-109139</td>
<td>Advanced Numerical Weather Prediction</td>
<td>0 CR</td>
<td>Knippertz</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisite: Coursework (“Studienleistung”)
For type of Coursework see Course description (“Teilleistungsbeschreibung”)
→ successful completion of the prerequisites entitles to exam

Examination: Assessment (“Prüfungsleistung”)
T-PHYS-109143 Applied Meteorology (Module Exam)
Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Meteorology

Competence Goal

The students can professionally explain essential aspects of application of meteorology and assign them to specific application areas. The students are capable to derive the Impact on air pollution and generating regenerative energy from weather information. They are capable of analyzing meteorological phenomena using statistical and computer-based methods.

Content

This module aims to give students an overview of important applications of meteorology in areas such as weather forecasting and warning, insurance and energy industry, air quality and data analysis. In particular, the module deals with the following aspects:

- **Methods of data analysis** that are widely used in the Geosciences and particularly in meteorology / climate research are presented (e.g., statistical methods, correlation analyzes, least-squares (linear, multi-linear, and nonlinear regression), principal component analysis, Fourier analysis)
- **Methods of numerical weather prediction** (hydrodynamic systems of equations, spectral approximation methods, difference approximation on irregular grids, statistical data assimilation methods, operational aspects of weather forecasting).
- **Energy meteorology** (fundamentals of the energy system, application of meteorological expertise in the energy industry, in particular for the integration of renewable energies wind power, solar energy and hydro power, deepening of individual meteorological aspects of particular relevance)
- Dispersion of atmospheric constituents (relevant trace gases, diurnal cycles of emissions and concentrations, temperature and flow evolution in the lower atmosphere, turbulent diffusion, turbulence parameterization, chemical conversion processes, numerical models)

Module grade calculation

Grade of the oral exam.
Workload
Presence time in lectures, exercises: 90 hours
Preparation / follow-up: 90 hours
Exam preparation: 120 hours

Recommendation
Basic knowledge in statistics are helpful.
6.2 Module: Atmospheric Processes (Met-AtPr1-1) [M-PHYS-100952]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: Atmospheric and Climate Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory

- T-PHYS-107694 Cloud Physics
- T-PHYS-107695 Energetics
- T-PHYS-108938 Atmospheric Aerosols
- T-PHYS-107696 Atmospheric Radiation
- T-PHYS-108939 Atmospheric Processes (Module Exam)

Grading scale

- 0 CR Hoose
- 0 CR Fink
- 0 CR Möhler
- 0 CR Höpfner
- 12 CR Hoose

Competence Certificate

Prerequisite: Coursework ("Studienleistung")

For type of Coursework see Course description ("Teilleistungsbeschreibung")

→ successful completion of the prerequisites entitles to exam

Examination: Assessment ("Prüfungsleistung")

- T-PHYS-108939 Atmospheric Processes (Module Exam)

Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Meteorology

Competence Goal

The students can name essential processes in the atmosphere and explain these using physical and chemical laws. In particular, they are capable of explaining structure and dynamics of different cloud systems and estimating the micro physical processes in clouds or calculating them directly for idealized conditions. In addition, the students are capable of mathematically evaluating the radiation transport in the atmosphere and describe the importance of radiation processes for the structure of the atmosphere, for climate change and for the measurement of different atmospheric variables. They can also explain the chemical structure and the composition of the aerosols in the troposphere and the stratosphere on the basis of the atmospheric physico-chemical processes and transformations. The students know the main aerosol-cloud processes and are familiar with the Köhler theory and the classical nucleation theory.

Content

This module aims to give students an overview of important convey physical and chemical processes in the atmosphere. In particular, it includes:

- Cloud Physics (phenomenology, cloud dynamics of stratiform and convective clouds, microphysics of warm and cold clouds, collision and coalescence, primary and secondary ice formation, condensational and depositional growth)
- Energetics (mean meridional circulation, stationary and transient eddies; basic forms, budget equations and transport processes of energy in the atmosphere; principle of available potential energy; Lorenz cycle: energy reservoirs and transformation processes, eddy and thermally driven jets (EP flux vectors))
- Atmospheric aerosols (gas particle processes (kinetics, diffusion, condensation), aerosol properties (diffusion, coagulation, sedimentation, impaction), Aerosol thermodynamics (chemical potential, solubility, crystallization), aerosol cloud processes (Köhler theory, ice nucleation))
- Atmospheric radiation (basic quantities of electromagnetic radiation, atmospheric radiative transfer, boundary conditions, reflection, emission, molecular spectroscopy, line broadening, scattering, optical phenomena, radiation parametrization in atmospheric models, radiation budget, climate change, remote sensing)

Module grade calculation

Grade of the oral exam

Workload

Presence time in lectures, exercises: 113 hours
Preparation / follow-up: 87 hours
Exam preparation: 160 hours

Responsible: Prof. Dr. Jan Cermak
Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

- T-BGU-106821 Basics of Estimation Theory, Prerequisite

 This item will not influence the grade calculation of this parent.

 1 CR Hinz

- T-BGU-106633 Data Analysis in Geoscience Remote Sensing Projects, Prerequisite

 This item will not influence the grade calculation of this parent.

 2 CR Cermak

 5 CR Cermak, Hinz

Competence Certificate

oral exam of about 30 min.

Prerequisites

none

Competence Goal

Students explain the theoretical basics and important aspects of detection, classification and parameter estimation. They apply the concepts and methods of estimation theory, deformation and statistical analysis to data recorded by geodetic, geophysical or remote sensing systems. An even deeper understanding of the subjects is reached by home and project work. The students process the collected project data and evaluate the obtained results critically. By working self-organized and reflectively the students deepen their knowledge in soft skills, e.g., organization, collaboration and communication.

Content

Contents of the module include

- an introduction into stochastic modelling (starting with the Bayes-Theorem),
- theoretical models and applied methods of detection of events in signals,
- theoretical models and applied methods of classification of events in signals,
- a variety of methods for parameter estimation, e.g. least-squares estimation, transformation of probability density and integration of a-priori knowledge about parameters and observations,
- an introduction into the different statistical based methods of deformation analysis,
- statistical approaches to the analysis of remote sensing data in a geosciences context.

Module grade calculation

grade of oral exam

Workload

210 h total, thereof 45 h contact hours
6.4 Module: Components of the Climate System (Met-KKli1-1) [M-PHYS-100951]

Responsible: Prof. Dr. Andreas Fink
Organisation: KIT Department of Physics
Part of: Atmospheric and Climate Processes

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>12</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>7</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-108933</td>
<td>Components of the Climate System (Module Exam)</td>
<td>12 CR</td>
<td>Fink</td>
</tr>
</tbody>
</table>

Compulsory Electives (Elective: between 3 and 5 items)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>Credits</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-107692</td>
<td>Seminar on IPCC Assessment Report</td>
<td>0 CR</td>
<td>Ginete Werner Pinto, Hoose, Ludwig</td>
</tr>
<tr>
<td>T-PHYS-107693</td>
<td>Tropical Meteorology</td>
<td>0 CR</td>
<td>Knippertz</td>
</tr>
<tr>
<td>T-PHYS-108928</td>
<td>Climate Modeling & Dynamics with ICON</td>
<td>0 CR</td>
<td>Ginete Werner Pinto, Voigt</td>
</tr>
<tr>
<td>T-PHYS-108931</td>
<td>Middle Atmosphere in the Climate System</td>
<td>0 CR</td>
<td>Höpfner, Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-108932</td>
<td>Ocean-Atmosphere Interactions</td>
<td>0 CR</td>
<td>Fink</td>
</tr>
<tr>
<td>T-PHYS-111273</td>
<td>Arctic Climate System</td>
<td>0 CR</td>
<td>Sinnhuber</td>
</tr>
</tbody>
</table>

Competence Certificate

Prerequisite: Coursework ("Studienleistung")
For type of Coursework see Course description ("Teilleistungsbeschreibung")
→ successful completion of the prerequisites entitles to exam

Examination: Assessment ("Prüfungsleistung")

T-PHYS-108933 Components of the Climate System (Module Exam)

Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Meteorology

Competence Goal

The students can explain essential components of the climate system and their physical properties. They are capable of explaining causes of climate change competently, present them and discuss them critically. Students can name and explain climate monitoring systems and explain the basic principles of climate models.

The students can designate essential processes in the atmosphere and ocean and explain them with physical and chemical laws. They are able to analyze and interpret climate and weather data on the basis of diagnostic methods. In addition, they can competently present and discuss learned or self-developed scientific findings.

Content

This module aims to give students an overview of important components of the climate system, their physical and chemical backgrounds and their temporal and spatial changes.

This includes lectures, course work, computer and modelling classes on individual components of the climate system (e.g. tropics, polar regions, ocean, middle atmosphere) and on climate dynamics and change.

Module grade calculation

Grade of the oral exam.

Annotation

In the module Components of the climate system courses (C) are offered with lectures (L) and exercises (2L1E) and lectures without exercises (2L). Registration for this examination is only possible if courseworks have been made in a sufficient amount. There are different ways to do this:

- 2C with 2L1E and 2C with 2L

Workload

Presence time in lectures, exercises: 120 hours
Preparation / follow-up: 120 hours
Exam preparation: 120 hours

Recommendation

Basic knowledge about the climate system is helpful.
6.5 Module: Computer Vision and GIS [M-BGU-102757]

Responsible: Prof. Dr.-Ing. Stefan Hinz
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>3 CR</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite</td>
<td>3 CR</td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101732</td>
<td>Image Processing and Computer Vision</td>
<td>4 CR</td>
<td>Weidner</td>
</tr>
</tbody>
</table>

Competence Certificate

online test, written exam (90 min., oral exam (30 min.)

Prerequisites

None

Competence Goal

Die Studierenden sind mit der Erfassung, Analyse und Präsentation von Daten mit Raumbezug vertraut. Darüber hinaus kennen sie die unterschiedlichen Aspekte geometrischer und topologischer Modellierung und beherrschen die Sachdatenverwaltung.

Die Studierenden verstehen ferner die grundlegenden Prinzipien eines Geoinformationssystems und sind mit der Definition des Raumbezugs vertraut. Sie sind in der Lage, einfache projektbezogene Fragestellungen selbstständig zu bearbeiten. Darüber hinaus können sie ausgewählte Grundlagen der Bildverarbeitung und Computer Vision beschreiben, anwenden und auf andere Anwendungsgebiete übertragen.

Content

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: Bezugs- und Koordinatensysteme sowie deren Transformation (z.B. UTM, Gauß-Krüger); Grundlagen der Informatik (z.B. Datenbanken, SQL); Geodatenmodellierung und Erfassung (z.B. GNSS); Normierung und Standardisierung in GIS (z.B. ISO, OGC, WFS, WMS); Einfache Algorithmen (z. B. „Point in Polygon“); Software: Vornehmlich QGIS, ArcGIS, Web-GIS u. a.

Image Processing and Computer Vision: This course provides an overview of basic approaches of image processing and computer vision, starting from image filters like linear and non-linear filters, gradient and curvature operators and leading to concepts of object extraction based on point, line and segment extraction and their applications. The module consists of lectures and labs.

Workload

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: 180 h gesamt, davon Präsenzzeit 45 h

Image Processing and Computer Vision: 90 h total, thereof 32 h contact hours

Recommendation

None
6.6 Module: Computer Vision and Remote Sensing [M-BGU-102759]

Responsible: Prof. Dr. Jan Cermak
Dr.-Ing. Uwe Weidner

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Required Electives

Credits	**Grading scale**	**Recurrence**	**Duration**	**Language**	**Level**	**Version**
8 | Grade to a tenth | Each summer term | 2 terms | German/English | 4 | 3

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>CR</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-105725</td>
<td>Introduction into Classification Methods of Remote Sensing</td>
<td>4</td>
<td>Weidner</td>
</tr>
<tr>
<td>T-BGU-101732</td>
<td>Image Processing and Computer Vision</td>
<td>4</td>
<td>Weidner</td>
</tr>
<tr>
<td>T-BGU-106333</td>
<td>Remote Sensing of a Changing Climate, Prerequisite</td>
<td>1</td>
<td>Cermak</td>
</tr>
<tr>
<td>T-BGU-106334</td>
<td>Remote Sensing of a Changing Climate, Examination</td>
<td>3</td>
<td>Cermak</td>
</tr>
<tr>
<td>T-PHYS-108283</td>
<td>Wildcard</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-108284</td>
<td>Wildcard</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-108285</td>
<td>Wildcard</td>
<td>4</td>
<td></td>
</tr>
<tr>
<td>T-PHYS-108286</td>
<td>Wildcard</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

oral exams

Prerequisites
none

Competence Goal

Einführung in Klassifizierungsverfahren der Fernerkundung (Pflicht): Studierende können die Grundlagen der Fernerkundung erklären sowie grundlegende Klassifizierungsverfahren benennen, erläutern und selbstständig anwenden.

Satellite climatology – remote sensing of a changing climate: Students explain the contribution of remote sensing to the assessment of climate change and its consequences in time and space. They relate how remote sensing assessments help further in understanding of processes driving global change. Students independently choose and apply methods and data sets suited for the analysis of specific aspects of global change.

Image Processing and Computer Vision: Students are able to explain the fundamentals of image processing and Computer Vision. They describe the basic approaches and concepts including robust techniques and are able to use their knowledge and transfer it to other fields of applications.

Content

Satellite climatology – remote sensing of a changing climate:

- Basics of global change: Mechanisms and patterns
- Remote sensing approaches to analysing patterns of global change:
 - Land and ocean surface
 - Atmosphere
- Remote sensing approaches to analysing mechanisms of global change
 - Land and ocean surface
 - Atmosphere
- Links between remote sensing and other methods in global change research

Image Processing and Computer Vision: This lecture provides an overview of basic approaches of image processing and computer vision, starting from image filters like linear and non-linear filters, gradient and curvature operators and leading to concepts of object extraction based on point, line and segment extraction and their applications. The teaching concept consists of lectures and labs.

Module grade calculation

weighted mean by credit points
Workload

Einführung in Klassifizierungsverfahren der Fernerkundung (Pflicht): 120 h gesamt, davon 32 h Präsenz

Satellite climatology – remote sensing of a changing climate: 120 h total, thereof 32 contact hours

Image Processing and Computer Vision: 120 h total, thereof 32 contact hours
6.7 Module: Experimental Meteorology (Met-ExpM2-1) [M-PHYS-100953]

Responsible: Dr. Björn-Martin Sinnhuber
Organisation: KIT Department of Physics
Part of: Applied and Experimental Meteorology

Election notes
The credit points for T-BGU-111185 have been adapted to the course program Meteorology and Climate Physics (0 LP). Further information see course description.

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>6</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-109135</td>
<td>Advanced Practical Courses</td>
<td>0 CR</td>
<td>Höpfner</td>
</tr>
<tr>
<td>T-PHYS-109136</td>
<td>Field Trip</td>
<td>0 CR</td>
<td>Hoose</td>
</tr>
<tr>
<td>T-PHYS-109137</td>
<td>Experimental Meteorology (Module Exam)</td>
<td>14 CR</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>T-PHYS-111274</td>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td>0 CR</td>
<td>Sinnhuber</td>
</tr>
<tr>
<td>T-BGU-111185</td>
<td>Atmospheric Remote Sensing Infrastructures, Prerequisite</td>
<td>0 CR</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Competence Certificate
Prerequisite: Coursework ("Studienleistung")

For type of Coursework see Course description ("Teilleistungsbeschreibung")

→ successful completion of the prerequisites entitles to exam

Examination: Assessment ("Prüfungsleistung")

T-PHYS-109137 Experimental Meteorology (Module Exam)

Oral exam (approx. 60 minutes) in accordance with § 4 (2) No. 2 SPO Master's Meteorology

Competence Goal

The students can explain the functionality of modern meteorological measuring methods and measuring principles and name their possible uses. This is especially true for remote sensing, advanced in-situ, trace gas and aerosol measurements. The students are able to build and execute experiments in the lab or in the field according to instructions, to record and evaluate data scientifically founded and then interpret and present the results. They are aware of the Rules for Safeguarding Good Scientific Practice and the responsibilities associated with the production and use of scientific data, e.g. not to invent/pretend results or to distort or suppress undesired data and results.

Content

This module is intended to provide students with an overview of modern measurement methods in meteorology and practical aspects of application. In particular, this includes:

- **remote sensing** (physical basics, radiation transfer, inverse methods, basics of satellite remote sensing, techniques and applications),
- **atmospheric remote sensing infrastructures** (Large-scale research infrastructures: role in environmental and atmospheric research, Overview of atmospheric remote sensing infrastructures at KIT, Details of selected atmospheric remote sensing infrastructures and ongoing project work
- In addition, the module provides the students with an insight into and **practical experience** with modern measuring methods, such as those used in research at KIT and other institutions, on the basis of the internship and the excursion.

Module grade calculation

Grade of the oral exam

Workload

Presence time in lectures, exercises: 57 hours
Attendance time in excursion and practicals 100 hours
Preparation / follow-up: 143 hours
Exam preparation: 120 hours
6.8 Module: Fluid Mechanics and Turbulence (bauiEX217-FMTURB) [M-BGU-105504]

Responsible: Prof. Dr. Olivier Eiff
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Required Electives (Usage from 10/1/2020)

Electives 1 (Election: 1 item as well as 6 credits)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9 CR</td>
<td></td>
<td>Each summer term</td>
<td>2 terms</td>
<td>English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

- T-BGU-106612 Advanced Fluid Mechanics
- T-BGU-110841 Fluid Mechanics of Turbulent Flows

Electives 2 (Election: 1 item as well as 3 credits)

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grade to a tenth</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

- T-BGU-110411 Flow Measurement Techniques
- T-BGU-111060 Building and Environmental Aerodynamics

Competence Certificate

One examination has to be taken in one of the 'Teilleistungen' 'Fluid Mechanics of Turbulent Flows' or 'Advanced Fluid Mechanics' and one other examination in one of the 'Teilleistungen' 'Flow Measurement Technique' or 'Building- and Environmental Aerodynamics'. The learning controls depend on the selected 'Teilleistungen' (s. 'Teilleistungen').

- 'Teilleistung' T-BGU-106612 with written examination according to § 4 Par. 2 No. 1
- 'Teilleistung' T-BGU-110841 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-110411 with oral examination according to § 4 Par. 2 No. 2
- 'Teilleistung' T-BGU-111060 with oral examination according to § 4 Par. 2 No. 1

Prerequisites

none

Competence Goal

The studierenden are able to explain basic terms and concepts in the field of fluid mechanics with appropriate terminology and attribute them to physical laws. They are familiar with examples of application, modelling and measurement.

Content

1. Advanced Fluid Mechanics teaches the advanced fundamentals of fluid mechanics and forms the basis for environmental fluid mechanics. Starting from the underlying local conservation laws, the phenomena of the different classes of flow and their possible analytical solutions are treated. This includes the general and special forms of the basic equations, flow kinematics, incompressible viscous flows, ideal fluid flows, shallow water flows and buoyancy effects in flows. Furthermore, waves and turbulence are addressed and different analysis methods such as scaling are treated.
2. Fluid Mechanics of Turbulent Flows provides the mathematical description of the physics of turbulence is successively developed. The module presents the phenomenology of turbulent flows, introduces the statistical description of turbulent flow processes, discusses the characteristics of free and wall-bounded shear flows, and presents an analysis of the turbulent energy cascade.
3. Flow Measurement Techniques teaches the basics of flow velocity measurement, with a focus on laser-optical measurement techniques such as those used in wind tunnels.
4. Building- and Environmental Aerodynamics gives an introduction to the natural wind and its interaction with the built and natural environment. In the focus are wind load on buildings and wind induced vibrations as well as flow processes in the natural environment regarding natural wind shelter, fresh air ventilation to urban areas and wind comfort.

Module grade calculation

grade of the module is the weighted average of the partial examinations from compulsory elective block 1 (75%), Advanced Fluid Mechanics or Fluid Mechanics of Turbulent Flows, and compulsory elective block 2 (25%), Flow Measurement Techniques or Building and Environmental Aerodynamics.

Annotation

none
Workload

contact hours (1 HpW = 1 h x 15 weeks):
depending on the selected courses or examinations, respectively:

- Advanced Fluid Mechanics lecture/exercise: 60 h
- Fluid Mechanics of Turbulent Flows lecture/exercise: 60 h
- Flow Measurement Techniques lecture/exercise: 30 h
- Building and Environmental Aerodynamics lecture/exercise: 30 hrs.

independent study:
depending on the selected courses or examinations, respectively:

- preparation and follow-up lecture/exercises Advanced Fluid Mechanics: 30 h
- working on exercises Advanced Fluid Mechanics: 30 h
- examination preparation Advanced Fluid Mechanics: 60 h
- preparation and follow-up lecture/exercises Fluid Mechanics of Turbulent Flows: 60 h
- examination preparation Fluid Mechanics of Turbulent Flows: 60 h
- preparation and follow-up lecture/exercises Flow Measurement Techniques: 30 h
- examination preparation Flow Measurement Techniques: 30 h
- preparation and follow-up lecture/exercises Building and Environmental Aerodynamics: 30 h
- examination preparation Building and Environmental Aerodynamics: 30 h

total: 270 h

Recommendation

basics in Mathematics and Hydromechanics;
prior knowledge in programming with Matlab is helpful for the course "Fluid Mechanics of Turbulent Flows"

start of the module in summer term

Base for

non specified
6.9 Module: Geoecology [M-BGU-103398]

Responsible: Prof. Dr. Wolfgang Wilcke

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>3</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-107487</td>
<td>Geomorphology and Soil Science</td>
<td>7 CR</td>
<td>Wlcke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>T-BGU-107486</td>
<td>Field Course Soil Science</td>
<td>1 CR</td>
<td>Wlcke</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- Brick T-BGU-107487 with a written examination with 90 minutes according to § 4 Par. 2 No. 1 of the study and examination regulations (SPO) master meteorology
- Brick T-BGU-107486 with with not graded accomplishment (soil profile in small groups with approximately 2 pages) according to § 4 Par. 3 of the study and examination regulations (SPO) master meteorology

Details about the learning control see at the bricks

Prerequisites
None

Competence Goal
The students know the basic terms, concepts and theories of the disciplines Geomorphology and Soil Science. They are able to recognize important land surface forms and to interpret them in a knowledgeable way. They know the composition, structure, properties and functions of soils.

Content
The module teaches the fundamental principles of Soil Science and Geomorphology. It consists of three courses with the following contents:

- Geomorphology and Soil Science: This brick treats the most important exogenic processes (weathering including karst, gravitational mass self-displacements, glacial and periglacial dynamics, eolic, fluvial and litoral dynamics, pedo- and escarpments). The soil is introduced as three-phases system and the individual phases (solid, liquid and gaseous) are discussed. Subject of this brick are the soil-forming factors and processes and the resulting suite of horizons of soils. Important physical properties of soils are introduced (color, texture, structure, mechanical stability, water retention and transport, heat budget). Important physico-chemical soil properties are treated (humus properties, soil acidity, redox potential, cation exchange). Ecological soil functions are presented. This brick moreover introduces the minerals of soils. The most important mineral formation processes are presented with a focus on silicates, oxides and sulfides. The interactions between microorganisms and soil minerals are discussed.
- Soils of Europe: This brick introduces the German soil classification and uses it as structure. The World Reference Base of Soil Resources and the US Keys to Soil Taxonomy are presented. The most important diagnostic properties of soils (surface and subsoil horizons, specific properties) are taught. This brick puts all soil types of the German Soil Classification in their pedogenetic context. The brick treats the property-forming processes and the ecological soil properties resulting from these processes.
- Soil scientific field exercise: This brick consists of a one-day exercise in the surroundings of Karlsruhe, during which important local landscape features and soils are introduced and during which the students train the Interpretation of geomorphologic forms and properties of soil horizons.

Module grade calculation
Grade of the module is grade of the written examination

Annotation
None

Workload
1. Contact hours in lecture and exercises: 67,5 h
2. Preparation and follow-up: 142,5 h
3. Examination and exam preparation: 30 h
Recommendation
The first attendance of the course "geomorphology and soil science" is recommended. The participation of the exercise "geomorphology and soil science" is optionally.
6.10 Module: Geological Hazards and Risk [M-PHYS-101833]

Responsible: Dr. Andreas Schäfer
Organisation: KIT Department of Physics
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103525</td>
<td>Geological Hazards and Risk</td>
<td>8 CR</td>
</tr>
</tbody>
</table>

Competence Certificate

Active and regular attendance of lecture and practicals. Project work (graded).

Prerequisites

none

Competence Goal

The students understand basic concepts of hazard and risk. They can explain in detail different aspects of earthquake hazard, volcanic hazard as well as other geological hazards, can compare and evaluate those hazards. They have fundamental knowledge of risk reduction and risk management. They know methods of risk modelling and are able to apply them.

Content

- Earthquake Hazards
 - Short introduction to seismology and seismometry (occurrence of tectonic earthquakes, types of seismic waves, magnitude, intensity, source physics)
 - Induced seismicity
 - Engineering seismology, Recurrence intervals, Gutenberg-Richter, PGA, PGV, spectral acceleration, hazard maps
 - Earthquake statistics
 - Liquefaction
- Tsunami Hazards
- Landslide Hazards
- Hazards from Sinkholes
- Volcanic Hazards
 - Short introduction to physical volcanology
 - Types of volcanic hazards
- The Concept of Risk, Damage and Loss
- Data Analysis and the use of GIS in Risk analysis
- Risk Modelling - Scenario Analysis
- Risk Reduction and Risk Management
- Analysis Feedback and Prospects in the Risk Modelling Industry

Module grade calculation

Project work will be graded.

Workload

- 60 h: active attendance during lectures and exercises
- 90 h: review, preparation and weekly assignments
- 90 h: project work

Learning type

4060121 Geological Hazards and Risk (V2)
4060122 Übungen zu Geological Hazards and Risk (Ü2)
Literature
Literature will be provided by the lecturer.
Module: Geophysical analysis of natural hazards [M-PHYS-103336]

6.11 Module: Geophysical analysis of natural hazards [M-PHYS-103336]

Responsible: Prof. Dr. Andreas Rietbrock
Organisation: KIT Department of Physics
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grade to a tenth</td>
<td>Each summer term</td>
<td>2 terms</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103553</td>
<td>Introduction to Volcanology, Prerequisite</td>
<td>3 CR Bohlen</td>
</tr>
<tr>
<td>T-PHYS-103644</td>
<td>Introduction to Volcanology, Exam</td>
<td>1 CR Bohlen</td>
</tr>
<tr>
<td>T-PHYS-107673</td>
<td>Seminar on Recent Topics of Risk Science</td>
<td>4 CR Rietbrock</td>
</tr>
</tbody>
</table>

Competence Certificate
Introduction to Volcanology

Active and regular attendance of lecture and practicals, presentation of a volcano in a short (10 – 15 minute) talk with slides, submission of a scientific essay about their presentation, approx. 8-10 pages, which will be graded.

Seminar on recent topics of risk science

Preparation and presentation of a talk based on a scientific publication, critical discussion of the scientific results.

Competence Goal
Introduction to Volcanology

The students know and understand the basic concepts of physical volcanology. They are able to classify volcanoes by their tectonic location, can discriminate between different eruption types and describe different volcanic edifices with respect to their tectonic environment. They understand the concept of volcanic hazard and risk and are able to apply it. They can explain the physics of volcanic monitoring methods and know about their advantages and disadvantages. They gained insight into numerical moelning tools and can name several applications. The students understand the impact of volcanic eruptions on climate and know both, presently as well as historically active volcanoes and their prominent eruptions.

The students have gained an overview about active volcanoes and recent eruptions and are able to summarize the main characteristics and scientific achievements about one volcano of their choice in a 10-15 minute talk. They are able to discuss and answer questions related to their subject. They can summarize their research about the volcano of their choice in a scientific essay (8-10 pages).

Seminar on recent topics of risk science

The students understand scientific literature regarding current topics of natural hazards and risk. They can summarize a selected topic, describe and explain the main idea to their fellow students in an oral presentation (30-40 minutes). They know how to structure and present a scientific talk. They are able to understand the topics presented by their fellow students, discuss and analyze the content critically. They are able to compare those research results and evaluate the content critically.

Content
Introduction to oucanology

- Introduction, Overview
- Volcanoes and Plate Tectonics
- Magma and Volcanic Deposits
- Eruption types
- Volcanic Edifices
- Volcanic Hazard and Risk
- Volcano Monitoring
- Volcano Seismology
- Numerical Modelling of Volcanic Products
- Historic Eruptions
- Volcanoes and Climate

Seminar on recent topics of risk science

The students will read and discuss current literature about current topics of natural hazards and risk.
Module grade calculation
The grade of the module results from grade of of the scientific essay of "Introduction to Volcanology".

Learning type
4060251 Introduction to Volcanology (V1)
4060252 Exercises to Introduction to Volcanology (Ü1)
4060254 Seminar über aktuelle Fragen aus der Risikoforschung (S2)

Literature
Literature will be provided by the lecturer.
6.12 Module: GIS and Geo Data Infrastructures [M-BGU-102760]

Responsible: Prof. Dr.-Ing. Stefan Hinz
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Credits</th>
<th>Grading</th>
<th>Requirement</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>3 CR</td>
<td></td>
<td></td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite</td>
<td>3 CR</td>
<td></td>
<td></td>
<td>Rösch, Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101756</td>
<td>Geo Data Infrastructures and Web Services</td>
<td>1 CR</td>
<td></td>
<td></td>
<td>Wursthorn</td>
</tr>
<tr>
<td>T-BGU-101757</td>
<td>Geodata Infrastructures and Web-Services, Prerequisite</td>
<td>3 CR</td>
<td></td>
<td></td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Competence Certificate

Einführung in GIS: schriftliche Klausur (90 min.); Geodateninfrastrukturen: mündliche Prüfung (20 min.) oder schriftliche Ausarbeitung

Prerequisites

None

Competence Goal

Die Studierenden sind mit der Erfassung, Analyse und Präsentation von Daten mit Raumbezug vertraut. Darüber hinaus kennen sie die unterschiedlichen Aspekte geometrischer und topologischer Modellierung und beherrschen die Sachdatenverwaltung.

Die Studierenden verstehen ferner die grundlegenden Prinzipien eines Geoinformationssystems und sind mit der Definition des Raumbezugs vertraut. Sie sind in der Lage, einfache projektbezogene Fragestellungen selbstständig zu bearbeiten.

Darüber hinaus können sie standardisierte Geo-Webdienste erklären und diese Dienste auf der Client-Seite nutzen und diese selbst als Service zur Verfügung stellen. Die Studierenden können dabei ihr Wissen über Geodateninfrastrukturen an konkreten, praktischen Fragestellungen anwenden.

Content

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: Bezugs- und Koordinatensysteme sowie deren Transformation (z.B. UTM, Gauß-Krüger); Grundlagen der Informatik (z.B. Datenbanken, SQL); Geodatenmodellierung und Erfassung (z.B. GNSS); Normierung und Standardisierung in GIS (z.B. ISO, OGC, WFS, WMS); Einfache Algorithmen (z. B. „Point in Polygon“); Software: Vornehmlich QGIS, ArcGIS, Web-GIS u. a.

Module grade calculation

weighted mean

Workload

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: 180 h gesamt, davon Präsenzzeit 45 h

Geodateninfrastrukturen und Web-Dienste: 120 h gesamt, davon Präsenzzeit 45 h
Module: GIS and Remote Sensing [M-BGU-102758]

Responsible: Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>2</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Module Title</th>
<th>Credits</th>
<th>Grade</th>
<th>Recurrence</th>
<th>Language</th>
<th>Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-BGU-105725</td>
<td>Introduction into Classification Methods of Remote Sensing</td>
<td>4 CR</td>
<td>90</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-BGU-101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>3 CR</td>
<td>90</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
</tr>
<tr>
<td>T-BGU-103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite</td>
<td>3 CR</td>
<td>90</td>
<td>Each winter term</td>
<td>German</td>
<td>4</td>
</tr>
</tbody>
</table>

Competence Certificate

Online test, written exam (90 min.), oral exam (approx. 20 min.)

Prerequisites

None

Competence Goal

Die Studierenden sind mit der Erfassung, Analyse und Präsentation von Daten mit Raumbezug vertraut. Darüber hinaus kennen sie die unterschiedlichen Aspekte geometrischer und topologischer Modellierung und beherrschen die Sachdatenverwaltung.

Die Studierenden verstehen ferner die grundlegenden Prinzipien eines Geoinformationssystems und sind mit der Definition des Raumbezugs vertraut. Sie sind in der Lage, einfache projektbezogene Fragestellungen selbständig zu bearbeiten.

Darüber hinaus können sie die Grundlagen der Fernerkundung erklären sowie grundlegende Klassifizierungsverfahren benennen, erläutern und selbsttätig anwenden.

Content

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: Bezugs- und Koordinatensysteme sowie deren Transformation (z.B. UTM, Gauß-Krüger); Grundlagen der Informatik (z.B. Datenbanken, SQL); Geodatenmodellierung und Erfassung (z.B. GNSS); Normierung und Standardisierung in GIS (z.B. ISO, OGC, WFS, WMS); Einfache Algorithmen (z.B. „Point in Polygon“); Software: Vornehmlich QGIS, ArcGIS, Web-GIS u. a.

Module grade calculation

weighted mean

Annotation

None

Workload

Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen: 180 h gesamt, davon Präsenzzeit 45 h

Einführung in Klassifizierungsverfahren der Fernerkundung: 90 h gesamt, davon Präsenzzeit 32 h

Recommendation

None
6.14 Module: Informatics for Meteorology Students [M-INFO-102980]

Responsible: Prof. Dr. Bernhard Beckert
Organisation: KIT Department of Informatics
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>2 terms</td>
<td>German</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Informatics for Meteorology Students (Election: at least 1 item as well as at least 8 credits)

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-INFO-101345</td>
<td>Parallel Computer Systems and Parallel Programming</td>
<td>4 CR</td>
<td>Streit</td>
</tr>
<tr>
<td>T-INFO-101298</td>
<td>Distributed Computing</td>
<td>4 CR</td>
<td>Streit</td>
</tr>
<tr>
<td>T-INFO-102061</td>
<td>Mobile Computing and Internet of Things</td>
<td>5 CR</td>
<td>Beigl</td>
</tr>
<tr>
<td>T-INFO-101497</td>
<td>Database Systems</td>
<td>4 CR</td>
<td>Böhm</td>
</tr>
<tr>
<td>T-INFO-101275</td>
<td>Visualization</td>
<td>5 CR</td>
<td>Dachsbecher</td>
</tr>
<tr>
<td>T-INFO-111622</td>
<td>Data Science I</td>
<td>5 CR</td>
<td>Böhm, Fouché</td>
</tr>
</tbody>
</table>

Competence Certificate

Die Erfolgskontrollen werden in den jeweiligen Teilleistungen beschrieben.
Competence Goal

T-INFO-101345 Parallelrechner und Parallelprogrammierung

T-INFO-101298 Verteiltes Rechnen

T-INFO-102061 Mobile Computing und Internet der Dinge

T-INFO-101305 Analysetechniken für große Datenbestände

T-INFO-101497 Datenbanksysteme
Qualifikationsziele: Der/die Studierende• ist in der Lage den Nutzen von Datenbank-Technologie darzustellen,• kennt die Modelle und Methoden bei der Entwicklung von funktionalen Datenbank-Anwendungen,• ist in der Lage selbstständig einfache Datenbanken anzulegen und Zugriffe auf diese zu tätigen,kennt und versteht die entsprechenden Begrifflichkeiten und die Grundlagen der zugrundeliegenden Theorie

T-INFO-101275 Visualisierung
Content

T-INFO-101345 Parallelrechner und Parallelprogrammierung

T-INFO-101298 Verteiltes Rechnen

T-INFO-102061 Mobile Computing und Internet der Dinge

T-INFO-101305 Analysetechniken für große Datenbestände

T-INFO-101497 Datenbanksysteme

T-INFO-101275 Visualisierung

Annotation
Qualifikationszeile und Inhalt sind der jeweiligen Module der gewählten Teilleistungen zu entnehmen.

Workload
mind. 240 Stunden.
6.15 Module: Interdisciplinary Qualifications [M-PHYS-102352]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>German</td>
<td>1</td>
<td>2</td>
</tr>
</tbody>
</table>

Elective Studies (Elective: at least 4 credits)

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Name</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-112122</td>
<td>Wildcard</td>
<td>1 CR</td>
</tr>
<tr>
<td>T-PHYS-112123</td>
<td>Wildcard</td>
<td>1 CR</td>
</tr>
<tr>
<td>T-PHYS-112124</td>
<td>Wildcard</td>
<td>1 CR</td>
</tr>
<tr>
<td>T-PHYS-112125</td>
<td>Wildcard</td>
<td>1 CR</td>
</tr>
<tr>
<td>T-PHYS-104675</td>
<td>Wildcard</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-PHYS-104677</td>
<td>Wildcard</td>
<td>2 CR</td>
</tr>
</tbody>
</table>
Module: Master's Thesis (Met-MMAr4-1) [M-PHYS-100956]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: Master's Thesis
Credits: 30
Grading scale: Grade to a tenth
Recurrence: Each term
Duration: 1 term
Language: German/English
Level: 4
Version: 3

| Mandatory | T-PHYS-109616 | Master's Thesis | 30 CR | Hoose |

Competence Certificate

Module examination: Assessment (“Prüfungsleistung”)

Written report (Master’s thesis) and presentation (SPO §14 (1a)) in accordance with § 14 SPO Master’s Meteorology evaluated by at least one professor, one habilitated scientist of the KIT-Faculty of Physics or one leading scientist in accordance with § 14 Abs. 3 para. 1 KITG and one other examiner. The overall assessment will be recorded in a written report.

The evaluation period shall not exceed eight weeks upon submission of the Master's thesis.

Prerequisites

Students have successfully completed modules with a minimum of 70 ECTS credits, especially the module **Specialization Phase** must be successfully completed. (SPO §14)

Modeled Conditions

The following conditions have to be fulfilled:

1. You need to have earned at least 40 credits in the following fields:
 - Applied and Experimental Meteorology
 - Atmospheric and Climate Processes
 - Interdisciplinary Qualifications
 - Required Electives
2. The module **M-PHYS-100955 - Specialisation Phase** must have been passed.

Competence Goal

Students can independently develop and carry out a scientific work. To this end, they deal with the latest state of research and apply the knowledge and the methods acquired during studies. They can discuss and evaluate the obtained results and present them in writing as well as defend the work in a presentation.

The students are able to work on a coherent problem from their field of study independently and in a limited time according to scientific methods and then present the knowledge gained in a written paper and in a presentation in an understandable and precise manner and to discuss it competently.

Furthermore, the students are aware of their responsibility in dealing with self-obtained data, developed methods and used materials and their storage. They are able to correctly handle primary data of other researchers and to protect their copyrights.

Content

After choosing a subject area and topic at the beginning of the module **Specialization Phase** and preparing their thesis, the students start their original scientific study. The Master’s Thesis includes the theoretical and/or the experimental work on a complex problem using scientific methods.

It is possible to conduct the project in cooperation with external partners, for example an external research institution or an institution from the professional background.

Module grade calculation

The overall grade results from the evaluation of the thesis. This includes the final presentation.

Annotation

The maximum duration of the Master thesis is six months.

Workload

- Presence on Presentations: 20 hours
- Preparation of the presentation: 40 hours
- Master's Thesis: 840 hours

Recommendation

Attendance of the Karlsruhe Meteorological Colloquium and the departmental seminars (IMK-TRO, IMK-ASF, IMK-AAF).
Module: Modern Theoretical Physics for Teacher Students [M-PHYS-101664]

Responsible: Studiendekan Physik
Organisation: KIT Department of Physics
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>CR</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-103203</td>
<td>Modern Theoretical Physics for Teacher Students - Prerequisite</td>
<td>0 CR</td>
<td>Eder</td>
</tr>
<tr>
<td>T-PHYS-103204</td>
<td>Modern Theoretical Physics for Teacher Students</td>
<td>8 CR</td>
<td>Eder</td>
</tr>
</tbody>
</table>

Competence Certificate
See components of this module

Prerequisites
none

Competence Goal
The students know the fundamentals of the theory of electric and magnetic fields and the electrical and magnetic properties of matter. Fundamentals of quantum mechanics with simple applications.

Content
- Electrostatics: basic equations, scalar potential, examples.
- Magneto statics: basic equations, vector potential, examples.
- Special relativity theory, relativistic formulation of electrodynamics.
- Time-dependent fields and radiation phenomena: basic equations, Poynting theorem.
- Electromagnetic waves: plane waves, polarization, wave packets, spherical waves, electromagnetic potentials and gauge transformations, Hertzian dipole.

Workload
240 hours composed of active time (90), wrap-up of the lecture incl. preparation of the examination and the excercises (150)
Module: Modern Theoretical Physics I, Quantum Mechanics I [M-PHYS-101707]

M Mandatory

<table>
<thead>
<tr>
<th>Code</th>
<th>Description</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-102317</td>
<td>Modern Theoretical Physics I, Quantum Mechanics 1, Prerequisite 1</td>
<td>4</td>
<td>CR</td>
<td>Each summer term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>T-PHYS-105134</td>
<td>Modern Theoretical Physics I, Quantum Mechanics 1</td>
<td>4</td>
<td>CR</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate

See components of this module

Prerequisites

none

Competence Goal

The student learns the basic concepts of single-particle quantum mechanics and applies them to important questions. He / she lays the foundation for a fundamental understanding of the microscopic world.

Content

- Introduction: Historical Remarks, Limitations of Classical Physics
- Dualism particle and wave: wave mechanics, matter waves, wave packets, uncertainty principle, Schrödinger equation, qualitative understanding of simple cases.
- Mathematical tools: Hilbert space, Bra and Ket, operators, hermiticity, unitarity, eigenvectors and eigenvalues, observable, basis, completeness.
- Postulates of quantum mechanics: measurement process, time evolution, time evolution of expectation values, Ehrenfest theorem and classical borderline case.
- One-dimensional potentials: Potential wells, harmonic oscillator.
- Bound states in a three-dimensional potential: separation of variables, central potential, angular momentum, rotational symmetry and spin, degeneracy, particles in the external electromagnetic field, hydrogen atom.
- Time-independent perturbation theory: Neat and degenerate case, fine structure of the hydrogen spectrum, Stark effect.
- Basics of Scattering Theory: Differential cross section, Born series and Born approximation, partial waves and scattering phases, optical theorem.

Workload

240 hours composed of active time (90), wrap-up of the lecture incl. preparation of the examination and the excercises (150)

Literature

Textbooks on quantum mechanics
Module: Module Wildcard Electives [M-PHYS-103403]

Organisation: University
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Grade to a tenth</td>
<td>Each term</td>
<td>1 term</td>
<td>German</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Wildcard (Election: at least 1 item)

<table>
<thead>
<tr>
<th>Module Code</th>
<th>Description</th>
<th>Credits</th>
</tr>
</thead>
<tbody>
<tr>
<td>T-PHYS-106794</td>
<td>Wildcard</td>
<td>2 CR</td>
</tr>
<tr>
<td>T-PHYS-106795</td>
<td>Wildcard</td>
<td>3 CR</td>
</tr>
<tr>
<td>T-PHYS-106796</td>
<td>Wildcard</td>
<td>4 CR</td>
</tr>
<tr>
<td>T-PHYS-106797</td>
<td>Wildcard</td>
<td>5 CR</td>
</tr>
</tbody>
</table>

Prerequisites
None
Module: Numerical Methods [M-MATH-105831]

Responsible: Prof. Dr. Wolfgang Reichel
Organisation: KIT Department of Mathematics
Part of: Required Electives (Usage from 10/1/2021)

Credits | 5
Grading scale | Grade to a tenth
Recurrence | Each summer term
Duration | 1 term
Language | English
Level | 4
Version | 1

Mandatory

| T-MATH-111700 | Numerical Methods - Exam | 5 CR |
| Kunstmann, Plum, Reichel |

Competence Certificate

Success control takes the form of a written examination (120 minutes).

Prerequisites

none

Competence Goal

Students who pass the module are familiar with basic concepts and ways of thinking on the topic of numerical mathematics. They know different procedures for solving linear and nonlinear problems in numerical mathematics. They are furthermore able to use numerical methods for solving problems from applications in an independent, critical, and needs-based way.

Content

In the lecture basic ideas and numerical methods for the following topics will be presented:

- systems of linear equations, Gauss-algorithm, LR-decomposition, Cholesky decomposition
- eigenvalue problems, von-Mises iteration
- linear optimization (also called linear programming)
- error analysis
- Newton’s method
- quadrature, Newton-Cotes formulas
- numerical solution of initial value problems, Runge-Kutta methods
- finite difference method for solving boundary value problems
- finite elements

Module grade calculation

The module grade is the grade of the written exam.

Workload

Approximately 150h workload. The workload includes:

45h - attendance in lectures, exercises and examination
105h – self studies:

- follow-up and deepening of the course content
- solving problem sheets
- literature study and internet research on the course content
- preparation for the module examination
Module: Physics of Planetary Atmospheres [M-PHYS-104488]

Responsible: Prof. Dr. Thomas Leisner

Organisation: KIT Department of Physics

Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>English</td>
<td>4</td>
<td>3</td>
</tr>
</tbody>
</table>

Mandatory

- T-PHYS-109177 Physics of Planetary Atmospheres 8 CR Leisner
- T-PHYS-109180 Exam on Physics of Planetary Atmospheres 2 CR Leisner

Competence Certificate

Prerequisite: Coursework ("Studienleistung")

For type of Coursework see Course description ("Teilleistungsbeschreibung")

→ successful completion of the prerequisites entitles to exam

Examination: Assessment ("Prüfungsleistung")

T-PHYS-109180 Exam on Physics of Planetary Atmospheres

Exam (approx. 60 minutes, oral, written or otherwise) in accordance with § 4 (2) SPO Master's Meteorology

Prerequisites

None

Competence Goal

The students acquire the basic knowledge of atmospheric physics. On the basis of concrete case studies from current research, the students learn to understand the concepts and are empowered to apply the learned methods independently. Emphasis is placed on the basic physical and chemical principles, so that knowledge can be generally applied to planetary atmospheres and not limited to the earth. This is supported by correspondingly created exercises. One focus is the experimental methods of atmospheric remote sensing.

Methods Learning:

- Understanding the basics of atmospheric physics
- Acquisition of the ability to present a current research topic independently as well as in a team
- Acquisition of the ability to apply the concepts and experimental methods in an experimental
 To implement a master's thesis

Content

The topics covered include a general introduction to the field of work with its fundamental questions, theoretical concepts and experimental methods.

One of the focal points is radiation transport in atmospheres, which is of central importance for the energy budget as well as for remote sensing. Clouds and aerosols are a central factor in many planetary atmospheres, their nucleation and their properties are treated in generalized form.

Module grade calculation

Grade is earned through the associated exam (oral, written or otherwise).

Workload

240 hours consisting of attendance times (60 hours), follow-up of the lecture incl. Exam preparation and editing exercises (180 hours).

Recommendation

Basic knowledge of physics, physical chemistry and fluid dynamics at Bachelor level

Learning type

Lectures (2 Ch) and Exercises (2Ch)
Literature
Raymond T. Pierrehumpert: Principles of Planetary Climate, Cambridge Univ. Press, 2010
Augustin Sanchez-Lavega: An Introduction to Planetary Atmospheres, Taylor&Francis, 2010
Frédéric J. Pont: Alien Skies: Planetary Atmospheres from Earth to Exoplanets, Springer, 2014

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: Required Electives

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Grade to a tenth</td>
<td>Each winter term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>1</td>
</tr>
</tbody>
</table>

Mandatory

| T-BGU-110305 | Satellite Climatology: Remote Sensing of a Changing Climate, Examination | 3 CR | Cermak |
| T-BGU-110304 | Satellite Climatology: Remote Sensing of a Changing Climate, Prerequisite | 1 CR | Cermak |

Competence Certificate

- T-BGU-110304 Satellite climatology: Remote Sensing of a Changing Climate, Prerequisite

For details on the individual performance reviews, see the respective "Teilleistungen".

Prerequisites
M-BGU-103313 Remote Sensing of a Changing Climate must not have started

Competence Goal

Students explain the contribution of remote sensing to the assessment of climate change and its consequences in time and space. They relate how remote sensing assessments help further the understanding of processes driving global change. Students independently choose and apply methods and data sets suited for the analysis of specific aspects of global change.

Content

- Basics of global change: Mechanisms and patterns
- Remote sensing approaches to analysing patterns of global change:
 - Land and ocean surface
 - Atmosphere
- Remote sensing approaches to analysing mechanisms of global change
 - Land and ocean surface
 - Atmosphere
- Links between remote sensing and other methods in global-change research

Module grade calculation

The grade of the module is the grade of the exam in T-BGU-110305 Satellite climatology: Remote Sensing of a Changing Climate

Annotation

Knowledge in geosciences/climate and statistics are helpful.

Workload

Total workload: 120 hours
Contact hours: 30 hours
- courses plus course-related examination
Self-study: 90 hours
- consolidation of subject by recapitulation of lectures
- consolidation of subject by use of references and by own inquiry – preparation of the monitoring project
- data analysis and data processing
- preparations for exam
6.23 Module: Specialisation Phase (Met-Spph3-1) [M-PHYS-100955]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: Research Work

<table>
<thead>
<tr>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Duration</th>
<th>Language</th>
<th>Level</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 term</td>
<td>German/English</td>
<td>4</td>
<td>4</td>
</tr>
</tbody>
</table>

Mandatory
T-PHYS-109617 Scientific Concept Development 30 CR

Competence Certificate
Module examination: Coursework (“Studienleistung”)
Examination of other type in accordance to §4(2) No. 3 SPO Master’s Meteorology:
Final presentation (20-25 minutes) in the Seminar on Specialization Phase, followed by a short discussion with the audience (15 minutes). Afterwards a short feedback meeting with the examiners and the supervisor about the progress and next steps will take place.

Prerequisites
Students need to have successfully completed all four module exams in the subjects Atmospheric and Climate Processes and Applied and Experimental Meteorology.
Soft skills and complementary elective can still be incomplete.

Competence Goal
Students are able to work on a meteorological or interdisciplinary research project using scientific methods. They can, with guidance, plan, structure, prepare, conduct a study and document their results complete and comprehensible. In doing so, they follow the rules of citing their own or others' prior work or previously published results. They can select appropriate methods for the solution of the given problem. Students are able to work self-organized and structured. They possess skills in the field of project management and presentation, both orally and in writing.

Content
Conducting a meteorological, interdisciplinary project work. This may be of a theoretical and/or experimental type. The focus is on the development of conclusions using scientific methods, project management and presentation of the results. Students are invited to make suggestions for topics. It is possible to conduct the project in cooperation with external partners.

Workload
Independent scientific work: 820 hours
Preparation Lecture and presence in the accompanying seminar: 80 hours
7 Courses

7.1 Course: Advanced Fluid Mechanics [T-BGU-106612]

- **Responsible:** Prof. Dr. Olivier Eiff
- **Organisation:** KIT Department of Civil Engineering, Geo and Environmental Sciences
- **Part of:** M-BGU-105504 - Fluid Mechanics and Turbulence

Type
- Written examination

Credits
- 6

Grading scale
- Grade to a third

Recurrence
- Each term

Version
- 1

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6221701</td>
<td>4 SWS</td>
<td>Each term</td>
<td>Written exam</td>
</tr>
<tr>
<td></td>
<td>Advanced Fluid Mechanics</td>
<td>Lecture / Practice (/ Eiff)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>8244106612</td>
<td>Advanced Fluid Mechanics</td>
<td>Eiff</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>8244106612</td>
<td>Advanced Fluid Mechanics</td>
<td>Eiff</td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
- written exam, 90 min.

Prerequisites
- none

Recommendation
- none

Annotation
- none

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
7 COURSES

Course: Advanced Numerical Weather Prediction [T-PHYS-109139]

7.2 Course: Advanced Numerical Weather Prediction [T-PHYS-109139]

Responsible: Prof. Dr. Peter Knippertz

Organisation: KIT Department of Physics

Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 4052051</td>
<td>2 SWS</td>
<td>Advanced Numerical Weather Prediction</td>
<td>Knippertz</td>
<td>1</td>
</tr>
<tr>
<td>ST 2022 4052052</td>
<td>1 SWS</td>
<td>Exercises to Advanced Numerical Weather Prediction</td>
<td>Knippertz, Burba, Borne</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7800017</td>
<td></td>
<td>Advanced Numerical Weather Prediction (Prerequisite)</td>
<td>Ginete Werner Pinto</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites

none

Below you will find excerpts from events related to this course:

Advanced Numerical Weather Prediction

4052051, SS 2022, 2 SWS, Language: English, [Open in study portal](#)

Content

- Introduction
- Parametrizations
- Data assimilation
- Ensemble predictions
- Verification
- Post-processing

Organizational issues

- Please register for the ILIAS course to receive further information
7.3 Course: Advanced Practical Courses [T-PHYS-109135]

Responsible: Dr. Michael Höpfner
Organisation: KIT Department of Physics
Part of: M-PHYS-100953 - Experimental Meteorology

Type
Completed coursework
Credits
0
Grading scale
pass/fail
Recurrence
Each summer term
Version
1

Events
ST 2022 4052103 Advanced Meteorological Practical Course 5 SWS Practical course / NN, Wagner, Höpfner, Kohler

Exams
ST 2022 7800026 Advanced Meteorological Practical Course Sinnhuber

Legend: 🖥 Online, ☐ Blended (On-Site/Online), ⚪ On-Site, ⌫ Cancelled

Competence Certificate
Timely delivery and confirmation of the internship evaluation.

Prerequisites
None

Below you will find excerpts from events related to this course:

Advanced Meteorological Practical Course
4052103, SS 2022, 5 SWS, Language: English, Open in study portal

Content
Available experiments include:
• surface energy balance (IMK-TRO)
• infrared spectroscopy (IMK-ASF)
• AIDA cloud and aerosol chamber (IMK-AAF)

Organizational issues
• AIDA: 25 - 29 July 2022
• Energy balance: (TBD)
• FTIR: May/June (TBD)

Please register for the ILIAS course to receive further information.
7.4 Course: Applied Meteorology (Module Exam) [T-PHYS-109143]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Organisation: KIT Department of Physics
Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>10</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Exam Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7800023</td>
<td>Examination on Applied Meteorology (Module Exam)</td>
<td>Ginete Werner Pinto</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7800069</td>
<td>Applied Meteorology (Module Exam)</td>
<td>Kunz</td>
</tr>
</tbody>
</table>

Competence Certificate
The awarding of 10 credits will take place after passing the oral exam (see module description).

Prerequisites
It is only possible to register for the examination if the academic achievement "methods of data analysis" and further study achievements have been achieved to a sufficient degree.

Modeled Conditions
The following conditions have to be fulfilled:

1. You have to fulfill 2 of 3 conditions:
 1. The course T-PHYS-109141 - Energy Meteorology must have been passed.
 2. The course T-PHYS-109139 - Advanced Numerical Weather Prediction must have been passed.
 3. The course T-PHYS-108610 - Turbulent Diffusion must have been passed.
2. The course T-PHYS-109142 - Methods of Data Analysis must have been passed.
7 COURSES

Course: Arctic Climate System [T-PHYS-111273]

Responsible: Dr. Björn-Martin Sinnhuber
Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Duration</th>
<th>Grading</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4052101</td>
<td>Lecture</td>
<td>2 SWS</td>
<td></td>
<td>Sinnhuber</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Type</th>
<th>Duration</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7800066</td>
<td>Lecture</td>
<td></td>
<td>Sinnhuber</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

The assessment consists of a coursework according to §4 (3) SPO MSc Meteorology and Climate Physics in the form of a short lecture (approx. 10 minutes) on a topic relevant to the lecture. The detailed conditions will be discussed in the lecture.

Prerequisites

None

Annotation

Below you will find excerpts from events related to this course:

Arctic Climate System

<table>
<thead>
<tr>
<th>Code</th>
<th>WS 22/23</th>
<th>SWS</th>
<th>Language</th>
<th>Open in study portal</th>
</tr>
</thead>
<tbody>
<tr>
<td>4052101</td>
<td>22/23</td>
<td>2</td>
<td>English</td>
<td>Open in study portal</td>
</tr>
</tbody>
</table>

Content

- Basic climatic features of the Arctic
- Arctic atmospheric and ocean energy budgets
- Atmospheric circulation
- Energy exchange at the surface
- Sea ice
- Arctic ocean – sea ice – climate interactions
- Arctic amplification and Arctic change
- Modelling the Arctic climate system

Literature

7.6 Course: Atmospheric Aerosols [T-PHYS-108938]

Responsible: Dr. Ottmar Möhler
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 4052041 Atmospheric Aerosols 2 SWS</td>
<td>0</td>
<td>Completed coursework</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
<tr>
<td>WT 22/23 4052042 Exercises to Atmospheric Aerosols 1 SWS</td>
<td></td>
<td>Lecture / On-Site</td>
<td>Möhler</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Möhler, Bogert</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23 7800083 Atmospheric Aerosols (Prerequisite)</td>
<td></td>
<td></td>
<td>Hoose</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

None

Below you will find excerpts from events related to this course:

Atmospheric Aerosols
4052041, WS 22/23, 2 SWS, Language: English, Open in study portal
Lecture (V)
On-Site

Content

Gas particle processes (kinetics, diffusion, condensation), aerosol properties (diffusion, coagulation, sedimentation, impaction), aerosol thermodynamics (chemical potential, solubility, crystallization), aerosol cloud processes (Köhler theory, ice nucleation).

Organizational issues

Please sign up for more information in the Ilias course.
7.7 Course: Atmospheric Processes (Module Exam) [T-PHYS-108939]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>12</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7800016</td>
<td>Examination on Atmospheric Processes (Module Exam)</td>
<td>Hoose</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7800039</td>
<td>Examination on Atmospheric Processes (Module Exam)</td>
<td>Hoose</td>
</tr>
</tbody>
</table>

Prerequisites

All module courses must be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-PHYS-107694 - Cloud Physics must have been passed.
2. The course T-PHYS-107696 - Atmospheric Radiation must have been passed.
3. The course T-PHYS-107695 - Energetics must have been passed.
4. The course T-PHYS-108938 - Atmospheric Aerosols must have been passed.
7.8 Course: Atmospheric Radiation [T-PHYS-107696]

Responsible: Dr. Michael Höpfner
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4052071</td>
<td>Atmospheric Radiation</td>
<td>2</td>
<td>Lecture / 🗣</td>
<td>Höpfner, Johansson</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Type</th>
<th>SWS</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7800106</td>
<td>Atmospheric Radiation (Prerequisite)</td>
<td>2</td>
<td>Hoose</td>
</tr>
</tbody>
</table>

Legend:
🖥 Online,
🧩 Blended (On-Site/Online),
🗣 On-Site,
🗙 Cancelled

Prerequisites
none

Below you will find excerpts from events related to this course:

Atmospheric Radiation
4052071, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Lecture (V) On-Site

Content

- Relevance: Weather/Climate, Chemistry, Remote Sensing
- Short history of light
- Properties of electromagnetic radiation
- Radiometric quantities
- The electromagnetic spectrum
- Boundary conditions: Sun, Earth's surface; reflection and emission
- Radiative transfer in the thermal infrared region: black body radiation, local/non-local thermodynamic equilibrium, transmission, radiative transfer, application in remote sensing
- Molecular spectroscopy, line-broadening
- Radiative transfer in the UV/Visible: absorption and scattering by particles
- Single scattering properties: Rayleigh, Mie-approximations
- Optical phenomena: rainbows, halos
- Radiative transfer with multiple scattering: why are clouds white?, two-stream approximation
- Radiative budget, climate engineering

Organizational issues

Please sign up for more information in the Ilias course.
7 COURSES

Course: Atmospheric Remote Sensing Infrastructures, Prerequisite [T-BGU-111185]

7.9 Course: Atmospheric Remote Sensing Infrastructures, Prerequisite [T-BGU-111185]

Responsible: Prof. Dr. Jan Cermak

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-PHYS-100953 - Experimental Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale pass/fail</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td></td>
<td>Each summer term</td>
<td>1 terms</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Atmospheric Remote Sensing Infrastructures</td>
<td>2 SWS</td>
<td>Lecture</td>
<td>Cermak</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Atmospheric Remote Sensing Infrastructures, Prerequisite</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
The assessment consists of a coursework according § 4 para. 3 SPO M.Sc. Remote Sensing and Geoinformatics based on successfully completed exercises wrt Atmospheric Remote Sensing Infrastructures.

Prerequisites
none

Responsible: Prof. Dr. Jan Cermak
Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103422 - Basics of Estimation Theory and its Application in Geoscience Remote Sensing

Type
Oral examination

Credits
5

Grading scale
Grade to a third

Recurrence
Each summer term

Version
1

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-106821 - Basics of Estimation Theory, Prerequisite must have been passed.
2. The course T-BGU-106633 - Data Analysis in Geoscience Remote Sensing Projects, Prerequisite must have been passed.
7.11 Course: Basics of Estimation Theory, Prerequisite [T-BGU-106821]

Responsible: Prof. Dr.-Ing. Stefan Hinz

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103422 - Basics of Estimation Theory and its Application in Geoscience Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>
Course: Building and Environmental Aerodynamics [T-BGU-111060]

Responsible: Dr.-Ing. Christof-Bernhard Gromke

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-105504 - Fluid Mechanics and Turbulence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Module</th>
<th>SWS</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6221905</td>
<td>Building and Environmental Aerodynamics</td>
<td>2</td>
<td>Lecture / Practice (/) Gromke</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Module</th>
<th>Type</th>
<th>Location</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>824411060</td>
<td>Building and Environmental Aerodynamics</td>
<td>Gromke</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>824411060</td>
<td>Building and Environmental Aerodynamics</td>
<td>Gromke</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⚠️ On-Site, ❌ Cancelled

Competence Certificate

oral exam, appr. 30 min.

Prerequisites

none

Recommendation

none

Annotation

none

Below you will find excerpts from events related to this course:

Building and Environmental Aerodynamics
6221905, WS 22/23, 2 SWS, Language: English, Open in study portal

Content

The fundamentals of natural wind and its interaction with the built and natural environment are addressed in Building and Environmental Aerodynamics. Focus is on structural loads induced by wind, wind-induced vibrations of buildings and structures, and on flow phenomena in the natural and built environment, like wind shelter, cold air drainage and ventilation, urban air quality, and wind comfort.

Organizational issues

Registration in ILIAS is open till 01.11.2022. However, for planning purposes please register as soon as possible.
7.13 Course: Climate Modeling & Dynamics with ICON [T-PHYS-108928]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Dr. Aiko Voigt

Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>4052151</th>
<th>Climate Modeling & Dynamics with ICON</th>
<th>2 SWS</th>
<th>Lecture / 🧩</th>
<th>Ginete Werner Pinto, Ludwig</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4052152</td>
<td>Exercises to Climate Modeling & Dynamics with ICON</td>
<td>1 SWS</td>
<td>Practice /🗣</td>
<td>Ginete Werner Pinto, Ludwig, Pothapakula</td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 | 7800087 | Climate Modeling & Dynamics with ICON (Prerequisite) | Fink, Ginete Werner Pinto |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Successful participation in the exercises.

Prerequisites
None

Below you will find excerpts from events related to this course:

Climate Modeling & Dynamics with ICON
4052151, WS 22/23, 2 SWS, Language: English, Open in study portal
Lecture (V)
Blended (On-Site/Online)

Content
Introduction to the ICON model, baroclinic life cycles, cloud impact on large-scale circulation of the atmosphere, climate change response of extra tropical jet stream, aerosol impact on tropical rain belts.
Numerical modeling and analysis of climate and climate change (climate system, conceptual models for processes and feedback, chaotic dynamic systems, numerical climate models (EMICS, Global models, regional models), (statistical) analysis methods.

Organizational issues
Please sign up for more information in the Ilias course.
Course: Cloud Physics [T-PHYS-107694]

Responsibilities: Prof. Dr. Corinna Hoose

Organisation: KIT Department of Physics

Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

- **WT 22/23**
 - **4052081**: Cloud Physics
 - 2 SWS
 - Lecture / 🗣
 - Hoose, Le Roy de Bonneville, Frey, Oertel
 - **4052082**: Exercises to Cloud Physics
 - 1 SWS
 - Practice / 🗣
 - NN, Wallentin

Exams

- **WT 22/23**
 - **7800105**: Cloud Physics (Prerequisite)
 - 0 SWS
 - Lecture (V)
 - Hoose

Competence Certificate

More than 50% of the points from the exercises must be achieved and at least 1x must be pre-calculated.

Prerequisites

none

Below you will find excerpts from events related to this course:

Cloud Physics

4052081, WS 22/23, 2 SWS, Language: English, Open in study portal

Content

Phenomenology, cloud dynamics of stratiform and convective clouds, micro physics of warm and cold clouds, collision and coalescence, primary and secondary ice formation, condensational and depositional growth.

Organizational issues

Please sign up for more information in the Ilias course.
7.15 Course: Components of the Climate System (Module Exam) [T-PHYS-108933]

Responsible: Prof. Dr. Andreas Fink
Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>12</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7800015</td>
<td>Examination on Components of the Climate System (Module Exam)</td>
<td>Fink</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7800045</td>
<td>Components of the Climate System (Module Exam)</td>
<td>Fink</td>
</tr>
</tbody>
</table>

Competence Certificate
The allocation of 12 credits takes place after passing the oral exam (see module description).

Modeled Conditions
The following conditions have to be fulfilled:

1. The following conditions have to be fulfilled:
 1. The course T-PHYS-108931 - Middle Atmosphere in the Climate System must have been passed.
 2. The course T-PHYS-108932 - Ocean-Atmosphere Interactions must have been passed.
 3. The course T-PHYS-107692 - Seminar on IPCC Assessment Report must have been passed.
 2. The course T-PHYS-107693 - Tropical Meteorology must have been passed.
 3. The course T-PHYS-108928 - Climate Modeling & Dynamics with ICON must have been passed.
7.16 Course: Data Analysis in Geoscience Remote Sensing Projects, Prerequisite [T-BGU-106633]

Responsible: Prof. Dr. Jan Cermak

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103422 - Basics of Estimation Theory and its Application in Geoscience Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 8297106633 | Data Analysis in Geoscience Remote Sensing Projects, Prerequisite | Cermak, Andersen |

Competence Certificate

The assessment consists of a coursework according § 4 para. 3 SPO M.Sc. Geodäsie und Geoinformatik based on successful elaboration of exercises and on data analysis of a geoscientific question and written report of about 8 pages of the results. The detailed conditions will be announced in the lecture.

Prerequisites

None

Recommendation

None

Annotation

None
7.17 Course: Data Science I [T-INFO-111622]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Dr.-Ing. Edouard Fouché

Organisation: KIT Department of Informatics

Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>24114</td>
<td>Data Science 1</td>
<td>3 SWS</td>
<td>Lecture / 🖥️</td>
<td>Fouché</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam</th>
<th>Code</th>
<th>Course</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500062</td>
<td>Data Science I</td>
<td>Böhm</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500311</td>
<td>Data Science I</td>
<td>Böhm</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500087</td>
<td>Data Science 1</td>
<td>Böhm</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥️ Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled
7.18 Course: Database Systems [T-INFO-101497]

Responsible: Prof. Dr.-Ing. Klemens Böhm
Organisation: KIT Department of Informatics
Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2022</th>
<th>24516</th>
<th>Datenbanksysteme</th>
<th>2 SWS</th>
<th>Lecture / &</th>
<th>Böhm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ST 2022</td>
<td>24522</td>
<td>Übungen zu Datenbanksysteme</td>
<td>1 SWS</td>
<td>Practice / &</td>
<td>Böhm, Kalinke</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>ST 2022</th>
<th>7500166</th>
<th>Database Systems</th>
<th>Böhm</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>WT 22/23</td>
<td>7500189</td>
<td>Database Systems</td>
<td>Böhm</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
7 COURSES

7.19 Course: Distributed Computing [T-INFO-101298]

Responsible: Prof. Dr. Achim Streit

Organisation: KIT Department of Informatics

Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2400050</td>
<td>Distributed Computing</td>
<td>2</td>
<td>Lecture / 🔴</td>
<td>Streit, Krauß, Fischer</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500282</td>
<td>Distributed Computing</td>
<td>Streit</td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500172</td>
<td>Distributed Computing</td>
<td>Streit</td>
<td></td>
</tr>
</tbody>
</table>

Legend:

- 🖥 Online
- 💿 Blended (On-Site/Online)
- 🔴 On-Site
- ✗ Cancelled
7.20 Course: Energetics [T-PHYS-107695]

Responsible: Prof. Dr. Andreas Fink
Organisation: KIT Department of Physics
Part of: M-PHYS-100952 - Atmospheric Processes

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4052131</td>
<td>Energetics</td>
<td>Lecture / On-Site</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7800107</td>
<td>Energetics (Prerequisite)</td>
<td>Hoose</td>
</tr>
</tbody>
</table>

Prerequisites

none

Below you will find excerpts from events related to this course:

Energetics

4052131, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Content

Mean meridional circulation, stationary and transient eddies; basic forms, budget equations and transport processes of energy in the atmosphere; principle of available potential energy; Lorenz cycle: energy reservoirs and transformation processes, eddy and thermally driven jets (EP flux vectors).

Table of content:

- Literature & Learning goals
- The Climate System
- Basic Equations of the Climate System
- Decomposition of the general circulation
- Radiation budget and energy transports
- Consequences of the radiation and surface energy budgets
- Atmospheric water budget
- Atmospheric and oceanic energy budget
- Concept of „Available Potential Energy (APE)“

Organizational issues

Please sign up for more information in the Ilias course.
7.21 Course: Energy Meteorology [T-PHYS-109141]

Responsible: apl. Prof. Dr. Stefan Emeis
Prof. Dr. Joaquim José Ginete Werner Pinto

Organisation: KIT Department of Physics

Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td></td>
<td>pass/fail</td>
<td>Each summer term</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Energy Meteorology</td>
<td>2 SWS</td>
<td>Lecture /</td>
<td>Emeis, Schroedter-Homscheidt, Ginete Werner Pinto</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Energy Meteorology</td>
<td></td>
<td></td>
<td>Ginete Werner Pinto</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗝 On-Site, ☑ Cancelled

Prerequisites

None

Below you will find excerpts from events related to this course:

Energy Meteorology

4052191, SS 2022, 2 SWS, Language: English, Open in study portal

Content

- Overview Energy Meteorology
- Physical basics – Wind energy
- Physical basics of energy supply
- Economic basics of energy supply
- Onshore and offshore wind parks
- Wind energy siting – complex terrain
- Physical basics – Solar energy
- Tracking and concentrating solar systems
- Wind measurements
- Radiation forecasts
- Wind energy – yield forecasts
- Climate change & energy system
- Community energy meteorology and where to work

Organizational issues

- Block Course 01 - 05 August 2022
- Please register for the ILIAS course to receive further information
7.22 Course: Exam on Physics of Planetary Atmospheres [T-PHYS-109180]

Responsible: Prof. Dr. Thomas Leisner

Organisation: KIT Department of Physics

Part of: M-PHYS-104488 - Physics of Planetary Atmospheres

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exam Code</th>
<th>Exam Name</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Physics of Planetary Atmospheres (Exam)</td>
<td>Leisner</td>
</tr>
</tbody>
</table>

Prerequisites

None

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-PHYS-109177 - Physics of Planetary Atmospheres must have been passed.
7.23 Course: Experimental Meteorology (Module Exam) [T-PHYS-109137]

Responsible: Dr. Björn-Martin Sinnhuber
Organisation: KIT Department of Physics
Part of: M-PHYS-100953 - Experimental Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral exam</td>
<td>14</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>4</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Exam Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7800038</td>
<td>Examination on Experimental Meteorology (Module Exam)</td>
<td>Sinnhuber</td>
</tr>
</tbody>
</table>

Competence Certificate

The allocation of 12 credits takes place after passing the oral exam (see module description).

Prerequisites

In the Module "Experimental Meteorology" all offered courses must be passed.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course **T-PHYS-109135 - Advanced Practical Courses** must have been passed.
2. The course **T-PHYS-109136 - Field Trip** must have been passed.
3. The course **T-PHYS-111274 - Remote Sensing of Atmosphere and Ocean** must have been passed.
4. The course **T-BGU-111185 - Atmospheric Remote Sensing Infrastructures, Prerequisite** must have been passed.
7.24 Course: Field Course Soil Science [T-BGU-107486]

Responsible: Prof. Dr. Wolfgang Wilcke

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-103398 - Geocology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Mode</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6111077</td>
<td>Field Course Soil Science</td>
<td>1 SWS</td>
<td>Practice / 🗣</td>
<td>Velescu</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Type</th>
<th>Code</th>
<th>Title</th>
<th>Instructor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>8262101508</td>
<td>Field Course Soil Science</td>
<td>Velescu</td>
</tr>
</tbody>
</table>

Prerequisites

None

Recommendation

None

Annotation

None
7.25 Course: Field Trip [T-PHYS-109136]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: M-PHYS-100953 - Experimental Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4052263</td>
<td>Field Trip</td>
<td>2 SWS</td>
<td>Excursion (E / 🗣)</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7800037</td>
<td>Field Trip</td>
<td></td>
<td>Sinnhuber</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Competence Certificate
Lectures on specific topics about the excursion

Prerequisites
None

Below you will find excerpts from events related to this course:

Field Trip
4052263, SS 2022, 2 SWS, Language: English, Open in study portal

Content
The course comprises a one-week excursion to research institutes and observatories in Germany and neighbouring countries.

Organizational issues
- The date for the field trip will be arranged in the semester opening on April 19th, 12:00-13:00
- Please register for the ILIAS course to receive further information
7.26 Course: Flow Measurement Techniques [T-BGU-110411]

Responsible: Dr.-Ing. Christof-Bernhard Gromke
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-105504 - Fluid Mechanics and Turbulence

Type	Credits	Grading scale	Recurrence	Expansion	Version
Oral examination | 3 | Grade to a third | Each term | 1 terms | 1

Events
| WT 22/23 | 6221907 | Flow Measurement Techniques | 2 SWS | Lecture / Practice (/) | Gromke

Exams
| ST 2022 | 8244110411 | Flow Measurement Techniques | Gromke
| WT 22/23 | 8244110411 | Flow Measurement Techniques | Gromke

Legend: 🕹 Online, 🌐 Blended (On-Site/Online), ⚪ On-Site, ✗ Cancelled

Competence Certificate
oral exam, appr. 30 min.

Prerequisites
none

Recommendation
none

Annotation
none

Below you will find excerpts from events related to this course:

Flow Measurement Techniques
6221907, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture / Practice (VÜ)
On-Site

Content
The course teaches the basics of flow measurement techniques as they are used in a wide variety of technical applications today. Measurement methods based on mechanical, electrical and optical principles are addressed in detail. Furthermore, methods of signal processing related to Fluid Mechanics and flow measurement techniques are presented, whereby basic evaluation procedures are explained.

Organizational issues
Registration in ILIAS is open till 01.11.2022. However, for planning purposes please register as soon as possible.
7.27 Course: Fluid Mechanics of Turbulent Flows [T-BGU-110841]

Responsible: Prof. Dr.-Ing. Markus Uhlmann
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-105504 - Fluid Mechanics and Turbulence

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>6</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>SWS</th>
<th>Type</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6221806</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>4</td>
<td>Lecture / Practice (/)</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Course</th>
<th>Organiser</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>8244110841</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>Uhlmann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>8244110841</td>
<td>Fluid Mechanics of Turbulent Flows</td>
<td>Uhlmann</td>
</tr>
</tbody>
</table>

Legend: Online, Blended (On-Site/Online), On-Site, Cancelled

Competence Certificate

oral exam, appr. 45 min.

Prerequisites

none

Recommendation

none

Annotation

none
7.28 Course: Geo Data Infrastructures and Web Services [T-BGU-101756]

Responsible: Dr.-Ing. Sven Wursthorn
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-102760 - GIS and Geo Data Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>1</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Lecture Code</th>
<th>Lecture Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6026204</td>
<td>Geodateninfrastrukturen und Webdienste</td>
<td>1 SWS</td>
<td>Lecture / 🗣</td>
<td>Each summer term</td>
<td>Wursthorn</td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>6026205</td>
<td>Geodateninfrastrukturen und Webdienste, Übung</td>
<td>2 SWS</td>
<td>Practice / 🗣</td>
<td>Each summer term</td>
<td>Wursthorn</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Lecture Code</th>
<th>Lecture Title</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Tutors</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>8296101756</td>
<td>Geo Data Infrastructures and Web Services</td>
<td>Wursthorn</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🎤 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled

Prerequisites
The part T-BGU-101757 Geodateninfrastrukturen und Web-Dienste, Vorleistung has to be passed.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-101757 - Geo Data Infrastructures and Web Services, Prerequisite must have been passed.
7.29 Course: Geodata Infrastructures and Web-Services, Prerequisite [T-BGU-101757]

Responsible: Dr.-Ing. Sven Wursthorn

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of: M-BGU-102760 - GIS and Geo Data Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6026204</td>
<td>1 SWS</td>
<td>Lecture</td>
<td>Wursthorn</td>
<td></td>
</tr>
<tr>
<td>Geodateninfrastrukturen und Webdienste</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 6026205</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Wursthorn</td>
<td></td>
</tr>
<tr>
<td>Geodateninfrastrukturen und Webdienste, Übung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 8296101757</td>
<td></td>
<td>Geodata Infrastructures and Web-Services, Prerequisite</td>
<td>Wursthorn</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 8296101757</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geodata Infrastructures and Web-Services, Prerequisite</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites

None
7.30 Course: Geological Hazards and Risk [T-PHYS-103525]

Responsible: Dr. Andreas Schäfer

Organisation: KIT Department of Physics

Part of: M-PHYS-101833 - Geological Hazards and Risk

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7800114</td>
<td>Geological Hazards and Risk</td>
<td>Gottschämmer</td>
</tr>
</tbody>
</table>

Master of Science Meteorology (M.Sc.)
Module Handbook as of 05/09/2022
7.31 Course: Geomorphology and Soil Science [T-BGU-107487]

Responsible: Prof. Dr. Wolfgang Wilcke
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-103398 - Geocology

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>7</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td></td>
<td>Wilcke</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td></td>
<td>Wilcke</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>1 SWS</td>
<td>Practice / 🗣️</td>
<td></td>
<td>Velescu</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Grade to a third</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prerequisites
None

Recommendation
None

Annotation
None

Legend: 🕵️ Online, 🗻 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled
7.32 Course: Image Processing and Computer Vision [T-BGU-101732]

Responsible: Dr.-Ing. Uwe Weidner
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-102757 - Computer Vision and GIS
M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>6042101</th>
<th>Image Processing and Computer Vision, Lecture</th>
<th>2 SWS</th>
<th>Lecture / 🗣</th>
<th>Weinmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6042102</td>
<td>Image Processing and Computer Vision, Exercises</td>
<td>1 SWS</td>
<td>Practice / 🖥</td>
<td>Weinmann</td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 | 8291101732 | Image Processing and Computer Vision | Weinmann |

Legend: 🖥 Online, ⬿ Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate

The assessment consists of a oral exam (ca. 30 min), according § 4 para. 2 No. 2 SPO M.Sc. Geodäsie und Geoinformatik.

Prerequisites

The parts T-BGU-106333 und T-BGU-106334 must not have started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-106333 - Remote Sensing of a Changing Climate, Prerequisite must not have been started.
2. The course T-BGU-106334 - Remote Sensing of a Changing Climate, Examination must not have been started.
7.33 Course: Introduction into Classification Methods of Remote Sensing [T-BGU-105725]

<table>
<thead>
<tr>
<th>Responsible</th>
<th>Dr.-Ing. Uwe Weidner</th>
</tr>
</thead>
<tbody>
<tr>
<td>Organisation</td>
<td>KIT Department of Civil Engineering, Geo and Environmental Sciences</td>
</tr>
<tr>
<td>Part of:</td>
<td>M-BGU-102758 - GIS and Remote Sensing</td>
</tr>
<tr>
<td></td>
<td>M-BGU-102759 - Computer Vision and Remote Sensing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Oral examination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Credits</td>
<td>4</td>
</tr>
<tr>
<td>Grading scale</td>
<td>Grade to a third</td>
</tr>
<tr>
<td>Recurrence</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Version</td>
<td>2</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 8296105725 | Introduction into Classification Methods of Remote Sensing | Weidner |

Competence Certificate
- **oral exam (approx. 20 min.)**

Prerequisites
- None

Recommendation
- None

Annotation
- None
7.34 Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences [T-BGU-101681]

Responsible: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
- M-BGU-102757 - Computer Vision and GIS
- M-BGU-102758 - GIS and Remote Sensing
- M-BGU-102760 - GIS and Geo Data Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Lecture / Practice</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>6071101</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>Lecture / Practice</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>8280101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>Lecture / Practice</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>8280101681</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>2</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Legend:
- 🖥 Online
- 🧩 Blended (On-Site/Online)
- 🗣 On-Site
- 🗑 Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-103541 - Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite must have been passed.
7.35 Course: Introduction to GIS for Students of Natural, Engineering and Geo Sciences, Prerequisite [T-BGU-103541]

Responsible: Dr.-Ing. Norbert Rösch
Dr.-Ing. Sven Wursthorn

Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences

Part of:
M-BGU-102757 - Computer Vision and GIS
M-BGU-102758 - GIS and Remote Sensing
M-BGU-102760 - GIS and Geo Data Infrastructures

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>6071101</td>
<td>Einführung in GIS für Studierende natur-, ingenieur- und geowissenschaftlicher Fachrichtungen, V/Ü</td>
<td>4 SWS</td>
<td>Lecture / Practice (/</td>
<td>Wursthorn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Description</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>8280103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>Wursthorn</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>8280103541</td>
<td>Introduction to GIS for Students of Natural, Engineering and Geo Sciences</td>
<td>Wursthorn</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ❌ Cancelled
7.36 Course: Introduction to Volcanology, Exam [T-PHYS-103644]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: M-PHYS-103336 - Geophysical analysis of natural hazards

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| ST 2022 | 7800044 | **Introduction to Volcanology, exam** | Gottschämmer |

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-PHYS-103553 - Introduction to Volcanology, Prerequisite must have been passed.
7.37 Course: Introduction to Volcanology, Prerequisite [T-PHYS-103553]

Responsible: Prof. Dr. Thomas Bohlen
Organisation: KIT Department of Physics
Part of: M-PHYS-103336 - Geophysical analysis of natural hazards

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>3</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Code</th>
<th>Description</th>
<th>Tutor</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7800043</td>
<td>Introduction to Volcanology, Studienleistung</td>
<td>Gottschämmer</td>
</tr>
</tbody>
</table>
7.38 Course: Master's Thesis [T-PHYS-109616]

Responsible: Prof. Dr. Corinna Hoose
Organisation: KIT Department of Physics
Part of: M-PHYS-100956 - Master's Thesis

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Final Thesis</td>
<td>30</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>

Prerequisites
see module information

Final Thesis
This course represents a final thesis. The following periods have been supplied:
- **Submission deadline** 6 months
- **Maximum extension period** 3 months
- **Correction period** 8 weeks

This thesis requires confirmation by the examination office.
7.39 Course: Methods of Data Analysis [T-PHYS-109142]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Peter Knippertz

Organisation: KIT Department of Physics

Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>2</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4052171</td>
<td>Methods of Data Analysis</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Ginete Werner Pinto, Lerch</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4052172</td>
<td>Exercises to Methods of Data Analysis</td>
<td>1</td>
<td>Practice / 🗣️</td>
<td>Ginete Werner Pinto, Ehmele</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event Code</th>
<th>Course Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Lecturer</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7800022</td>
<td>Methods of Data Analysis (Prerequisite)</td>
<td>1</td>
<td>On-Site</td>
<td>Ginete Werner Pinto</td>
</tr>
</tbody>
</table>

Competence Certificate

Successful participation in the exercises.

Prerequisites

None

Below you will find excerpts from events related to this course:

Methods of Data Analysis

4052171, SS 2022, 2 SWS, Language: English, Open in study portal

Content

1. Basics
2. Significance testings
3. Regression
4. Time series
5. Fourier wavelet analysis
6. Spatial analysis
7. Clustering
8. Machine Learning
9. Summary

Organizational issues

- Please register for the ILIAS course to receive further information

Exercises to Methods of Data Analysis

4052172, SS 2022, 1 SWS, Language: English, Open in study portal

Content

Following the lecture.
7.40 Course: Middle Atmosphere in the Climate System [T-PHYS-108931]

Responsible:
Dr. Michael Höpfner
Dr. Miriam Sinnhuber

Organisation:
KIT Department of Physics

Part of:
M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>4052061</th>
<th>Middle Atmosphere in the Climate System</th>
<th>2 SWS</th>
<th>Lecture / 🗣️</th>
<th>Höpfner, Sinnhuber</th>
</tr>
</thead>
</table>

Exams

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>7800008</th>
<th>Middle Atmosphere in the Climate System (Prerequisite)</th>
<th>Fink</th>
</tr>
</thead>
</table>

Legend: 🖥 Online, 🧱 Blended (On-Site/Online), 🗣️ On-Site, ✗ Cancelled

Prerequisites
None

Below you will find excerpts from events related to this course:

Middle Atmosphere in the Climate System

4052061, WS 22/23, 2 SWS, Language: English, Open in study portal

Content

- History of science of the middle atmosphere (MA)
- Mean state of the MA: temperature, wind, chemical composition
- Radiation: sun, radiative transfer, energy budget, photolysis
- Measurements: in-situ/remote sounding, ground-based, airborne/balloon, satellite
- Aerosols: stratospheric background aerosol layer, volcanic enhancement, polar stratospheric clouds, polar mesospheric clouds, meteoric dust
- Chemistry: general concepts, global ozone layer, polar ozone chemistry
- Dynamics: fundamental description, meridional circulation, equatorial circulation, waves and tides, stratospheric warmings, tracer and age-of-air, upper troposphere/lower stratosphere, cross-tropopause transport
- Coupling and climate: chemistry-climate coupling, trends,

Organizational issues

Please sign up for more information in the Ilias course.
7.41 Course: Mobile Computing and Internet of Things [T-INFO-102061]

Responsible: Prof. Dr.-Ing. Michael Beigl
Organisation: KIT Department of Informatics
Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Hours</th>
<th>Type</th>
<th>Exam Date</th>
<th>Grading</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>2400051</td>
<td>2+1 SWS</td>
<td>Mobile Computing and Internet of Things</td>
<td></td>
<td></td>
<td>Beigl</td>
</tr>
<tr>
<td>Exams</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500285</td>
<td>04.04.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500287</td>
<td>11.04.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500289</td>
<td>30.05.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500292</td>
<td>18.07.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022</td>
<td>7500293</td>
<td>30.09.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500055</td>
<td></td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500341</td>
<td>07.02.22</td>
<td>Mobile Computing and Internet of Things</td>
<td>Beigl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7.42 Course: Modern Theoretical Physics for Teacher Students [T-PHYS-103204]

Responsible: Dr. Robert Eder

Organisation: KIT Department of Physics

Part of: M-PHYS-101664 - Modern Theoretical Physics for Teacher Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>8</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Type</th>
<th>Credits</th>
<th>Lecture/Practice</th>
<th>Tutor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4012131</td>
<td>Moderne Theoretische Physik für Lehramtskandidaten</td>
<td>4 SWS</td>
<td>Lecture</td>
<td>Gieseke</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4012132</td>
<td>Übungen zu Moderne Theoretische Physik für Lehramtskandidaten</td>
<td>2 SWS</td>
<td>Practice</td>
<td>Gieseke, NN</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Event Code</th>
<th>Type</th>
<th>Exam Title</th>
<th>Tutor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7800078</td>
<td>Modern Theoretical Physics for Teacher Students</td>
<td>Modern Theoretical Physics for Teacher Students</td>
<td>Eder, Klinkhamer, Gieseke</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7800079</td>
<td>Modern Theoretical Physics for Teacher Students - Reserve</td>
<td>Modern Theoretical Physics for Teacher Students - Reserve</td>
<td>Gieseke</td>
</tr>
</tbody>
</table>

Competence Certificate

Oral exam, approx. 45 min

Prerequisites

Successful completion of the exercises

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-PHYS-103203 - Modern Theoretical Physics for Teacher Students - Prerequisite must have been passed.
7.43 Course: Modern Theoretical Physics for Teacher Students - Prerequisite [T-PHYS-103203]

Responsible:	Dr. Robert Eder
Organisation:	KIT Department of Physics
Part of:	M-PHYS-101664 - Modern Theoretical Physics for Teacher Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>WT 22/23</th>
<th>4012131</th>
<th>Moderne Theoretische Physik für Lehramtskandidaten</th>
<th>4 SWS</th>
<th>Lecture / 🔴</th>
<th>Gieseke</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4012132</td>
<td>Übungen zu Moderne Theoretische Physik für Lehramtskandidaten</td>
<td>2 SWS</td>
<td>Practice / 🔴</td>
<td>Gieseke, NN</td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 | 7800077 | Modern Theoretical Physics for Teacher Students - Prerequisite | Gieseke |

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🔴 On-Site, ✗ Cancelled

Competence Certificate

Course achievement, successful completion of the exercises

Prerequisites

none
7.44 Course: Modern Theoretical Physics I, Quantum Mechanics 1 [T-PHYS-105134]

Responsible: Studiendekan Physik
Organisation: KIT Department of Physics
Part of: M-PHYS-101707 - Modern Theoretical Physics I, Quantum Mechanics I

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Code</th>
<th>Code/Label</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Grading</th>
<th>Recurrence</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4010141</td>
<td>Moderne Theoretische Physik I (Theorie D, Quantenmechanik I)</td>
<td>Lecture</td>
<td>4 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Shnirman</td>
</tr>
<tr>
<td>ST 2022</td>
<td>4010142</td>
<td>Übungen zu Moderne Theoretische Physik I</td>
<td>Practice</td>
<td>2 SWS</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>Shnirman, Reich</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Code</th>
<th>Code/Label</th>
<th>Title</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7800060</td>
<td>Modern Theoretical Physics I, Quantum Mechanics 1 - oral Exam</td>
<td>Mühlleitner, Shnirman</td>
</tr>
<tr>
<td>ST 2022</td>
<td>7800129</td>
<td>Modern Theoretical Physics I, Quantum Mechanics 1</td>
<td>Shnirman</td>
</tr>
</tbody>
</table>

Legend: 🍓 Online, 🧩 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Oral exam, approx. 45 min

Prerequisites
Successful completion of the exercises
7.45 Course: Modern Theoretical Physics I, Quantum Mechanics 1, Prerequisite 1

Responsible: Prof. Dr. Alexander Shnirman
Organisation: KIT Department of Physics
Part of: M-PHYS-101707 - Modern Theoretical Physics I, Quantum Mechanics I

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
</tr>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

ST 2022	4010141	Moderne Theoretische Physik I (Theorie D, Quantenmechanik I)	4 SWS	Lecture / 🗣	Shnirman
ST 2022	4010142	Übungen zu Moderne Theoretische Physik I	2 SWS	Practice / 🗣	Shnirman, Reich
ST 2022	7800064	Modern Theoretical Physics I, Quantum Mechanics 1, Prerequisite 1 - Tutorial			Shnirman

Legend: 🖥 Online, 🌐 Blended (On-Site/Online), 🗣 On-Site, ✗ Cancelled

Competence Certificate
Course achievement, successful completion of the exercises

Prerequisites
none
7.46 Course: Numerical Methods - Exam [T-MATH-111700]

Responsible:
apl. Prof. Dr. Peer Kunstmann
Prof. Dr. Michael Plum
Prof. Dr. Wolfgang Reichel

Organisation:
KIT Department of Mathematics

Part of:
M-MATH-105831 - Numerical Methods

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Written examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grade to a third</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7700088</td>
<td>Numerical Methods - Exam</td>
<td>Kunstmann, Anapolitanos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7700069</td>
<td>Numerical Methods - Exam</td>
<td>Anapolitanos, Plum, Kunstmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Competence Certificate
Success control takes the form of a written examination (120 minutes).

Prerequisites
one
7.47 Course: Ocean-Atmosphere Interactions [T-PHYS-108932]

Responsible: Prof. Dr. Andreas Fink
Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Location</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4052121</td>
<td>Ocean-Atmosphere Interactions</td>
<td>Lecture</td>
<td>2 SWS</td>
<td>-</td>
<td>Fink, Woodhams</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Credits</th>
<th>Location</th>
<th>Lecturer(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7800067</td>
<td>Ocean-Atmosphere Interactions (Prerequisite)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>Fink</td>
</tr>
</tbody>
</table>

Prerequisites

None

Below you will find excerpts from events related to this course:

Ocean-Atmosphere Interactions

4052121, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Content

- Literature
- Learning goals
- Physical and chemical properties of the upper ocean layers
 - Properties of ocean waters
 - Salinity content and density
 - Temperature distribution in the ocean
 - Horizontal salinity distribution in the ocean
 - Vertical salinity distribution
 - Horizontal and vertical density distribution
 - Characteristic water masses in the oceans
 - Dissolved gases in the ocean
 - Molecular transport
 - Properties of humid air
 - Ocean surface and its immediate environment
- Wind-driven ocean surface currents
 - Equation of motion
 - Ekman's solution of the equation of motion
 - Mass transport associated with the Ekman current
 - Up-welling in the ocean
 - Sverdrup regime
 - Westerly boundary current: Stommel's contribution
 - Munk's solution
- Ocean waves
 - Generation of ocean waves by wind
 - Description of ocean waves
 - Global view on ocean wave climates
 - Ocean wave modeling
 - Ocean wave measurements
- Summary

Organizational issues

Please sign up for more information in the Ilias course.
Course: Parallel Computer Systems and Parallel Programming [T-INFO-101345]

Responsible: Prof. Dr. Achim Streit
Organisation: KIT Department of Informatics
Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

| ST 2022 | 24617 | Parallel computer systems and parallel programming | 2 SWS | Lecture | Streit, Häfner |

Exams

| ST 2022 | 7500141 | Parallel computer systems and parallel programming | Streit |
| WT 22/23 | 7500241 | Parallel computer systems and parallel programming | Streit |
7.49 Course: Physics of Planetary Atmospheres [T-PHYS-109177]

Responsible: Prof. Dr. Thomas Leisner

Organisation: KIT Department of Physics

Part of: M-PHYS-104488 - Physics of Planetary Atmospheres

Type
- Completed coursework

Credits
- 8

Grading scale
- pass/fail

Recurrence
- Each winter term

Version
- 3

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4052161</td>
<td>Physics of Planetary Atmospheres</td>
<td>2</td>
<td>Lecture</td>
<td>Leisner, Sinnhuber, Reddmann</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052162</td>
<td>Exercises to Physics of Planetary Atmospheres</td>
<td>2</td>
<td>Practice</td>
<td>Leisner, Duft</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7800091</td>
<td>Physics of Planetary Atmospheres (Prerequisite)</td>
<td>Lecture</td>
<td>Leisner</td>
</tr>
</tbody>
</table>

Legend:
- Online
- Blended (On-Site/Online)
- On-Site
- Cancelled

Competence Certificate

- If this module is part of the Specialization or Compulsory Subject, credits are earned through the associated exam (oral, written or otherwise).
- Otherwise, the exercises, computer exercises, internships or, if necessary, graduation lectures must be successfully completed.

Prerequisites

None

Recommendation

Basic knowledge of physics, physical chemistry and fluid dynamics at Bachelor level.

Annotation

240 hours consisting of attendance times (60 hours), follow-up of the lecture incl. Exam preparation and editing exercises (180 hours).

Below you will find excerpts from events related to this course:

Physics of Planetary Atmospheres

4052161, WS 22/23, 2 SWS, Language: English, [Open in study portal]

Content

The module gives a broad introduction into the formation and properties of planets and their atmospheres and tries to constrain possible planetary atmospheres by applying fundamental principles of physics. In this respect, the module will focus on the planetary atmospheres in our solar system. Moreover, recently developed methods for the remote sensing of extra solar planets are introduced and the current understanding of their atmospheres is presented. A focus is the energy budget of planetary atmospheres, where clouds play a central role. Their formation and growth will be covered in a generalized fashion.

Organizational issues

Please sign up for more information in the Ilias course.
Course: Remote Sensing of a Changing Climate, Examination [T-BGU-106334]

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Lecture/Practice</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 6043106 Satellite Climatology: Remote Sensing of a Changing Climate, Lecture</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
<tr>
<td>ST 2022 6043107 Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1 SWS</td>
<td>Practice / 🧩</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
<tr>
<td>WT 22/23 6043106 Satellite Climatology: Remote Sensing of a Changing Climate, Lecture</td>
<td>2 SWS</td>
<td>Lecture / 🗣️</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
<tr>
<td>WT 22/23 6043107 Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1 SWS</td>
<td>Practice / 🧩</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>3</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Lecture/Practice</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 8297106334 Remote Sensing of a Changing Climate, Examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WT 22/23 8296106334 Remote Sensing in a Changing Climate, Examination</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 📇 Online, 🧩 Blended (On-Site/Online), 🗣️ On-Site, ❌ Cancelled

Competence Certificate

Oral exam of about 20 min.

Prerequisites

T-BGU-106333 (Remote Sensing in a Changing Climate, Vorleistung) passed
T-BGU-101732 (Image Processing and Computer Vision) must not have been started.

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-106333 - Remote Sensing of a Changing Climate, Prerequisite must have been passed.
2. The course T-BGU-101732 - Image Processing and Computer Vision must not have been started.

Recommendation

None

Annotation

None
7.51 Course: Remote Sensing of a Changing Climate, Prerequisite [T-BGU-106333]

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1</td>
<td>Practice / 🧩</td>
<td>Cermak</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1</td>
<td>Practice / 🧩</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Code</th>
<th>Title</th>
<th>Type</th>
<th>Prof.</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8296106333</td>
<td>Remote Sensing in a Changing Climate, Prerequisite</td>
<td>Cermak</td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), 🗤 On-Site, ❌ Cancelled

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-BGU-101732 - Image Processing and Computer Vision must not have been started.
7 COURSES

Course: Remote Sensing of Atmosphere and Ocean [T-PHYS-111274]

Responsible: Dr. Björn-Martin Sinnhuber
Organisation: KIT Department of Physics
Part of: M-PHYS-100953 - Experimental Meteorology

Type
- Completed coursework
- Credits: 0
- Grading scale: pass/fail
- Recurrence: Each summer term
- Expansion: 1 terms
- Version: 1

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 4052151</td>
<td></td>
<td>Lecture / 👤</td>
<td>2 SWS</td>
<td>Sinnhuber, Cermak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Remote Sensing of Atmosphere and Ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ST 2022 4052152</td>
<td></td>
<td>Practice / 👤</td>
<td>1 SWS</td>
<td>Sinnhuber, Cermak</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exercises to Remote Sensing of Atmosphere and Ocean</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022 7800024</td>
<td></td>
<td>Remote Sensing of Atmosphere and Ocean (Prerequisite)</td>
<td></td>
<td>Sinnhuber</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧬 Blended (On-Site/Online), 👤 On-Site, ✗ Cancelled

Competence Certificate

More than 50% of the points from the exercises must be achieved.

Prerequisites

None

Below you will find excerpts from events related to this course:

Remote Sensing of Atmosphere and Ocean

4052151, SS 2022, 2 SWS, Language: English, [Open in study portal](#)

Content

• physical basics
• radiation transfer
• inverse methods
• basics of satellite remote sensing
• techniques and applications

Organizational issues

• Please register for the ILIAS course to receive further information

Exercises to Remote Sensing of Atmosphere and Ocean

4052152, SS 2022, 1 SWS, Language: English, [Open in study portal](#)

Content

Following the lecture.

Organizational issues

• Please register for the ILIAS course to receive further information
7.53 Course: Satellite Climatology: Remote Sensing of a Changing Climate, Examination [T-BGU-110305]

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-105095 - Satellite Climatology: Remote Sensing of a Changing Climate

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each winter term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1 SWS</td>
<td>Practice / 🕒</td>
<td>Cermak</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>6043107</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Exercises</td>
<td>1 SWS</td>
<td>Practice / 🕒</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>8297110305</th>
<th>Satellite Climatology: Remote Sensing of a Changing Climate, Examination</th>
<th>Cermak</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>8297110305</td>
<td>Satellite Climatology: Remote Sensing of a Changing Climate, Examination</td>
<td>Cermak</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🕒 Blended (On-Site/Online), 🗣 On-Site, 🗞 Cancelled

Competence Certificate
Oral exam (about 20 min.) according § 4 para. 2 No. 2 SPO M.Sc. Geodäsie und Geoinformatik.

Prerequisites
The part T-BGU-106334 - Remote Sensing of a Changing Climate, Prüfung must not have started.
The part T-BGU-110304 - Satellite Climatology: Remote Sensing of a Changing Climate, Prerequisite must be passed.

Modeled Conditions
You have to fulfill one of 2 conditions:

1. The course T-BGU-110304 - Satellite Climatology: Remote Sensing of a Changing Climate, Prerequisite must have been passed.
2. The course T-BGU-101732 - Image Processing and Computer Vision must not have been started.
7.54 Course: Satellite Climatology: Remote Sensing of a Changing Climate, Prerequisite [T-BGU-110304]

Responsible: Prof. Dr. Jan Cermak
Organisation: KIT Department of Civil Engineering, Geo and Environmental Sciences
Part of: M-BGU-105095 - Satellite Climatology: Remote Sensing of a Changing Climate

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type</td>
</tr>
<tr>
<td>Completed coursework</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
</tr>
<tr>
<td>ST 2022</td>
</tr>
<tr>
<td>WT 22/23</td>
</tr>
<tr>
<td>WT 22/23</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Exams</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
</tr>
<tr>
<td>WT 22/23</td>
</tr>
</tbody>
</table>

Legend: 📅 Online, 🧩 Blended (On-Site/Online), 📅 On-Site, ✗ Cancelled

Competence Certificate
Elaboration (data analysis and evaluation) in the form of a commented Jupyter notebook. Success is assessed in the form of a coursework (§ 4 (3) SPO). The detailed conditions will be announced in the lecture.

Prerequisites
The parts T-BGU-106333 - Remote Sensing of a Changing Climate, Vorleistung and T-BGU-101732 - Image Processing and Computer Vision must not have started.

Modeled Conditions
The following conditions have to be fulfilled:

1. The course T-BGU-106333 - Remote Sensing of a Changing Climate, Prerequisite must not have been started.
2. The course T-BGU-101732 - Image Processing and Computer Vision must not have been started.
Organisation: KIT Department of Physics
Part of: M-PHYS-100955 - Specialisation Phase

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Expansion</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>30</td>
<td>pass/fail</td>
<td>Each term</td>
<td>1 terms</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4052904</td>
<td>Seminar on Specialization Phase</td>
<td>Each term</td>
<td>2 SWS</td>
<td>Seminar / 🧩</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Braesicke, Fink, Hoose, Knippertz, Kunz, Leisner, Ginete Werner Pinto</td>
<td></td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Type</th>
<th>Recurrence</th>
<th>Credits</th>
<th>Type</th>
<th>Grading scale</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7800098</td>
<td>Scientific Concept Development</td>
<td>Each term</td>
<td></td>
<td></td>
<td>Hoose</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7800070</td>
<td>Scientific Concept Development</td>
<td>Each term</td>
<td></td>
<td></td>
<td>Hoose</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧩 Blended (On-Site/Online), ⏰ On-Site, ✗ Cancelled

Prerequisites
see module information or module handbook

Modeled Conditions
You have to fulfill one of 4 conditions:

1. The module M-PHYS-100951 - Components of the Climate System must have been passed.
2. The module M-PHYS-100952 - Atmospheric Processes must have been passed.
3. The module M-PHYS-100953 - Experimental Meteorology must have been passed.
4. The module M-PHYS-100954 - Applied Meteorology must have been passed.

Below you will find excerpts from events related to this course:

Seminar on Specialization Phase
4052904, SS 2022, 2 SWS, Language: English, Open in study portal

Seminar (S) Blended (On-Site/Online)

Content
In the Seminar on Specialization Phase students present their final theses in the context of the TL T-PHYS-109617 "Scientific Concept Development" (Master)
The registration takes place via Ilias and by mail to katharina.maurer@kit.edu

Organizational issues

- The organization will still take place online. Therefore please register for the ILIAS course to recieve further information
7.56 Course: Seminar on IPCC Assessment Report [T-PHYS-107692]

Responsible: Prof. Dr. Joaquim José Ginete Werner Pinto
Prof. Dr. Corinna Hoose
Patrick Ludwig

Organisation: KIT Department of Physics

Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Events</th>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Student(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Seminar on IPCC Assessment Report</td>
<td>2 SWS</td>
<td>Advanced seminar</td>
<td>Irregular</td>
<td>Ginete Werner Pinto, Ludwig</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Exams</th>
<th>Type</th>
<th>Credits</th>
<th>Recurrence</th>
<th>Student(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>Seminar on IPCC Assessment Report</td>
<td>2 SWS</td>
<td>Fink</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
🖥 Online, 🧩 Blended (On-Site/Online), 📐 On-Site, ✗ Cancelled

Competence Certificate

Study of a chapter of the current IPCC report with subsequent presentation (~ 20-25 min) and submission of a written summary (1 page).

Below you will find excerpts from events related to this course:

Seminar on IPCC Assessment Report

4052194, WS 22/23, 2 SWS, Language: English, [Open in study portal](#)

Advanced seminar (HS)

On-Site

Content

Causes of climate change and paleoclimate (external and internal influence factors on the climate, results and structure of simple climate models with and without feedbacks, radiation effect and importance of greenhouse gases, results of model projections of the global climate, IPCC process structure and importance for the life on earth).

The objectives of this Seminar are to provide an overview of the last IPCC Report (currently 2013) and to develop scientific presentation and discussion skills.

Organizational issues

Please sign up for more information in the Ilias course.
7.57 Course: Seminar on Recent Topics of Risk Science [T-PHYS-107673]

Responsible: Prof. Dr. Andreas Rietbrock

Organisation: KIT Department of Physics

Part of: M-PHYS-103336 - Geophysical analysis of natural hazards

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>Each winter term</td>
<td>1</td>
</tr>
</tbody>
</table>

Exams

| WT 22/23 | 7800109 | Seminar on recent questions about risk science | Gottschämmer |

Modeled Conditions

The following conditions have to be fulfilled:

1. The course T-PHYS-105113 - Geophysical Risk Seminar must not have been started.
7.58 Course: Tropical Meteorology [T-PHYS-107693]

Responsible: Prof. Dr. Peter Knippertz
Organisation: KIT Department of Physics
Part of: M-PHYS-100951 - Components of the Climate System

<table>
<thead>
<tr>
<th>Course Type</th>
<th>Completed coursework</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>pass/fail</td>
<td>Irregular</td>
<td>3</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Name</th>
<th>SWS</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>4052111</td>
<td>Tropical Meteorology</td>
<td>2</td>
<td>Lecture/Blended</td>
<td>Knippertz</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>4052112</td>
<td>Exercises to Tropical Meteorology</td>
<td>1</td>
<td>Practice/Blended</td>
<td>Knippertz, Lemburg</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Event</th>
<th>Course Code</th>
<th>Course Name</th>
<th>Type</th>
<th>Instructor(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>WT 22/23</td>
<td>7800085</td>
<td>Tropical Meteorology (Prerequisite)</td>
<td></td>
<td>Fink</td>
</tr>
</tbody>
</table>

Competence Certificate
Students must achieve 50% of the points on the exercise sheets.

Below you will find excerpts from events related to this course:

Tropical Meteorology

4052111, WS 22/23, 2 SWS, Language: English, Open in study portal

Lecture (V)
Blended (On-Site/Online)

Content
Dynamics and climate of the Tropics (tropical circulation, Hadley and Walker cells, monsoons, El Niño, equatorial waves, Madden-Julian Oscillation, easterly waves, tropical cyclones, tropical squall lines).

Organizational issues
Please sign up for more information in the Ilias course.
7.59 Course: Turbulent Diffusion [T-PHYS-108610]

Responsible: Prof. Dr. Corinna Hoose
Dr. Gholamali Hoshyaripour

Organisation: KIT Department of Physics
Part of: M-PHYS-100954 - Applied Meteorology

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td>Each summer term</td>
<td>5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Events</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>0</td>
<td>pass/fail</td>
<td></td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>4052081</th>
<th>Turbulent Diffusion</th>
<th>2 SWS</th>
<th>Lecture /🗣</th>
<th>Hoshayripour, Hoose</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>4052082</td>
<td>Exercises to Turbulent Diffusion</td>
<td>1 SWS</td>
<td>Practice /🗣</td>
<td>Hoshayripour, Hoose, Bruckert</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>ST 2022</th>
<th>7800019</th>
<th>Turbulent Diffusion (Prerequisite)</th>
<th></th>
<th></th>
</tr>
</thead>
</table>

Exam

- **ST 2022**
 - 7800019
 - Turbulent Diffusion (Prerequisite)
 - Ginete Werner Pinto

Competence Certificate

There are 7 exercises with 100 points in total.

To be admitted for the oral exam the students must:

- Obtain at least 50 points from exercises.
- Present and explain at least one of the ICON-ART exercises in the class.

Prerequisites

- none

Below you will find excerpts from events related to this course:

V Turbulent Diffusion

4052081, SS 2022, 2 SWS, Language: English, Open in study portal

Content

1. Life cycle of air pollutants
2. Relevant processes and substances
3. Quantification of trace substances
4. Emissions
5. Turbulence and averaging
6. The diffusion equation
7. Chemical Transformations
8. Aerosol processes
9. Atmospheric models: ICON-ART modeling system
10. Parametrisation of turbulent fluxes
11. Aerosol interactions

Organizational issues

- Please register for the ILIAS course to receive further information

V Exercises to Turbulent Diffusion

4052082, SS 2022, 1 SWS, Language: English, Open in study portal

Content

There are 7 exercises with 100 points in total. To pass the prerequisite the students must:

- Obtain at least 50 points from exercises.
- Present and explain at least one of the ICON-ART exercises in the class.
Organizational issues

- Please register for the ILIAS course to receive further information
7.60 Course: Visualization [T-INFO-101275]

Responsible: Prof. Dr.-Ing. Carsten Dachsbacher
Organisation: KIT Department of Informatics
Part of: M-INFO-102980 - Informatics for Meteorology Students

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oral examination</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each summer term</td>
<td>1</td>
</tr>
</tbody>
</table>

Events

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>SWS</th>
<th>Type</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>2400175</td>
<td>Visualisierung</td>
<td>2</td>
<td>Lecture / 🗣️</td>
<td>Dachsbacher, Plochowiak</td>
</tr>
</tbody>
</table>

Exams

<table>
<thead>
<tr>
<th>Term</th>
<th>Code</th>
<th>Title</th>
<th>Responsible</th>
</tr>
</thead>
<tbody>
<tr>
<td>ST 2022</td>
<td>7500193</td>
<td>Visualization</td>
<td>Dachsbacher</td>
</tr>
<tr>
<td>WT 22/23</td>
<td>7500563</td>
<td>Visualization</td>
<td>Dachsbacher</td>
</tr>
</tbody>
</table>

Legend: 🖥 Online, 🧴 Blended (On-Site/Online), 🗣️ On-Site, 🗟 Cancelled
Course: Wildcard [T-PHYS-112124]

Organisation: KiT Department of Physics
Part of: M-PHYS-102352 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>1</td>
<td>pass/fail</td>
<td>2</td>
</tr>
</tbody>
</table>

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
- Personalentwicklung und Berufliche Ausbildung
7.62 Course: Wildcard [T-PHYS-112125]

Organisation: KIT Department of Physics
Part of: M-PHYS-102352 - Interdisciplinary Qualifications

Type
Completed coursework

Credits
1

Grading scale
pass/fail

Version
2

Self service assignment of supplementary studies
This course can be used for self service assignment of grade aquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
- Personalentwicklung und Berufliche Ausbildung
7.63 Course: Wildcard [T-PHYS-112122]

Organisation: KIT Department of Physics
Part of: M-PHYS-102352 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MINT-Kolleg
- Personalentwicklung und Berufliche Ausbildung
7.64 Course: Wildcard [T-PHYS-112123]

Organisation: KiT Department of Physics
Part of: M-PHYS-102352 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>1</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>

Self service assignment of supplementary studies
This course can be used for self service assignment of grade acquired from the following study providers:

- House of Competence
- Sprachenzentrum
- Zentrum für Angewandte Kulturwissenschaft und Studium Generale
- Studienkolleg
- MIIN-T-Kolleg
- Personalentwicklung und Berufliche Ausbildung
7.65 Course: Wildcard [T-PHYS-106795]

Organisation: University
Part of: M-PHYS-103403 - Module Wildcard Electives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>3</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
7.66 Course: Wildcard [T-PHYS-106796]

Organisation: University
Part of: M-PHYS-103403 - Module Wildcard Electives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
7.67 Course: Wildcard [T-PHYS-106794]

- **Organisation:** University
- **Part of:** M-PHYS-103403 - Module Wildcard Electives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
7.68 Course: Wildcard [T-PHYS-104675]

Organisation: KIT Department of Physics
Part of: M-PHYS-102352 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>2</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
7.69 Course: Wildcard [T-PHYS-104677]

Organisation: KIT Department of Physics
Part of: M-PHYS-102352 - Interdisciplinary Qualifications

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>2</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>
7.70 Course: Wildcard [T-PHYS-108285]

Organisation: University
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>
7.71 Course: Wildcard [T-PHYS-108286]

Organisation: University
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Completed coursework</td>
<td>4</td>
<td>pass/fail</td>
<td>1</td>
</tr>
</tbody>
</table>
7.72 Course: Wildcard [T-PHYS-108284]

Organisation: University
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
7.73 Course: Wildcard [T-PHYS-106797]

Organisation: University
Part of: M-PHYS-103403 - Module Wildcard Electives

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Recurrence</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>5</td>
<td>Grade to a third</td>
<td>Each term</td>
<td>1</td>
</tr>
</tbody>
</table>
7.74 Course: Wildcard [T-PHYS-108283]

Organisation: University
Part of: M-BGU-102759 - Computer Vision and Remote Sensing

<table>
<thead>
<tr>
<th>Type</th>
<th>Credits</th>
<th>Grading scale</th>
<th>Version</th>
</tr>
</thead>
<tbody>
<tr>
<td>Examination of another type</td>
<td>4</td>
<td>Grade to a third</td>
<td>1</td>
</tr>
</tbody>
</table>
Guidelines to Master’s Thesis

In the following, the most important steps and necessary formalities related to the compilation and submission of the Master’s thesis are described. The description comprises the closely interlinked modules “Specialization Phase” and “Master’s Thesis”, thus two semesters or a 12-month period. It is a guideline, not a legally binding regulation document. Questions can be directed to Andreas Fink (andreas.fink@kit.edu) or Kathi Maurer (kathi.maurer@kit.edu).

4. Finding a topic and supervisor

The “standard” case is that you will obtain a topic and supervisor from the list at our homepage. Please approach the respective supervisor(s) for more details in case you are interested. Please note that it is possible to choose topics that were not listed under the above-mentioned URL. In this case, approach professors, “Privatdozenten”, and group leaders directly.

In this context, it shall be noted that the Institute of Meteorology and Climate Research (IMK) has three departments: TRO focuses on the troposphere, AAF on aerosols, ASF on atmospheric trace gases and remote sensing. Master theses can be written in all three departments.

5. Registration and Deadlines

Before the start of the module Specialization Phase, students need to personally visit the Examination Office of the KIT Faculty of Physics:

Prüfungssekretariat, Ms. Anja Müller

Physics Building 30.21, 9th floor, Room 9-13;

email: pruefungssekretariat@physik.kit.edu

Phone 0721 608-43438

If all requirements are met, a signed and stamped form will be issued.

Students use this form to contact their Advisor to discuss and fill in, amongst others, the fields "Advisor/Co-Advisor", "Preliminary title of thesis", and "Start of the thesis".

The Advisor signs the form and sends it back to the Examination Office.

The Examination Office will register the start of the Specialization Phase in the Campus Management System. As soon as the module Specialization Phase is passed by presenting a talk in the Seminar on Specialization Phase (6 months after starting date) the thesis is registered in Campus Management System with the preliminary working title, the advisors and the start date. The deadline for submission of the thesis is calculated by the system and monitored by the Examination Office (12 months after starting date). These information are visible for the student in the Campus student portal.
The following points are worthy of note:

- The application for the *Specialization Phase* will be accepted by Ms. Müller, if all four meteorology modules of the 1st and 2nd MSc semester are entered in the Campus Management System. The modules *Soft Skills* and *Complementary Elective* may still be incomplete and should be completed in the course of the *Specialization Phase*.

- If the oral module exam has already been passed in one or more of the meteorological modules but has not yet been entered, an e-mail from the Responsible Lecturer to Ms. Müller, confirming the successful completion of the module, is sufficient.

- **Important**: If one of the four Master modules has not been passed because course components (“Teilleistungen”) have not yet been completed and therefore the prerequisites for the oral examination have not yet been met, please speak to the study advisor Prof. Dr. Andreas H. Fink, to prevent an unnecessary delay of the study by one semester.

- Deadline extensions are handled very restrictively and are only possible in justified individual cases.

The module Specialization Phase

Formally, the first six months of final thesis work belong to the module *Specialization Phase*. In these six months, a seminar will be given in the *Seminar on the Specialization Phase* (“Studierendenseminar”) in the context of the *Scientific Concept Development*. It should be noted that this seminar must be given in the “Studierendenseminar” that usually takes place during the lecture period on Wednesdays from 16:00-17:30 o’clock. After booking a date in the respective Ilias course dates and seminar titles should be sent to *Kathi Maurer*.

Important: Please register in the Campus Management System before the seminar on the *Specialization Phase*. Formally, this is possible when all of the 4 master modules in meteorology in the Campus Management System have been passed.

The seminar talk should take 20-25 minutes, followed by a discussion. The total duration should not exceed 45 minutes. After the seminar, there should be a feedback discussion with the Advisors and the Supervisor, in which the progress made so far is evaluated and next steps are discussed.

Advisors or Supervisors sign a *form*, which documents the presentation of the lecture with date and title.

Please forward the signed form to Prof. Hoose or Kathi Maurer, who will enter the *Specialization Phase* in the Campus Management System.
7. The module Master’s Thesis

Within the 12-month period, the Master’s thesis is to be submitted to Ms. Müller as a written scientific paper.

Five bound copies must be made, with three copies being submitted to Ms. Müller, all three signed by the first Examiner with a text like for example:

„Accepted as an examination copy.“

Please note: With this signature the first examiner declares that the work is graded at least with a mark of 4.0! If doubts as to the latter grading exists, the examiner will write on all three copies a text like:

„Inspection copy.“

Ms. Müller confirms the receipt of the copies, which are then submitted to the first and second Examiners and on the basis of which the reports are prepared. This delivery is relevant for the 12-month deadline.

Please give the fourth and fifth bound copy to Frau Gräbner for the library at Campus South and the DWD library. Please send a PDF of the submitted work to Mr. Daub, the IT administrator at Campus South. This PDF file is available for free download on the IMK website pending on the consent of the Advisor.

After submission, a 20-25 minute seminar must be held in the respective seminars of the department TRO, ASF, or AAF (cf. Section 4.1), where the thesis was written. This seminar can be held after the 12-month period and should take place at one of the next possible dates. Note: This final seminar can only take place during the lecture period.

After the seminar, a form must be completed, signed by the Advisor and the Co-Advisor or Supervisor and sent to Ms. Müller for recognition. The reports will be prepared by the Advisors only after the final presentation, as this is part of the assessment and is included in the evaluation.

8. Glossary

- Advisor (“Berichterstatter or” ”Gutachter”): This is usually a professor or a “Privatdozent” who acts as the first examiner.

- Co-Advisor (“Zweitgutachter”): This is usually a professor or a “Privatdozent” who acts as the second examiner.

- Supervisor (“Betreuer”): He/she supervises the Master Student, is often the Advisor or Co-Advisor, but can also be research staff (see also “group leader”).

- “Privatdozent”: This is an habilitated staff member. He can act as an Advisor. However, the second examiner must be a full professor in this case. This is also true for so-called “apl. Professor”.

- Group Leader (“Gruppenleiter”): Group leaders in Campus North are senior scientists. They can act as Supervisors, but not as Advisors if they are not habilitated or are an “apl. Professor” (please see “Privatdozent”).

- “Responsible Lecturer”: This is the “Modulverantwortliche” who enters the final grade of his/her module into the Campus Management System.
“Examination Office” ("Prüfungssekretariat"): This is the “Prüfungssekretariat” of the Faculty of Physics. The Examination Office is currently managed by Ms. Müller.

Campus Management System (CAS): Amongst others, results of modules are entered in CAS.

“Course Component”: This is the so-called “Teilleistung”, often a lecture.

“Seminar on the Specialization Phase”: This is also referred to as “Studierendenseminar”, in which also BSc students give their talks. It is currently scheduled on Wednesdays 16:00-17:30 hours. Registration takes place via booking a timeslot in the respective Ilias course and by sending a mail with the booked date at Kathi Maurer.